*For correspondence:
terence.rabbitts@imm.ox.ac.uk
Present address: ${ }^{\dagger}$ Wellcome
Trust Centre for Human Genetics, Oxford, United Kingdom

Competing interest: See page 23

Funding: See page 23
Received: 04 April 2018
Accepted: 16 June 2018
Published: 10 July 2018
Reviewing editor: Roger J
Davis, University of Massachusetts Medical School, United States
cc) Copyright Bery et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions

Nicolas Bery ${ }^{1}$, Abimael Cruz-Migoni ${ }^{1,2}$, Carole JR Bataille ${ }^{3}$, Camilo E Quevedo ${ }^{1}$, Hanna Tulmin ${ }^{1 \dagger}$, Ami Miller ${ }^{1}$, Angela Russell ${ }^{3}$, Simon EV Phillips ${ }^{4}$, Stephen B Carr ${ }^{2,4}$, Terence H Rabbitts ${ }^{1 *}$
¹MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; ${ }^{2}$ Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom; ${ }^{3}$ Chemistry Research Laboratory, Oxford, United Kingdom; ${ }^{4}$ Department of Biochemistry, University of Oxford, Oxford, United Kingdom

Abstract

The RAS family of proteins is amongst the most highly mutated in human cancers and has so far eluded drug therapy. Currently, much effort is being made to discover mutant RAS inhibitors and in vitro screening for RAS-binding drugs must be followed by cell-based assays. Here, we have developed a robust set of bioluminescence resonance energy transfer (BRET)-based RAS biosensors that enable monitoring of RAS-effector interaction inhibition in living cells. These include KRAS, HRAS and NRAS and a variety of different mutations that mirror those found in human cancers with the major RAS effectors such as CRAF, PI3K and RALGDS. We highlighted the utility of these RAS biosensors by showing a RAS-binding compound is a potent pan-RAS-effector interactions inhibitor in cells. The RAS biosensors represent a useful tool to investigate and characterize the potency of anti-RAS inhibitors in cells and more generally any RAS protein-protein interaction (PPI) in cells.

DOI: https://doi.org/10.7554/eLife.37122.001

Introduction

RAS is the most prominent oncogene identified in cancer. Mutation in RAS proteins can be found in approximately 30% of all human tumors (Downward, 2003; Prior et al., 2012) (http://cancer. sanger.ac.uk/cosmic) prompting interest in the discovery of anti-RAS therapeutics. However, there are still no RAS-targeted drugs currently available in the clinic even though such molecules could prove widely efficacious in many human cancers as front-line drugs for therapy. Some forms of cancer, like pancreatic cancer, present late and are difficult therefore to treat (Kleeff et al., 2016) but these contain a high proportion of KRAS mutations and are thus potentially susceptible to RAS-binding drugs.

RAS has been regarded as undruggable partly because so far attempts to interfere with the protein have not been efficacious (Cox et al., 2014). RAS is a membrane-bound small GTPase switching between an inactive GDP-bound state and an active GTP-bound state. RAS signaling to the cell nucleus occurs after interaction of RAS-GTP with its effectors to trigger the activation of downstream signaling pathways. This activation thereby promotes cell survival and cell proliferation (Wennerberg et al., 2005) via gene modulation so that the blockade of mutant RAS signaling in tumors cells is an attractive therapeutic option. There are several ways in which this could be achieved (Athuluri-Divakar et alo, 2016; Burns et alo, 2014; Spiegel et alo, 2014; Zimmermann et al., 2013) but methods such as implementing farnesylation inhibitors have limited
eLife digest A group of proteins known as the RAS family plays a critical role in controlling animal cell growth and division. RAS proteins are normally active only some of the time, but genetic mutations can create permanently active forms of the proteins. These constantly interact with other proteins called effectors. In response, cells multiply uncontrollably and give rise to cancers.

In an attempt to find new cancer treatments, researchers across the globe are trying to develop inhibitor drugs that prevent RAS and effector proteins from interacting. New drugs are often tested in laboratory experiments that directly apply the drugs to the proteins that they are designed to work on. But in some cases a drug may work wellin the laboratory but fail to work when used in cells. Unfortunately, there are few ways to judge how well inhibitor drugs work inside living cells.

Bery et al. have now developed RAS biosensors - a collection of proteins that bind to RAS and produce light more brightly when RAS interacts with effector proteins in living cells. Tests on cells treated with an antibody that works inside cells and is known to prevent interactions between RAS and effector proteins confirmed that the RAS biosensors work well. Bery et al. then used the RAS biosensors to show that a new RAS inhibitor works in human cancer cells.

The RAS biosensors are available upon request to researchers across the globe. They should form an important tool for testing potential treatments for cancers that contain mutated RAS proteins. DOI: https://doi.org/10.7554/eLife.37122.002
success due to side effects (Berndt et al., 2011; James et al., 1995; Whyte et al., 1997). One avenue that has largely been avoided in inhibiting RAS is the interaction with its effectors, such as RAF, RALGDS and PI3K. However, the effectiveness of the orthosteric RAS-effector PPI inhibition was shown using intracellular antibodies (Tanaka and Rabbitts, 2003; Tanaka et al., 2007) (herein called macrodrugs (Tanaka and Rabbitts, 2008) to distinguish them from conventional small molecule drugs) and a single domain intracellular antibody that blocks effector interaction sites of RAS-GTP. This PPI inhibition can prevent tumor growth in xenograft models and tumor initiation in a transgenic mouse model (Tanaka and Rabbitts, 2010; Tanaka et al., 2007). Other macrodrugs, such as DARPins (Guillard et al., 2017), have also been shown to be effective in interfering with RAS PPIs. Moreover, for many years, RAS was regarded as a protein without any pockets suitable for small molecule interactions (McCormick, 2016) but recent studies have described compounds that are able to bind RAS-associated pockets (Gentile et al., 2017; Lito et al., 2016; Maurer et al., 2012; Ostrem et al., 2013; Patricelli et al., 2016; Shima et al., 2013; Sun et al., 2012; Waldmann et al., 2004; Welsch et al., 2017).

Most of the current RAS inhibitors have been selected and identified through in vitro techniques (Ostrem et al., 2013; Trinh et al., 2016; Upadhyaya et al., 2015; Welsch et al., 2017) but cellbased assay technologies are needed to assess initial hits for efficacy before hit to lead development is undertaken. Indeed, a robust cell-based assay is a mandatory step in any drug discovery programme, as it provides insights into the behavior of compounds in physiological conditions, including cell permeability, stability and potency in the cellular complexity of a whole cell. We now describe a toolbox of mutant and wild-type RAS BRET-based biosensors that can be used to assess PPI between activated, GTP-bound RAS (KRAS, HRAS or NRAS) and effectors such as CRAF, RALGDS or PI3K in living cells. We validate the toolbox using a published anti-RAS intracellular domain antibody (hereafter named iDAb RAS) (Tanaka et al., 2007), which is an inhibitor of RAS PPI to establish the RAS biosensor resource. We have further used this methodology to test a RAS-binding compound (herein referred to as 3344) that we have derived from an in vitro medicinal chemistry programme starting with an intracellular antibody fragment. By monitoring the change in BRET2specific signal in transfected HEK293T cells expressing different RAS-effector donor-acceptor combinations, we have been able to characterize the pan-RAS-effector PPI inhibitor properties of 3344 . This inhibitory mechanism shown using the BRET biosensor toolbox was supported by the crystal structure of KRAS with bound 3344 , showing binding to a pocket close to the RAS switch. Therefore, the BRET2 toolbox we describe here is a critical resource and is available for all investigators in the international effort to produce anti-RAS drugs, that can be employed in the treatment of cancers with RAS mutations.

