Epigenetic Therapies: Identification and characterisation of novel dual HKMT inhibitors

Prof Bob Brown and Prof Matt Fuchter (b.brown@imperial.ac.uk)

Why Dual EZH2 and EHMT2 inhibition?

- EZH2 and EHMT2 Histone Methyltransferases are essential for cancer stem cell maintenance
- Existing EZH2 inhibitors have little activity in solid tumours that express wild type EZH2
- EZH2 and EHMT2 show increased copy number and high expression in wide variety of epithelial tumour types.
- SiRNA double knock down of EZH2 and EHMT2 or pharmacological inhibition of both EZH2 and EHMT2 is more biologically effective at (Curry et al 2015)
-Potential to generate novel chemical matter with mechanism of action different from existing drugs
-Simpler to deliver and schedule dual inhibitor than two epigenetic drugs especially in combination studies with other therapies

Histone Methyltransferase (HKMT) inhibitors

qRT-PCR
Gene expression in PEO23 HKMT1-1-005 $(0-20 \mu \mathrm{M}) 48 \mathrm{H}$

Lead compound (HKMT-1-005)

- Appropriate ADME properties -"drug like"
- Well characterised salt formulation for in vivo studies (Salt Form Solutions)
- Good pharmacokinetics
- Well tolerated in mice at pharmacodynamically active doses
- In vivo growth inhibition as single agent against some xenografts
- Identified potential stratification biomarkers for patient selection
- Synergy with molecularly targeted agents: PARP inhibitor
- Immunomodulatory activity in syngeneic ovarian cancer mouse models

Isobologram

