Ohio State Drug Development Institute (DDI) Portfolio Project

Selective Estrogen Receptor Modulator (ERß Agonist) for treating Liver Fibrosis and Cancer

Inventor: Werner Tjarks, Dr.rer.nat.

DDI Lead: Chad Bennett, PhD SME: Chris Coss, PhD

Korea Drug Development Fund - Oct, 2019

The James

OHIO STATE'S DRUG DEVELOPMENT INSTITUTE (DDI)

Accelerating Innovative Research to Speed Cures to Cancer Patients

The DDI Advantage

- A pipeline of innovative, early-stage therapeutics
- Independently validated technologies
- Rigorous project milestone management by industry scientists
- A network of industry experts to vet projects
- Focus on external partnership and out-licensing

<u>Rationale</u>

 ERβ activation may attenuate progression in multiple diseases: NASH / Liver Fibrosis
Prostate cancer
Glioblastoma

Technology

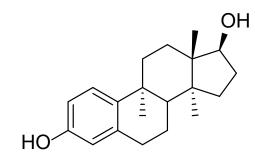
Novel and selective, non-steroidal ERβ agonists

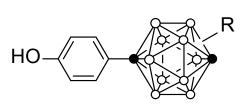
Lead molecule: ER β Cellular avg. EC₅₀ = 32 ± 13 nM;

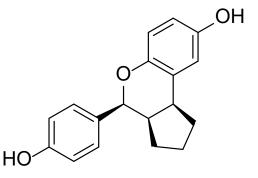
ERβ : ERα >200:1

ER β cell-free radio-ligand binding K_i = 2 nM

High oral bioavailability, brain penetrant


Good *in vivo* oral dose response In vitro ADME completed, no major issues


 Strong IP position with ability to tune desired SERM activity on novel pharmacophore and expand portfolio


Next Milestones

- Additional in vivo efficacy of lead
- Design and synthesize new analogs

The James

Estradiol (E2)

OSU's Lead*

LY500307

Molecule	$ER \alpha \ EC_{50}$	$ER\beta \ EC_{50}$	ERα/ERβ	
E2	0.14 nM	0.075 nM	2.0	
OSU's Lead	>30,000 nM	44.9 nM	>668	
LY500307	346 nM	0.6 nM	577	
*Black do White do	•	He James		

ER-β Selective Agonist – Lead Molecule

<u>Mouse Acute Tox</u>: No observable tox (@ 200 mpk PO, highest dose given)

<u>Mouse PK</u>: (10 mg/kg, p.o.) Plasma AUC = 122 uM-h T $_{1/2}$ = 5.2 h, C_{max} = 22.0 uM F = 92%, Brain / Plasma = 0.46

Dog PK: (10 mg/kg, p.o.) Plasma AUC = 13.0 uM-h T $_{1/2}$ = 39.8 h , C_{max} = 0.63 uM F = 16.5%

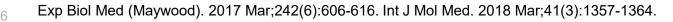
Solubility:

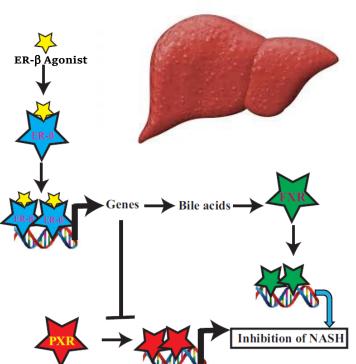
Kinetic Solubility (pH 7.4) < 1 uM Sim. Gastric Fluid (pH 1.2) < 1.56 uM Sim. Intestinal Fluid (pH 6.8) <1.56 uM Fed State SIF (pH 5.0 + oil) = 1770 uM Fasted State SIF (pH 6.5) = 336 uM

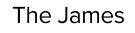
hERG (Q-Patch): $IC_{50} > 30 \text{ uM}$ Plasma Protein Binding: $\geq 99.9\%$ Caco-2 (Bidirectional): N/A* Other Human Nuclear Receptors:

Following NHR's screened in agonist and antagonist mode: AR, GR, PGR, MR, FXR, LXR α , LXR β , ERR γ , PXR No EC₅₀ / IC₅₀ < 10 uM