Results

Engineering and validation of mutant RAS biosensors

RAS biosensors were developed for use in the BRET2 method (Bacart et al., 2008) as a real-time system allowing the monitoring of protein-protein interactions and their inhibition in live cells. The scheme used is outlined in Figure 1A. The intracellular localization of BRET donor RAS proteins was recapitulated by expressing the full-length proteins including the CAAX box, which is the farnesylation site for trafficking to the plasma membrane. The CAAX sequences were fused to the carboxy terminal end of the Renilla Luciferase variant 8 (RLuc8) to act as the donor molecule in BRET2 (De et al., 2007) (for simplicity of the nomenclature, CAAX has been omitted from the RAS construct names). We used available structural data for RAS/effector and RAS/iDAb complexes to optimize the proximity of donor and acceptor moieties. Hence, RLuc8 was fused to the amino termini of fulllength RAS family proteins and the GFP² (Ramsay et al., 2002) fused to the C-termini of the effectors (RALGDS, CRAF, PI3K) or of the iDAbs. Other parameters can influence the BRET2 signal such as the linker length between RLuc8/RAS and effector-iDAb/GFP². For our study, we observed a higher BRET signal with a (GGGS) 3 linker between RLuc8-KRAS ${ }^{G 12 D}$ construct, a (GGGS) ${ }_{3}$ linker between the CRAF RBD-GFP ${ }^{2}$ molecule and a (GGGS) 2 linker between iDAb RAS-GFP ${ }^{2}$ construct (Figure 1-figure supplement 1A). Therefore, we implemented these observations to all our BRET biosensors (Supplementary file 1). When donor and acceptor plasmids are transfected into HEK293T cells (although any cell line of choice would be suitable), the resultant cells are fluorescent and bioluminescent if treated with the luciferase substrate (coelenterazine 400a). If an interaction occurs between RAS and a partner-GFP ${ }^{2}$ fusion, bringing the RLuc8 and GFP ${ }^{2}$ within $100 \AA$, an energy transfer occurs from the RLuc8-RAS donor to the GFP² acceptor and a BRET2 signal is achieved (Figure 1A, middle panel). Inhibitors of the donor-acceptor molecule interaction will decrease the BRET signal whilst maintaining the RLuc8 bioluminescence and GFP² fluorescence signals (Figure 1A, right hand panel). The BRET signal (or BRET ratio) is calculated as the light emitted by the GFP ${ }^{2}$ acceptor constructs (at 515 nm) upon addition of coelenterazine 400a, divided by the light emitted by the RLuc8 donor constructs (at 410 nm) (Pfleger et al., 2006). A background BRET signal is only observed with the donor-only construct where the RLuc8 plasmid is transfected alone into the cells (Figure 1-figure supplement 1B) and this signal is therefore subtracted from that BRET ratio. As shown in Figure 1-figure supplement 1B, un-transfected cells and those transfected with GFP ${ }^{2}$-only construct have a negligible auto-luminescence and emission at 515 nm upon addition of the BRET substrate and are not considered in the calculation of the BRET ratio.

BRET donor saturation assessments were first carried out with the RAS effector RAS binding domains (RBDs) to evaluate the optimal levels of expression plasmid transfection for the competition experiments (Figure 1B). All of the effector domains were found to interact specifically with KRAS ${ }^{\mathrm{G12D}}$ since the BRET signal reached a donor saturation level (Figure 1B). Further, all the transfected plasmids expressed the proteins at equivalent levels as indicated by western blot analysis (Figure 1C) and their expression does not modify KRAS ${ }^{G 12 D}$ expression (Figure 1-figure supplement 2 A shows the increase of acceptor protein level has little effect of donor protein levels). To further characterize this BRET2 system, we used the dominant negative mutant KRAS ${ }^{\text {S17N }}$, which does not interact with the effectors (Cool et al., 1999; Nassar et al., 2010; van den Berghe et al., 1997), as a donor. We found that the BRET signal increased linearly with the concentration of acceptor for all the RAS binding domains. This result is typical of non-specific interactions (Mercier et al., 2002), confirming the S17N mutant does not interact with the effectors and supports the sensitivity of this system (Figure 1—figure supplement 2B).

We initially characterized the biosensor pairs with the iDAb RAS that is known to interact with mutant KRAS on the switch regions (Tanaka et al., 2007), compared with a non-relevant anti-LMO2 iDAb (Sewell et al., 2014; Tanaka et al., 2011) that was designated as iDAb control in this study (herein called iDAb CtI). Introduction of mutations in the three CDRs of the iDAb RAS to generate a dematured iDAb RAS (iDAb ${ }_{d m}$ RAS), was shown to reduce its affinity towards RAS-GTP from 6.2 nM to $\sim 1 \mu \mathrm{M}$ affinity (Assi et al., 2010). While this did not alter the protein expression (Figure 1-figure supplement 2C,D), there was an expected BRET signal reduction (Figure 1-figure supplement 2C). Indeed, it significantly increased the BRET_{50} (an approximation of the relative affinity of the acceptor fusion for the donor fusion proteins, corresponding to the acceptor/donor ratio necessary to reach 50% of the BRET $_{\text {max }}$) and significantly reduced the $\mathrm{BRET}_{\text {max }}$ (an approximation for the total

Figure 1. RAS-effector BRET biosensors and interference of KRAS-effector interactions by a RAS-binding compound. An outline of the BRET2-based RAS biosensor system is shown in A. RAS bound to the plasma membrane (PM) is fused at its amino terminal end to the RLuc8 moiety (donor). When a protein fused to the GFP² moiety (acceptor) does not bind to RAS, it only produces a background BRET signal. However, when an acceptor binds to RAS, it induces a BRET signal, if the luciferase and GFP domains are within $100 \AA$. The BRET signal can be decreased by addition of a competitor (either by a macrodrug or a small molecule inhibitor). The interaction titration of full-length KRAS ${ }^{G 12 D}$-CAAX (for simplicity, the CAAX motif is omitted in all the RAS constructs described hereafter) with the four effector acceptor proteins and the effect on intracellular protein levels are shown in B and C. Competition assays show the specificity of the RAS biosensors in D (iDAb) and E (RAS-binding compounds). In D, the non-relevant anti-LMO2 iDAb (called hereafter iDAb control, Ctl) serves as a negative control and anti-RAS iDAb (herein named iDAb RAS) serves as a positive control. In E, 3344 (black bars) decreases KRAS ${ }^{G 12 D}$ /effector domain interactions in a dose-dependent manner showing its broad range of inhibition. Cells were treated with 5, 10 and $20 \mu \mathrm{M}$ of 3344 (black bars), Abd-2 (grey bars) or DMSO alone (white bars) as the negative control. Statistical analysis was performed with a one-way ANOVA followed by Dunnett's post-hoc tests (${ }^{*} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.001, * * * * \mathrm{p}<0.0001$). Each experiment was repeated three (B, D) or four times (E). Where error bars are presented, these correspond to mean values \pm SD of biological repeats (B, D-E). See also Figure 1-figure supplement 1,

Figure 1—figure supplement 2, Figure 1—figure supplement 3 and supplementary file 1.
DOI: https://doi.org/10.7554/eLife. 37122.003
The following figure supplements are available for figure 1:
Figure supplement 1. Optimization of the RAS biosensors.
DOI: https://doi.org/10.7554/eLife. 37122.004
Figure supplement 2. Validation of the RAS biosensors with the anti-iDAb RAS.
DOI: https://doi.org/10.7554/eLife. 37122.005
Figure supplement 3. 3344 inhibits RAS-RBD interactions.
DOI: https://doi.org/10.7554/eLife. 37122.006
number of complex RAS/iDAb and the distance between the donor and the acceptor within the dimer), which together are consistent with a decreased affinity of this mutant iDAb toward RAS. Therefore, the results obtained with the iDAb RAS confirmed the sensitivity and accuracy of the RAS biosensors.

