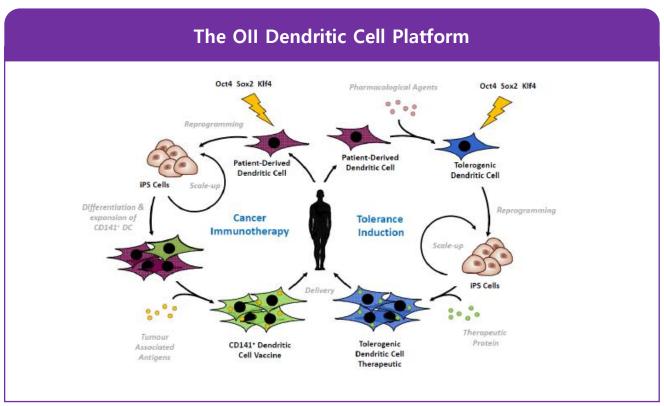
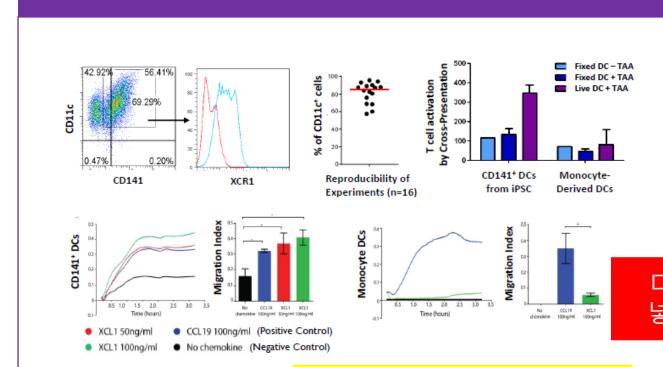
Dendritic cells from induced 157 pluripotent stem cells with an adult phenotype for immunotherap

Asset Overview


Product Type	Peptide
Indication	Oncology
Current Stage	Proof-of-Concept
Target (MoA)	Mutations in the IGF2R that increase affinity with IGF2. These mutated receptors act as traps for IGF2 (IGF2-TRAP), thus sequestering this overexpressed ligand.
Brief Description	Researchers at the University of Oxford have identified key mutations that increase the affinity of Insulin-like Growth Factor 2 Receptor (IGFR2) for its ligand, reducing hypoglycaemia and tumour volume.
Organization	Oxford University

Differentiation


- □ Midkine is unregulated in kidney Injury Limitations of Current Technologies : Clinical Trials of Dendritic Cell-Based Vaccines
- More than 200 trials have been conducted in cancer immunotherapy for the treatment of melanoma, prostate cancer, glioblastoma and renal cell carcinoma Objective response rates (ORR) in the 8-15% range have typically been reported along with clear evidence of CTL responses in >50% of patients
- Many studies have shown a median prolongation of Overall Survival of ~20%, and Clinical trials over the past two decades have therefore established
- □ Strategic Advantages of the OII Dendritic Cell Platform
- The OII platform exploits the cross-presentation capacity of the CD141+ DCs, avoiding the need for transfection or the identification and synthesis of peptide epitopes relevant for each MHC haplotype
- Responsiveness of CD141+ DCs to XCL1 secreted by CD8+ T cells, uniquely directs them towards the very cells capable of responding to TAAs
- Survival of administered DC need only be transient: the legacy of vaccination remains imprinted within the memory T cell repertoire
- Irradiation of the cellular inoculum enhances the safety profile by mitigating against tumorigenesis
- Only modest scale-up in manufacturing is required to produce sufficient numbers
- The platform provides opportunities for future generations of cell therapy products with refined functionality

Dendritic cells from induced 157 pluripotent stem cells with an phenotype for immunotherap

Key Data

Characterisation of CD141+ DC Differentiated from Human iPSC

Silk et al. (2012) Gene Therapy **19**:1035-1040

Dendritic cells from induced 157 pluripotent stem cells with an adult phenotype for immunotherapy

▶ Intellectual Property

Patent No.	PCT-GB2017-050201
Application Date	2017.01.26
Status	Application Pending
Country	US, EP, CN

Contact Information

Contact Person	Dr. Richard Reschen
Email	richard.reschen@innovation.ox.ac.uk
URL	https://innovation.ox.ac.uk/licence-details/dendritic-cells-induced- pluripotent-stem-cells-adult-phenotype-immunotherapy/