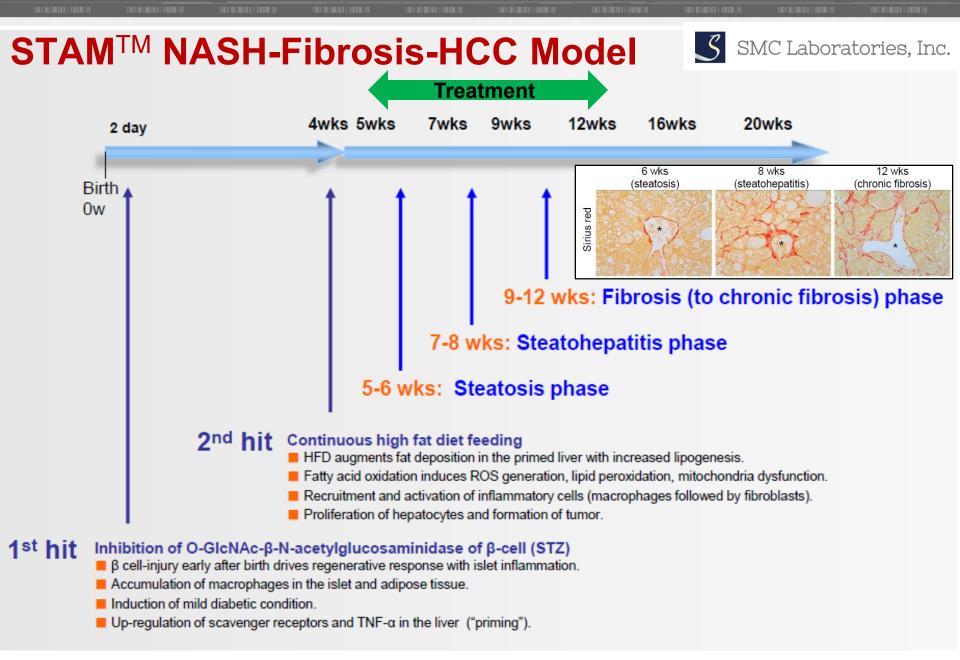
Microsomal Stability: Stable in human microsomes

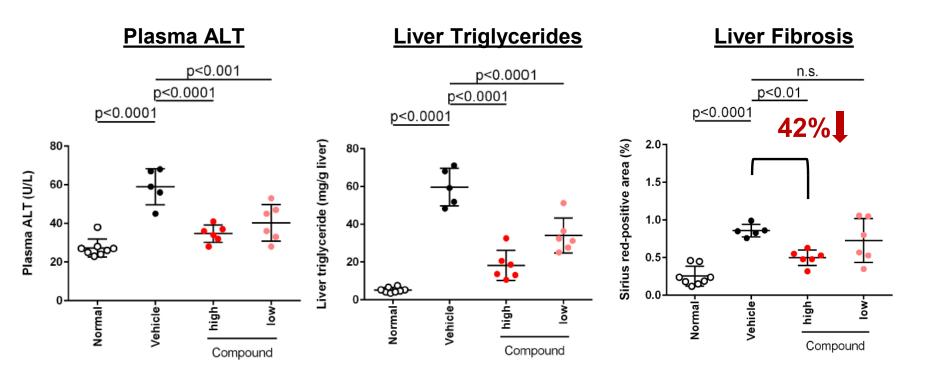

Mouse:	T _{1/2} = 47.7 min,	Cl _{int} = 29.1 uL/min/mg
Rat:	T _{1/2} = 15.6 min,	Cl _{int} = 89.0 uL/min/mg
Monkey:	T _{1/2} = 65.9 min,	Cl _{int} = 21.0 uL/min/mg
Human:	T _{1/2} > 145 min,	Cl _{int} < 9.6 uL/min/mg
Dog:	T _{1/2} > 145 min,	Cl _{int} < 9.6 uL/min/mg