Finally, we tested the inhibition of interaction between RAS and its effector partners using BRET in a competition assay. HEK293T cells were transiently transfected with KRAS ${ }^{\text {G12D }}$, each of the RASeffector domain and a competitor (non-GFP²) version of the iDAb RAS or iDAb control. This competition showed that iDAb RAS, but not the control, drastically decreased the BRET ratio of all the interactions tested (Figure 1D). These results confirmed that the BRET2 biosensors enable monitoring of PPI inhibition of KRAS ${ }^{G 12 D}$ with each of the four effectors tested by the anti-RAS single domain antibody.

The BRET2 biosensors show that 3344 is an inhibitor of KRAS-effector interactions

Our major purpose in the development of the RAS BRET2 biosensors was to create a validation tool for compounds that bind to RAS and interfere with its PPI in living cells. We have identified compounds that bind to KRAS using in vitro screening and one compound 3344 (chemical structure and 1-D NMR characterization shown in Figure 1-figure supplement 3A-C) binds to KRAS ${ }^{\text {G12V }}$ with an affinity of 126 nM using ${ }^{1} \mathrm{H}$ Carr-Purcell-Meiboom-Gill (CPMG) NMR (Baldwin and Kay, 2009) (data are shown in Figure 1-figure supplement 3D). In vitro competition studies of 3344 binding to KRAS ${ }^{G 12 v}$ in waterLOGSY NMR show the anti-RAS scFv inhibits 3344 binding to KRAS (Figure 1figure supplement 3E). In view of the in vitro inhibition by the anti-RAS scFv of 3344 binding to RAS and because the iDAb RAS interferes with BRET signal in cells (Figure 1D), 3344 was used for validation of the BRET2 toolbox for RAS-effector PPI inhibitors. In the subsequent experiments reported here, we compare 3344 with an initial compound (Abd-2) obtained through a SPR in vitro screening, which binds HRAS/KRAS with low affinity. It is the precursor of the 3344 compound and both share the same benzodioxane group (the structures of 3344 and Abd-2 are shown in Figure 1-figure supplement 3A,F). These compounds have been selected from a medicinal chemistry programme in order to validate the BRET-based RAS biosensors.

HEK293T cells were transiently transfected with BRET pairs and, after 24 hr to allow protein expression, the cells were seeded in 96 -well plates. The compounds were added at different concentrations (5,10 and $20 \mu \mathrm{M}$) and incubated on cells for a further 20 hr before the BRET reading. For each assay, the donor protein was RLuc8-KRAS ${ }^{G 12 D}$ and the acceptor proteins were PI3K α RBDGFP², PI3K γ RBD-GFP², CRAF RBD-GFP ${ }^{2}$ or RALGDS RA-GFP². We observed a dose response reduction in BRET signal for the assays with compound 3344 but not with the Abd-2 indicating that only 3344 interferes with the RAS-effector PPI (Figure 1E). To rule out the possibility of false positive compounds (for instance, that might interfere directly with the BRET signal), we included control BRET-based biosensors. We tested the RAS compounds with the iDAbs RAS biosensors, either with RLuc8-LMO2 donor and $\mathrm{iDAb}_{\mathrm{dm}}$ LMO2 (a dematured anti-LMO2 iDAb (Sewell et al., 2014)) acceptor (Figure 1-figure supplement 3G), RLuc8-KRAS ${ }^{G 12 D}$ donor with the iDAb RAS acceptor (Figure 1-figure supplement 3H), or RLuc8-KRAS ${ }^{G 12 D}$ donor with the $\mathrm{iDAb}_{\mathrm{dm}}$ RAS acceptor (Figure 1—figure supplement 3I). Abd-2 has no effect on any of these assays while 3344 only interferes, in a dose response, with $K R A S^{G 12 D} / i D A b_{d m}$ RAS-induced BRET without affecting the expression of the biosensors (Figure 1-figure supplement 3J). Hence, the inhibitory effects of 3344 on KRAS ${ }^{G 12 \mathrm{D}}$-effectors interactions are not simply due to interference with the BRET assay.

BRET2 reporter and associated RAS-CRAF signaling are affected by compound 3344

The RAS binding domain of the effector molecules lack some regulatory domains, which impedes a direct study of RAS inhibitors on pathways downstream of RAS. To reduce this limitation, we developed an optimized RAS biosensor of the full-length $C R A F^{S 257 L}$ mutant (herein named CRAF ${ }^{F L}$) since the S257L mutation increases ERK phosphorylation (Razzaque et al., 2007) and because we found that $C R A F^{F L}$ interacts with $K_{R A S}{ }^{G 12 D}$ but not with KRAS ${ }^{S 17 N}$ (Figure 2-figure supplement 1A). We performed a competition assay with the iDAb RAS confirming that it impedes the BRET2 signal due to the binding of CRAF ${ }^{F L}$ with KRAS ${ }^{G 12 D}$, in a dose response mode, whereas the iDAb control had
no effect (Figure 2A). There was no alteration in CRAF ${ }^{F L}$ and KRAS ${ }^{G 12 D}$ protein expression due to the transfection of the iDAbs, shown by western analysis (Figure 2-figure supplement 1B). In addition, iDAb RAS inhibition significantly decreased the phosphorylation of MEK1/2 and ERK1/2 kinases (Figure 2B shows western blot data, quantitated in Figure 2C), confirming results affecting endogenous ERK phosphorylation by iDAb RAS interaction with RAS (Tanaka and Rabbitts, 2010).

We further tested the ability of the small molecule 3344 to inhibit the KRAS ${ }^{G 12 D} / C R A F^{F L}$ biosensor and the downstream biomarker pathways with either a long incubation (20 hr , Figure 2D-F) or a short incubation (3 hr, Figure 2-figure supplement 1D-F) to further validate the specificity of

