

PAICS Inhibitors for cancer cell growth and/or metastasis

Non-confidential summary

PAICS Programme Summary

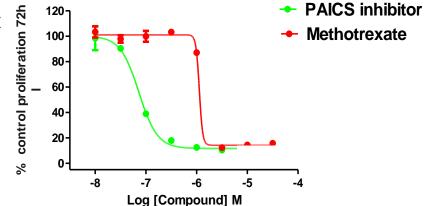
Project Aim	To develop first in class cancer therapeutic agent that inhibits PAICS				
Target Class	Enzyme (carboxylase/synthetase)				
Therapeutic Area	Cancer (growth and/or metastasis)				
Modality	Small molecule				
Current Status	Lead series established				
Competitive Edge	Potent, selective inhibitor of PAICS, a key enzyme in cancer metabolism				
IPR	PCT/GB2017/053821, and PCT/GB2017/053822, filing date 19/12/2017				
Offering	Licence or collaboration for preclinical / clinical development				

Identification of PAICS as a novel cancer target

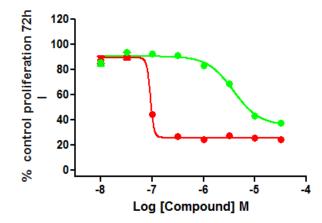
- PAICS identified as a novel target in breast cancer growth and metastasis by our collaborator, Daniel Peeper, from the Netherlands Cancer Institute
- **Fra-1** was identified as the most upregulated gene (50-fold) during the experimental acquisition of a metastatic phenotype in breast cancer
- Depletion of **9 genes** strongly inhibited tumour growth and metastasis, one of which was PAICS

- PAICS is a bifunctional enzyme involved in the *de novo* purine biosynthesis pathway
- Rapidly dividing cancer cells have higher metabolic needs than normal cells, which grow more slowly
- Normal cells can utilise a salvage pathway to obtain purine, whereas cancer cells are dependent on *de novo* purine biosynthesis
- **Potential therapeutic window** via targeting PAICS

Discovery of small molecule PAICS inhibitors

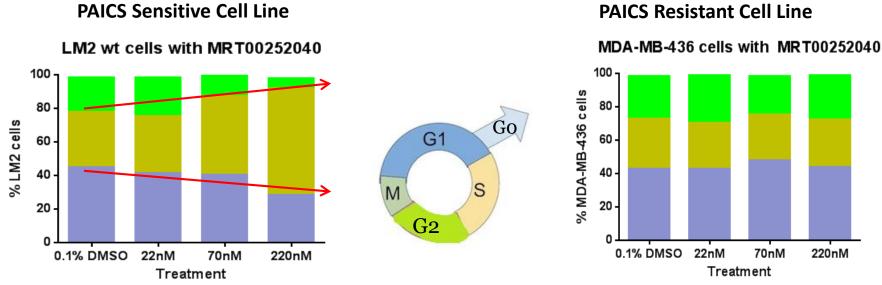

- LifeArc developed a biophysical assay and carried out fragment screening of PAICS
- Follow up medicinal chemistry was carried out on hits to obtain highly potent, bioactive PAICS inhibitors
- Compounds show good potency and good PK properties in vivo
- Key compounds are tolerated very well in mice (14 day study)
- Composition of matter IP has been filed and 2 PCT applications will publish in June 2018

	Biochemical IC50 (nM)	Cell IC50 (nM)	Average LogD			Mouse Clint (mL/min/kg)	Mouse Bioavailability (%F)
Compound 1	11.5	180	1.3	218	3.2	35.0	97*
Compound 2	3.4	75	1.6	224	3.1	15.0	73

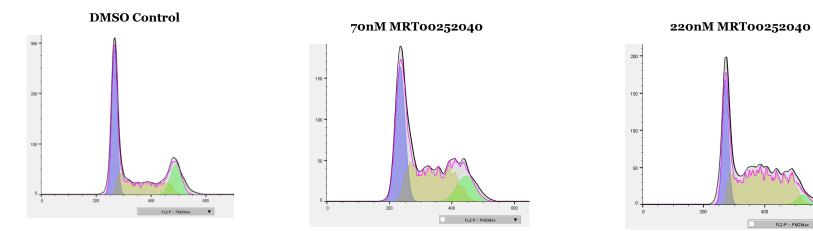


Profiling in breast cancer cells

- PAICS inhibitors have a potent cytostatic effect
- In breast cancer cell lines they inhibit:
 - 2D growth
 - anchorage-independent 3D growth
 - migration
 - PAICS inhibitors outperform existing anti-metabolite methotrexate in breast cancer cells, sparing normal human mammary epithelial cells



MDA-MB-231 TNBC cell line Aggressive, metastatic 'relatively methotrexate resistant'



Normal human mammary epithelial cells

Effects of PAICS inhibitors on cell cycle

72h incubation with PAICS inhibitor compound MRT00252040

FL2-P :: PM2Max

PAICS is a novel therapeutic target for cancer and other proliferative disorders

- Targeting PAICS may have potential in a number of different cancer indications
- We have generated novel, potent inhibitors of PAICS
- Inhibitors have on-target activity and demonstrate phenotypic effects
- Inhibitors are tolerated *in vivo* and have suitable PK to enable *in vivo* proof of concept studies
- We continue to work with academic partners to find preferred indication for translation

We are new seeking a commercial partner to explore the potential of these novel inhibitors further

- We can share additional data under CDA such as:
 - ➢ Details of *in vivo* studies
 - "Pull-down" data demonstrating high selectivity
 - ≻ Kinase profile data
 - Details of bioinformatics studies which demonstrate that our PAICS inhibitor occupies the same therapeutics space as Pemetrexed
 - Potential for PAICS inhibition as a complementary therapy alongside mTOR inhibitors (e.g., everolimus)