COMPREHENSIVE CANCER CENTER

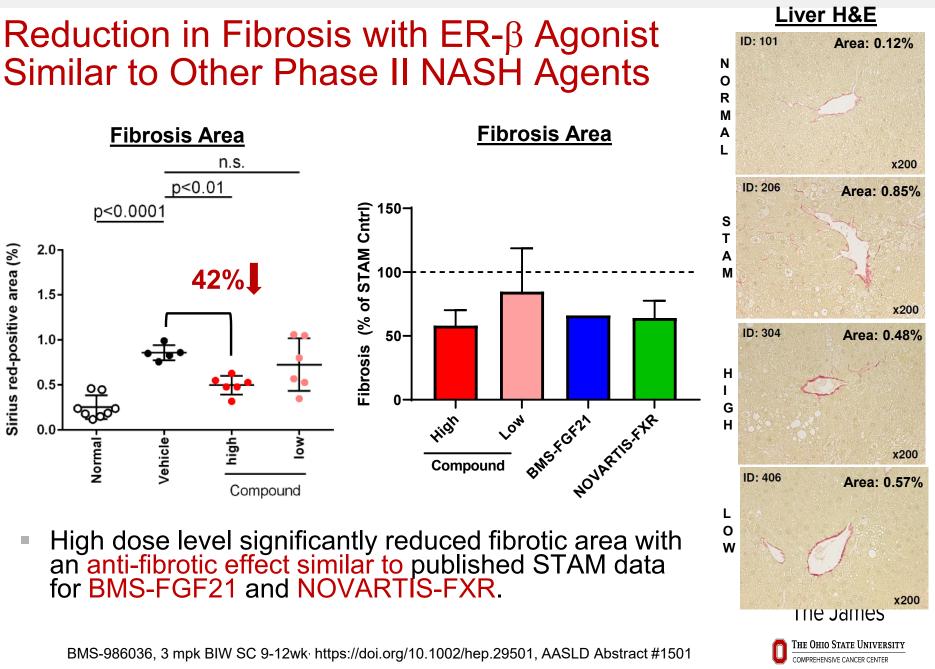

<u>CYP Inhi</u>	bition: (IC ₅₀) No significant i	issues			
1A2: 53.2	2 uM	2B6: 6.3 uM				
2B6: 16.3	3 uM	2C8: 48.4 uM				
2C9: 68.	8 uM	2C19: 13.1 uM				
2D6: 63.	5 uM					
3A4 (Testosterone): IC ₅₀ = 88.4 uM						
3A4 (Mida	azalam): IC ₅₀	_o = 18.6 uM	The James			
			THE OHIO STATE UNIVERSITY			

 $\text{ER}\beta$ Agonist in NASH / Liver Fibrosis


- Non-Alcoholic SteatoHepatitis
 - Affects 10 million people within US
 - 3-5 million NASH patients progress to fibrosis
 - Will overtake viral hepatitis as primary cause of Hepatocellular Carcinoma in US by 2040
 - No approved therapy
- Targeting ER-β in NASH
 - Promote FXR-mediated lipid clearance
 - Block PXR-mediated lipid accumulation
 - <u>Reduce</u> oxidative stress induced hepatic stellate cell activation
 - <u>Avoid</u> ERα-mediated pro-thrombotic and HPGaxis effects
- Comprehensive NASH/Fibrosis Prevention Study by SMC Labs
 - 10 and 100 mg/kg dose levels
 - Study readouts:
 - Serum liver damage markers (ALT, triglycerides)
 - Fibrosis Area (sirius red staining)



Decrease in Liver Fibrosis by Lead ERβ Agonist Daily oral dosing



Following 7 Weeks of PO QD Treatment, Lead ERß Agonist Demonstrates:

- Large dose dependent reductions in liver injury marker serum ALT.
- Large dose dependent reductions in liver triglycerides.
- 42% reduction in fibrotic liver area for high dose group.

The James

LJN452, 0.1 mpk QD 6-9wk n=10 : https://doi.org/10.1002/hep.29501, AASLD Abstract #2052

9

Application: PCT/US2016/052531 Priority Date: Sep. 17, 2015

Title:CARBORANE COMPOUNDS AND METHODS OF USE THEREOFInventors:Werner Tjarks, David Sedlak, Petr Bartunek

Assignee: Ohio State Innovation Foundation & Institute of Molecular Genetics of the ASCR

Filing: Provisional (Sep 17, 2015), PCT (Sep 19, 2016), National Phase (Mar 17, 2018)

Description: Compositions of matter as well as methods of use