Figure 2. BRET biosensors of KRAS ${ }^{G 12}$ mutants and full-length CRAF are inhibited by compound 3344. A biosensor for the full-length CRAF ${ }^{S 257 L}$ $\left(C R A F^{F L}\right)$ protein was made and tested for interaction with mutants of KRAS glycine 12. For A and B, the plasmids expressing BRET pair KRAS ${ }^{G 12 D}$ / CRAF ${ }^{F L}$ was transfected into HEK293T cells and competed with iDAb expression as indicated; the BRET ratios are shown in A and western blot data in B. The iDAb RAS inhibition of phosphorylation of ERK and MEK signals are quantified in C. The β-actin loading control, iDAbs and BRET pair expression controls are shown in Figure 2-figure supplement 1. In D, the BRET ratio of KRAS ${ }^{G 12 D} / C R A F^{F L}$ interaction was measured in the presence of an increasing dose of compound 3344. This induces a dose-dependent decrease of MEK and ERK kinase phosphorylation (E) after cells expressing the $K_{R A S}{ }^{G 12 D} / C R A F^{F L}$ biosensor pair were treated 20 hr with DMSO, 10 and $20 \mu \mathrm{M}$ of $\mathrm{Abd}-2$ and 3344 compounds or not treated (untreated lane). The β-actin loading control and BRET pair expression controls are shown in Figure 2—figure supplement 1. Quantification of the relative levels of pMEK1/ 2 and pERK1/2, normalized to total MEK1/2 and ERK1/2 respectively, are shown in F. The RAS biosensor toolkit includes KRAS G12A, G12C, G12V and G12R, in addition to KRAS G12D. In G, each was expressed with CRAF ${ }^{F L}$ and BRET ratios determined at 0, 5, 10 and $20 \mu \mathrm{M}$ Abd-2 or 3344 . Statistical analyses in C were performed using a one-way ANOVA followed by Sidak's post-hoc tests and in A, D, F and G using a one-way ANOVA followed by Dunnett's post-tests ($\mathrm{p}<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001,{ }^{* * * *} \mathrm{p}<0.0001$). Each experiment was repeated twice ($\mathrm{E}-\mathrm{F}$), three times ($\mathrm{B}-\mathrm{D}$), four times (A) or five times (G). Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A, D, G) or correspond to mean $\pm S E M$ of biological repeats (C, F). See also Figure 2—figure supplement 1.
DOI: https://doi.org/10.7554/eLife. 37122.007
The following figure supplement is available for figure 2 :
Figure supplement 1. Interactions of KRAS ${ }^{G 12 X}$ mutants and full-length CRAF are inhibited by 3344.
DOI: https://doi.org/10.7554/eLife. 37122.008
inhibition. Indeed, long-term incubation with the compound may indirectly inhibit RAS downstream pathways by affecting autocrine mechanisms involved in secondary activation of RAS pathways (Arthur and Ley, 2013; Zhang et al., 2011). We compared the effect of Abd-2 and 3344 on the BRET pair and found a significant decrease in BRET signal with 3344 that occurred in a dose-dependent manner (Figure 2D and Figure 2—figure supplement 1D) without modifying RAS or CRAF expression (as shown by western analysis, Figure 2-figure supplement 1C,G). Western blots using anti-pMEK and anti-pERK showed that 3344 also significantly inhibited MEK1/2 and ERK1/2 phosphorylation whilst Abd-2 did not (Figure 2E, quantified in Figure 2F and Figure 2-figure supplement 1E-F). Therefore, these observations show a specific and functional effect of the inhibition of interaction between RAS and CRAF ${ }^{F L}$ by the 3344 with a long and short incubation.

Some compounds have been previously characterized that bind selectively on the cysteine of KRAS ${ }^{\text {G12C }}$ mutant (Lito et al., 2016; Ostrem et al., 2013; Patricelli et al., 2016). We assessed whether our compound 3344 was able to interfere with binding of a range of mutant KRAS Gly 12 proteins, including G12C, with CRAF in BRET assays. Analysis of the BRET2 signals from interaction of KRAS ${ }^{G 12 A}, K_{R A S}{ }^{G 12 C}, K_{R A S}{ }^{G 12 V}$ and KRAS ${ }^{G 12 R}$ with CRAF ${ }^{F L}$ showed a dose response effect of compound 3344 but not Abd-2 (Figure 2G). The corresponding BRET biosensor acceptor and donor proteins are equally expressed after transfection as judged by western blot analysis (Figure 2—figure supplement 1H).

Therefore, using this new set of validated RAS biosensors, we show that the compound disrupts mutant KRAS/CRAF ${ }^{F L}$ interaction in cells. In turn, this leads to inhibition of the RAF/MEK/ERK downstream signaling pathway (that emanates from the transfected protein expression).

3344 inhibits the wild type KRAS-CRAF biosensor and its downstream signaling pathway

We extended the repertoire of biosensors by analyzing wild-type KRAS (KRAS ${ }^{\text {WT }}$) donor molecule and also assessed if epidermal growth factor (EGF)-stimulated MEK/ERK phosphorylation (Burgering et al., 1993; Lange-Carter and Johnson, 1994) could be altered through the interaction of a KRAS ${ }^{W T} /$ CRAF $^{\text {FL }}$ BRET2 biosensor protein pair. Although the iDAb RAS binds weakly to RAS ${ }^{W T}$ in transfected mammalian two-hybrid reporter cells (Tanaka et al., 2007), we first established if the BRET2 signal from RLuc8-KRAS ${ }^{W T}$ and GFP²-CRAF ${ }^{F L}$ PPI could be inhibited by the iDAb RAS in the BRET transfection assay. HEK293T cells were transfected with the BRET pair and serum was removed for 24 hr , stimulated for 5 min with EGF and the BRET ratio directly determined after the stimulation. EGF treatment brings KRAS ${ }^{W T}$ and CRAF ${ }^{F L}$ fusion proteins in a closer proximity and enhances the number of $\mathrm{KRAS}^{\mathrm{WT}} / \mathrm{CRAF}^{\mathrm{FL}}$ dimers because the $\mathrm{BRET}_{\max }$ value increases from 4.02 to 10.01 (Figure 3-figure supplement 1A). A dose response inhibition of the BRET2 signal was observed with iDAb RAS, but not iDAb control (Figure 3A), which correlated with the reduction of pMEK1/2 and pERK1/2 detected by western blots (Figure 3B and quantified in Figure 3C). This shows that the RAS BRET2 biosensors can be used to couple PPI effects and signaling effects.

We conducted parallel BRET2 dose response experiments with the 3344, compound compared to Abd-2, implementing EGF stimulation and using the KRAS ${ }^{W T} / C R A F^{F L}$ biosensor with short and long incubation times (3 hr and 20 hr , respectively). Compound 3344 inhibits this interaction in a dose-response manner (Figure 3D and Figure 3-figure supplement 1D) and prevents the phosphorylation of MEK1/2 and ERK1/2 kinases (Figure 3E, quantified in Figure 3F and Figure 3-figure supplement 1E-F). Protein levels per se were not affected by the BRET2 transfectants by either the iDAb expression (Figure 3-figure supplement 1B) or Abd-2 or 3344 treatments (Figure 3-figure supplement 1C,G). In conclusion, use of the 3344 with the BRET2 RAS biosensors confirms this compound is a pan-KRAS-effector PPI inhibitor.

3344 inhibits the RAS-PI3K-AKT signaling pathway

We have also explored the second best-characterized RAS effector family, the RAS-PI3K $\alpha-A K T$ pathway (Castellano and Downward, 2011) by establishing a KRAS ${ }^{\text {G12D }} /$ full-length $\mathrm{PI} 3 \mathrm{~K} \alpha$ (herein $\left.\mathrm{PI} 3 \mathrm{~K} \alpha^{\mathrm{FL}}\right)$ biosensor. In this case, we required a tripartite system as we observed that co-expression of the $\mathrm{p} 85 \alpha$ regulatory subunit with $\mathrm{PI} 3 \mathrm{~K} \alpha^{\mathrm{FL}}$-GFP ${ }^{2}$ was required to obtain detectable, specific and optimized BRET signal from interaction of $K R A S^{G 12 D}$ and $\mathrm{PI} 3 \mathrm{~K} \alpha^{\mathrm{FL}}$ (Figure 4-figure supplement 1A). KRAS ${ }^{S 17 N}$ mutant showed no specific interaction with $P I 3 K \alpha^{F L}$ further confirming the accuracy

Figure 3. Wild-type KRAS and CRAF biosensor interaction-induced signaling is impaired by 3344. The BRET KRAS ${ }^{W T} / C^{2} R^{F L}$ pair was tested for interaction after EGF stimulation of HEK293T cells in presence of competitors. In A, cells were transfected with plasmids to express the KRASWT biosensor with or without iDAbs and stimulated by EGF ($50 \mathrm{ng} / \mathrm{mL}$). iDAb RAS shows an inhibition of KRAS ${ }^{W T} / C_{\text {RAF }}{ }^{F L}$ interaction after EGF treatment in a dose-dependent manner. B is a western blot of the transfected cells from panel A showing the effect of the iDAbs on EGF-stimulated RAS-RAF-MEKERK signaling pathway (pMEK and pERK signals are quantified in C). β-actin loading control, iDAbs and BRET pair expression controls are shown in Figure 3-figure supplement 1. The effect on BRET2 signal of compounds Abd-2 (grey bars) and 3344 (black bars) on $\mathrm{KRAS}^{\mathrm{WT}} / \mathrm{CRAF}^{\mathrm{FL}}$ interaction after EGF treatment in a BRET competition experiment is shown in panel D. In panel E, HEK293T cells were transfected as in D with the plasmids expressing the BRET pair KRASWT/CRAF ${ }^{F L}$ for 24 hr and serum starved 20 hr in the presence of DMSO, 10 and $20 \mu \mathrm{M}$ of $\mathrm{Abd}-2$ and 3344 compounds. Cells were treated 5 min with EGF ($50 \mathrm{ng} / \mathrm{mL}$), lysed and analyzed by western blot. The expression level of the BRET protein pair is shown in Figure 3figure supplement 1 as well as the loading control β-actin for the western blot. The western blot data are quantified in panel F. One-way ANOVA followed by Dunnett's post-hoc tests were used to determine the statistical significance of BRET, pERK and pMEK modulations induced by the compound or the iDAb (${ }^{*} p<0.05,{ }^{* * *} p<0.001,{ }^{* * * *} p<0.0001$). Each experiment was repeated twice ($B-C$) or three times (A, D-F). Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A, D) or correspond to mean \pm SEM of biological repeats (C, F). See also Figure 3—figure supplement 1.
DOI: https://doi.org/10.7554/eLife. 37122.009
The following figure supplement is available for figure 3:
Figure supplement 1. 3344 inhibits $\mathrm{KRAS}^{\mathrm{WT}} /$ CRAF $^{\mathrm{FL}}$ interaction induced by EGF treatment.
DOI: https://doi.org/10.7554/eLife. 37122.010
of this biosensor (Figure 4-figure supplement 1A). We validated the BRET biosensor by showing that the iDAb RAS impaired that interaction in a dose-dependent manner, whereas the iDAb control did not (Figure 4A). Western blot analysis showed some reduction in PI3K and RAS proteins, specifically concordant with expression of the iDAb RAS (Figure 4-figure supplement 1B) and there was also a dose response reduction of phosphorylation of the downstream biomarker AKT at Ser473 (Figure 4B and quantified in Figure 4C).

Implementing the same biosensor assay treated with the compound 3344 for 3 or 20 hr , we confirmed this compound interferes with the $\mathrm{KRAS}^{\mathrm{G} 12 \mathrm{D}} / \mathrm{PI} 3 \mathrm{~K} \alpha^{\mathrm{FL}}$ interaction (Figure 4D-F and Figure 4figure supplement 1D-F) without loss of protein (Figure 4-figure supplement 1C,G). Abd-2 has no effect on the phosphorylation of AKT that results from $K R A S^{G 12 D} / \mathrm{PI} 3 \mathrm{~K} \alpha^{\mathrm{FL}}$ interaction. Conversely, 3344 does affect RAS-PI3K interaction and AKT phosphorylation. When increasing doses of either Abd-2 or 3344 were used in the BRET-transfected cells, we observed dose response reduction of BRET signal with 3344 but not Abd-2 (Figure 4D and Figure 4-figure supplement 1D). Associated with this inhibition, was a reduction in the downstream biomarker AKT Ser473 phosphorylation (Figure 4E, quantified in Figure 4F and Figure 4-figure supplement 1E-F). 3344 inhibits RAS$\mathrm{PI} 3 \mathrm{~K} \alpha \mathrm{PPI}$ and thus signaling through AKT.

Figure 4. Interaction between mutant KRAS and full-length $\mathrm{PI} 3 \mathrm{~K} \alpha$ BRET pair interaction is impeded by 3344. The BRET signal produced from the interaction of the KRAS ${ }^{\mathrm{G} 12 \mathrm{D}}$ and full-length PI3K $\alpha\left(\mathrm{PI} 3 \mathrm{~K} \alpha^{\mathrm{FL}}\right.$) was obtained by transfecting HEK239T cells with plasmids encoding this BRET pair. In A, cells were co-transfected with the biosensor and increasing levels of competitor plasmids encoding iDAbs RAS (black striped bars) or iDAb control (grey striped bars) or biosensor alone (white bar). iDAb RAS impedes KRAS ${ }^{\text {G12D }} / \mathrm{PI} 3 \mathrm{~K} \alpha^{\mathrm{FL}}$ interaction and this inhibition causes a decrease of pAKT at serine 473 as shown by western blot in B and its quantification in C. UT is for untransfected cells. In D, HEK293T cells transfected with the BRET biosensor KRAS ${ }^{\mathrm{G} 12 \mathrm{D}} / \mathrm{PI} 3 \mathrm{~K} \alpha^{\mathrm{FL}}$ were treated for 20 hr with DMSO (white bar), 5,10 and $20 \mu \mathrm{M}$ of Abd-2 (grey bars) and 3344 (black bars) compounds and the BRET signal of the biosensor was assessed. In panel E, the cells were transfected and treated as in D but with 10 and $20 \mu M$ of Abd- 2 and 3344 compounds. 20 hr after the treatment, cells were lysed and analysed by western blot using anti-pAKT (Ser 473) or anti-pan-AKT antibody. The signal in the western blot is quantitated in F. Related controls are shown on Figure 4-figure supplement 1. One-way ANOVA followed by Dunnett's post-hoc tests were used to determine the statistical significance of BRET and pAKT modulations induced by the compound or the iDAb (*p <0.05, **p <0.01, ${ }^{* * *} \mathrm{p}<0.001$, ${ }^{* * * *} \mathrm{p}<0.0001$). Each experiment was repeated twice ($\mathrm{E}-\mathrm{F}$) or three times (A-D). Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A, D) or correspond to mean \pm SEM of biological repeats (C, F). See also Figure 4 -figure supplement 1.
DOI: https://doi.org/10.7554/eLife. 37122.011
The following figure supplement is available for figure 4:
Figure supplement 1. Interaction of KRAS ${ }^{G 12 D}$ with $\mathrm{PI} 3 K \alpha^{F L}$ is inhibited by 3344.
DOI: https://doi.org/10.7554/eLife.37122.012

The BRET2 biosensor toolbox includes NRAS and HRAS and shows 3344 inhibits PPI of the RAS family

The KRAS, NRAS and HRAS family members are conserved proteins that have an almost identical amino-acid domain (G domain) from residues $1-166$ but a C-terminal hypervariable domain (Wennerberg et al., 2005). We have extended the RAS biosensor toolbox to include NRAS and HRAS. We used full-length NRAS ${ }^{\mathrm{O61H}}$ and HRAS ${ }^{\mathrm{G12V}}$ mutants to build these new RAS biosensors for use with the various effector RBDs. These mutants were used at the positions Q 61 and G12, for NRAS and HRAS respectively, as these are the positions most frequently mutated in human cancer involving NRAS and HRAS mutants (Cox et al., 2014). Titration of the RAS donor and CRAF ${ }^{\mathrm{FL}}$ acceptor proteins show that the RLuc8-NRAS ${ }^{\mathrm{O} 61 \mathrm{H}}$ and RLuc8-HRAS ${ }^{\mathrm{G} 12 \mathrm{~V}}$ proteins interact and reach plateau BRET signals with GFP²-CRAF ${ }^{\text {FL }}$ (Figure 5-figure supplement 1A). Furthermore, the BRET2 signal is diminished by increasing levels of the iDAb RAS but not the iDAb control (Figure 5-figure supplement 1B-D) as expected from the analysis of the effects of the anti-RAS intracellular antibody (Tanaka and Rabbitts, 2010; Tanaka et al., 2007).

We further evaluated the efficacy of the RAS-binding compounds Abd-2 and 3344 in binding to NRAS and HRAS using a BRET assay in which the RAS protein donors were co-expressed with either PI3K, CRAF or RALGDS acceptors (Figure 5A-D). While the low-affinity Abd-2 compound does not interfere with the BRET signal in any of the NRAS and HRAS BRET assays using either effector RBDs (Figure 5A,B) or full-length CRAF (Figure 5C,D), the compound 3344 disturbs the BRET2 signal in

Figure 5. Compound 3344 inhibits NRAS and HRAS-effector BRET-based biosensors. HEK293T cells were transfected 24 hr with plasmids expressing the NRAS ${ }^{\mathrm{Q} 61 \mathrm{H}}(\mathrm{A}, \mathrm{C})$ and $\mathrm{HRAS}^{\mathrm{G12V}}(\mathrm{~B}, \mathrm{D})$ biosensors together with the indicated RBDs of PI3K, CRAF and RALGDS (A, B) or full-length CRAF (C, D). These were treated with 5, 10 and $20 \mu \mathrm{M}$ of Abd-2 (grey bars) or 3344 (black bars) compounds for 20 hr . DMSO (white bar) was used as the negative control. Statistical analyses were performed using a one-way ANOVA followed by Dunnett's post-tests (${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001, ~ * * * * p<0.0001$). Each experiment was repeated at least four times. Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A-D). See also Figure 5—figure supplement 1.
DOI: https://doi.org/10.7554/eLife. 37122.013
The following figure supplement is available for figure 5:
Figure supplement 1. iDAb RAS inhibits mutant NRAS and HRAS interaction with CRAF ${ }^{F L}$.
DOI: https://doi.org/10.7554/eLife.37122.014
a dose-response manner in all these RAS interactions (Figure 5 and Figure 5-figure supplement 1E,F). Therefore, the BRET-based RAS biosensors characterization of 3344 shows this compound as a pan-RAS-effector interactions inhibitor that binds KRAS, NRAS and HRAS.

Compound 3344 binds to a pocket close to the switch regions of mutant KRAS

The implementation of our RAS BRET2 toolbox showed that the compound 3344 is able to bind the transfected RAS protein products at the plasma membrane and interfere with their effector interaction. In addition, the downstream signaling was impeded. The mechanism of the interaction inhibition was corroborated by X-ray crystallography of KRAS ${ }^{\text {Q61H }}$ soaked with compound 3344. Figure 6A shows that 3344 binds to KRAS in a previously identified pocket (Maurer et al., 2012; Sun et al., 2012) close to the switch regions where the effectors interact with RAS (Table 1 has the refinement statistics for the X-ray data). The superimposition of the structures of three RAS-effector protein complexes with the structure of KRAS- 3344 complex shows that parts of 3344 would overlap with the bound effector structures, suggesting that the competition effect of 3344 can be explained by straightforward steric hindrance (Figure 6B). We further confirmed that 3344 could interfere with the endogenous RAS-effector PPI in two human cancer cell lines (viz. colorectal adenocarcinoma DLD-1 cells expressing KRAS $^{\text {G13D }}$ and non-small cell lung carcinoma H358 cells expressing

Figure 6. Compound 3344 interacts in a pocket close to the switch regions of KRAS. The interaction of mutant KRAS with compound 3344 was analyzed by X-ray crystallography. (A) KRAS ${ }^{\mathrm{Q} 61 \mathrm{H}}$ crystals were soaked with 3344 compound and crystal structures obtained from X-ray diffraction. The compound is shown binding in the hydrophobic pocket near switch I (shown in red) and switch II (shown in blue). The electron density map of the compound ($2 \mathrm{Fo}-\mathrm{Fc}$) is shown as green mesh, and contoured at 1.0 rms . (B) We have modeled the potential interactions that could prevent 3344 and a Figure 6 continued on next page

Figure 6 continued
RAS effector binding simultaneously to the same RAS molecule by overlaying our structure of the KRAS-3344 complex onto the published structures of top panel: HRAS-CRAF RBD (PDB 4G3X), middle panel: HRAS-RALGDS RA (PDB 1LFD), bottom panel: HRAS-PI3K γ RBD (PDB 1HE8). (C, D) Two human mutant KRAS expressing lines (C: DLD-1 and D: H358) were serum-starved for 24 hr and treated 3 hr with different concentrations of 3344 ($2,5,10$ and $20 \mu \mathrm{M})$ before stimulation with EGF ($50 \mathrm{ng} / \mathrm{mL}$) for 10 min . Cells were harvested, proteins extracted and separated by SDS-PAGE for western blot analysis. Western membranes were treated with anti-pAKT S473; anti-pan AKT; anti-pERK1/2 and anti-ERK1/2 as indicated. Statistical analyses of pERK/ ERK and pAKT/AKT quantifications were performed using a one-way ANOVA followed by Dunnett's post-tests (*p $<0.05, * * p<0.01, ~ * * * p<0.001$,
$\star * * * p<0.0001$). Where error bars are presented, they correspond to mean values \pm SEM of biological repeats (C-D). Each experiment was performed twice (C-D).
DOI: https://doi.org/10.7554/eLife. 37122.015

KRAS ${ }^{G 12 C}$). The cells were serum starved 24 hr and stimulated 10 min with EGF in the presence of increasing amounts of 3344, followed by western blot protein analysis to detect phosphorylated AKT Ser473 or phosphorylated ERK (Figure 6C,D). 3344 decreases EGF-induced pAKT and pERK1/2 abundance in both cell types with an observed IC_{50} of $\sim 5-10 \mu \mathrm{M}$ without any change in the total levels of AKT or ERK1/2. Therefore, 3344 can interfere with endogenous RAS signaling in human cancer cell lines. As our BRET2 results show direct interference of RAS-effector PPI by 3344, we conclude that this is the mechanism of inhibition of the biomarkers in the tumor cell assay.

Discussion

BRET-based biosensors have been successfully used to discover and characterize small molecules inhibitors (Beautrait et al., 2017; Corbel et al., 2011; Lavoie et al., 2013; Mazars and Fåhraeus, 2010; Robinson et al., 2014). The development of such biosensors involves the optimization of multiple parameters such as the fusion position of the RLuc8 and GFP ${ }^{2}$ moieties on their respective protein N - or C -terminus and the determination of the appropriate quantity of donor and acceptor plasmids for intracellular expression. Notably, the latest parameter has to be optimized in order to avoid the titration of active compounds if transient protein expression is used (Couturier and Deprez, 2012). In this study, we have engineered and optimized a complete set of RAS biosensors that includes several different mutant forms of KRAS and other family members (viz. mutant NRAS and HRAS). This toolbox allows the monitoring of RAS-effector interactions and the assessment of RAS PPI inhibition by a macrodrug (iDAb RAS) and 3344, a new anti-RAS small molecule derived from an intracellular antibody fragment, in living cells. Furthermore, when the full-length biosensors were used, we could couple the RAS PPI inhibition to the signaling effects, thereby providing additional insights into the behavior of RAS inhibitors.

The inhibition of RAS PPI by 3344 in cells was demonstrated by the RAS biosensors toolbox and validated by X-ray crystallography. 3344 binds to a hydrophobic pocket near to the effector-binding switch regions of RAS (Figure 6). Whereas 3344 does not make direct contact with the switch regions, the BRET data show that the binding geometry and potency of 3344 is sufficient to interfere with the interaction of RAS-effector molecules that bind close to the 3344 site.

While the RAS biosensors rely on transfection and expression of RAS with one of its partner proteins rather than observations of endogenous proteins, it nevertheless offers several advantages for the study of RAS-effector interactions inhibition. It provides a direct and quantitative measurement of the PPI interference with inhibitors (i.e. small molecules or macrodrugs), which could allow the comparison of different compounds (e.g. for structure-activity-relationship studies) or macrodrugs and therefore the selection of more potent inhibitors. It is also sensitive and consequently requires a small quantity of cells to study the inhibition of the interaction. Nonetheless, 3344 prevents endogenous RAS-dependent signaling in two different human tumor cell lines at a lower concentration (IC ${ }_{50}$ around $5 \mu \mathrm{M}$) (Figure $6 C, D$) than in the BRET assay with observed IC_{50} around $20 \mu \mathrm{M}$. This difference probably reflects the expression levels of the target proteins in the two assays, where the BRET2 assay relies on transient transfection. Indeed, the overexpression in HEK293T cells probably produces higher amount of mutant RAS/effector proteins than the endogenous counterparts in cancer cells. Therefore, it might be more difficult to quantitatively inhibit the exogenous RAS/effector interaction than the endogenous one with 3344 compound. Generating stable BRET2 cell lines could minimize this difference.

Table 1. Data processing and refinement statistics.

Structure	KRAS ${ }^{\text {Q61H-3344 }}$
Data collection	
PDB ID	$6 F 76$
Diffraction source	ID30A-1, ESRF
Temperature (K)	100
Wavelength (A)	0.966
Rotation range per image (${ }^{\circ}$)	0.05
Exposure time per image (s)	0.092
Space group	P $2122_{1} 2_{1}$
Molecules/asymmetric unit	6
Unit cell dimensions	
$a, b, c(A)$	63.17, 118.19, 155.95
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90
Resolution range (A)	77.98-2.20 (2.16-2.20)*
Total no. of reflections	295785 (13854)
Unique reflections	65992 (2888)
Completeness (\%)	99.2 (87.3)
Multiplicity	4.5 (4.8)
Rmeas(l) ${ }^{\dagger}$	0.193 (0.997)
Rmerge ${ }^{\ddagger}$	0.151 (0.780)
Rpim(l) ${ }^{\text {§ }}$	0.119 (0.612)
1/sigma	5 (1.8)
$\mathrm{CC}_{1 / 2}$ (\%) ${ }^{\text {\# }}$	0.985 (0.513)
Refinement	
No. of reflections, working set	62692 (2744)
No. of reflections, test set	3300 (144)
Rwork/Rfree	22.7/25.0
No. of atoms	
Protein	8400
Water	57

Average B factors $\left(\AA^{2}\right)$

Protein	46.8
Ligand GTP	31.9
Water	30.1
RMSD	0.014
Bond lengths (Å)	1.67
Bond angles ${ }^{\circ}$)	

Ramachandran plot	
Favoured regions (\%)	97.1
Additionally allowed (\%)	2.9
Outliers	0
MolProbity statistics	1.11
Overall score	1.22
Clash score	1.4
Rotamer outliers (\%)	

$a *$ Values in parentheses are for data in the highest resolution shell.
${ }^{\dagger}$ Rmeas $=\Sigma_{h k \mid}\{N(h k \mid) /[N(h k l)-1]\}^{1 / 2} \Sigma_{i} l_{i}(h k l)-\langle\mid(h k l)\rangle \mid / \Sigma_{h k l} \Sigma_{i} l_{i}(h k l)$, where $l_{i}(h k l)$ is the intensity of reflection $h k l$. Σ_{i} is the sum over all i measurements of reflection $h k l$ and $N(h k l)$ is the multiplicity of reflection $h k l$.
${ }^{\ddagger}$ Rmerge $=\Sigma_{h k l} \Sigma_{i}\left|I_{i}(h k l)-<|(h k l)>| / \Sigma_{h k l} \Sigma_{i} I_{i}(h k l)\right.$, where $I_{i}(h k l)$ is the intensity of reflection $h k l$ and Σ_{i} is the sum over all I measurements of reflection $h k l$.
${ }^{\S}$ Rpim $=\Sigma_{h k l}\{1 /[N(h k l)-1]\}{ }^{1 / 2} \Sigma_{i}\left|l_{i}(h k l)-\langle I(h k l)\rangle\right| / \Sigma_{h k l} \Sigma_{i} l_{i}(h k l)$, where $l_{i}(h k l)$ is the intensity of reflection $h k l$, Σ_{i} is the sum over all i measurements of reflection $h k l$ and $N(h k l)$ is the multiplicity of reflection $h k l$.
\# $\mathrm{CC}_{1 / 2}$ is Pearson's correlation coefficient between random half data sets.
DOI: https://doi.org/10.7554/eLife.37122.016

Another advantage of this toolbox has been shown by using the iDAb RAS as an acceptor within the RAS biosensors allowing a recapitulation of the published features of this intracellular single domain antibody. Therefore, the biosensors are also important tools to study RAS protein interactions in living cells and their effect on the RAS downstream pathways before being tested in cancer cell lines. RAS biosensors use should not be limited to the discovery and characterization of RAS inhibitors. Indeed, studies suggested that isoform and residue- or codon-specific RAS mutants show differences in their ability to engage effectors and signaling properties (Hunter et alo, 2015; Nakhaeizadeh et al., 2016; Yan et al., 1998). Accordingly, RAS biosensors could also be a methodology to decipher RAS isoform/mutant properties in cells. Our toolbox is an available resource for RAS-drug development programmes, and more generally for the RAS community, since our results demonstrate the possibility of using these RAS biosensors as a generic method to characterize cellpotent RAS-binding compounds or RAS-binding macrodrugs.

The BRET2 biosensor system could also be used for direct screens of PPI inhibitors with libraries of compounds. However, because initial compounds from a library are not expected to have high affinity for their target, relatively weak interactions between donor and acceptors should be involved in the generation of BRET2 signal. This provides a further use of intracellular domain antibodies where reduction of affinity (dematuration) from a tool initially used for target validation, can be achieved to make a screening tool. Thus, the method is an approach that is transferable to other PPI situations required for drug development programmes in cancer or any other clinical indication.

Materials and methods

Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Cell line (human)	HEK293T	ATCC	Cat\#CRL-3216	
Cell line (human)	DLD-1	ATCC	Cat\#CCL-221	RRID:CVCL_0248
Cell line (human)	H358	ATCC	Cat\#CRL-5807	

Continued on next page

Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Transfected construct (human)	pEF-RLuc8-(GGGS) ${ }_{3}$ - KRAS ${ }^{\text {G12D }}$-CAAX plasmid	This paper	N/A	DNA/protein sequences provided in the Supplementary file 1
Transfected construct (human)	pEF-RLuc8-(GGGS) 3^{-} KRAS ${ }^{G 12 A}$-CAAX plasmid	This paper	N/A	
Transfected construct (human)	pEF-RLuc8-(GGGS) ${ }^{-}$ KRAS ${ }^{\text {G12C }}$-CAAX plasmid	This paper	N/A	
Transfected construct (human)	pEF-RLuc8-(GGGS) ${ }_{3}-$ KRAS ${ }^{G 12 V}$-CAAX plasmid	This paper	N/A	
Transfected construct (human)	pEF-RLuc8-(GGGS) 3^{-} KRAS ${ }^{\text {G12R }}$-CAAX plasmid	This paper	N/A	
Transfected construct (human)	pEF-RLuc8-(GGGS) ${ }_{3}-$ NRAS ${ }^{\text {Q61H-HA }}$-CAAX plasmid	This paper	N/A	
Transfected construct (human)	pEF-RLuc8-(GGGS) ${ }^{-}$ HRAS ${ }^{\text {G12V}}$-CAAX plasmid	This paper	N/A	
Transfected construct (human)	pEF-RLuc8-(GGGS) ${ }_{3}$ KRAS ${ }^{\text {S17N }}$-CAAX plasmid	This paper	N/A	
Transfected construct (human)	pEF-RLuc8-(GGGS) 3^{-} KRAS ${ }^{W T}$-CAAX plasmid	This paper	N/A	
Transfected construct (human)	pEF-GFP ${ }^{2}-(G G G S)_{3}-$ CRAF ${ }^{\text {S257LFL }}$ plasmid	This paper	N/A	
Transfected construct (human)	$\begin{aligned} & \mathrm{pEF-PI} 3 \mathrm{~K} \alpha^{\mathrm{FL}}-(\mathrm{GGGS})_{3}- \\ & \mathrm{GFP}^{2} \text { plasmid } \end{aligned}$	This paper	N/A	
Transfected construct (human)	pEF-CRAF RBD (aa 1-149)(GGGS) ${ }_{3}$-GFP ${ }^{2}$ plasmid	This paper	N/A	
Transfected construct (human)	pEF-PI3K α RBD (aa 161-315)(GGGS) ${ }_{3}$-GFP ${ }^{2}$ plasmid	This paper	N/A	
Transfected construct (human)	pEF-PI3K γ RBD (aa 190-315)- $(G G G S)_{3}-$ GFP 2 plasmid	This paper	N/A	DNA/protein sequences provided in the Supplementary file 1
Transfected construct (human)	pEF-iDAb RAS-(GGGS) 2^{-} GFP ${ }^{2}$ plasmid	This paper	N/A	
Transfected construct (human)	pEF-iDAb $b_{d m}$ RAS-(GGGS) $)^{-}$ GFP ${ }^{2}$ plasmid	This paper	N/A	
Transfected construct (human)	pEF-iDAb control-(GGGS) ${ }_{2}$ GFP² plasmid	This paper	N/A	
Transfected construct (human)	pEF-LMO2-(GGGS)2RLuc8 plasmid	This paper	N/A	
Transfected construct (human)	pEF-GFP²-(GGGS) 3^{-} $\mathrm{iDAb}_{\mathrm{dm}} \mathrm{LMO} 2$ plasmid	This paper	N/A	
Transfected construct (human)	pEF-memb-FLAG-iDAb RAS plasmid	This paper	N/A	
Transfected construct (human)	pEF-memb-FLAG-iDAb control plasmid	This paper	N/A	
Transfected construct (human)	pEF-iDAb RAS-myc plasmid	This paper	N/A	
Transfected construct (human)	pEF-iDAb control-myc plasmid	This paper	N/A	
Transfected construct (human)	pcDNA3.1-myc-p85 $\alpha^{\text {FL }}$ plasmid	A gift from R. Williams and O. Perisic	N/A	
Transfected construct (mouse)	pEF-RALGDS RA (aa 788-884)(GGGS) ${ }_{3}$ GFP 2 plasmid	This paper	N/A	The RALGDS RA domain corresponds to the mouse sequence
Antibody	Phospho-ERK 1/2 Rabbit antibody	Cell Signaling Technol	Cat\#9101S	

Continued on next page

Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Antibody	Total ERK 1/2 Rabbit antibody	Cell Signaling Technology	Cat\#9102S RRID:AB_330744	
Antibody	Phospho-MEK 1/2 Rabbit antibody	Cell Signaling Technology	Cat\#9154S RRID:AB_2138017	
Antibody	Total MEK 1/2 Mouse antibody	Cell Signaling Technology	Cat\#4694S RRID:AB_10695868	
Antibody	Phospho-AKT S473 Rabbit antibody	Cell Signaling Technology	Cat\#4058S RRID:AB_331168	
Antibody	Total AKT Rabbit antibody	Cell Signaling Technology	Cat\#9272S RRID:AB_329827	
Antibody	Pan-RAS Mouse antibody	Millipore	Cat\#OP40 RRID:AB_213400	
Antibody	GFP Mouse antibody	Santa Cruz Biotechnology	Cat\#sc-9996 RRID:AB_627695	
Antibody	β-Actin Mouse antibody	Sigma-Aldrich	Cat\#A1978 RRID:AB_476692	
Antibody	CMYC HRP-linked Goat antibody	Novus Biologicals	$\begin{aligned} & \text { Cat\#NB600-341 } \\ & \text { RRID:AB_10000717 } \end{aligned}$	
Antibody	Anti-Mouse IgG HRP-linked antibody	Cell Signaling Technology	Cat\#7076S RRID:AB_330924	
Antibody	Anti-Rabbit IgG HRP-linked antibody	Cell Signaling Technology	Cat\#7074S RRID:AB_2099233	
Recombinant DNA reagent	pEF-myc-cyto vector	Invitrogen	Cat\#V89120	
Recombinant DNA reagent	pRLuc8-N3 vector	A gift from J. Felce	Felce et al., 2017	
Recombinant DNA reagent	pGFP²-N3 vector	A gift from J. Felce	Felce et al., 2017	
Recombinant DNA reagent	pBABEpuro-CRAF ${ }^{\text {S257L FL }}$ plasmid	Addgene	Addgene\#51125	
Peptide, recombinant protein	KRAS ${ }^{\text {Q61H }}$	This paper	N/A	
Peptide, recombinant protein	KRAS ${ }^{\text {G12V }}$	This paper	N/A	
Peptide, recombinant protein	Anti-RAS scFv	This paper	N/A	
Peptide, recombinant protein	Recombinant Human Epidermal Growth Factor (EGF)	Life Technologies	Cat\#PHG0311	
Chemical compound, drug	Coelenterazine 400a	Cayman Chemical	Cat\#16157	
Chemical compound, drug	2-bromo-6-methoxyphenol	This paper	N/A	
Chemical compound, drug	3-bromobenzene-1,2-diol	This paper	N/A	
Chemical compound, drug	5-bromo-2,3dihydrobenzo[b][1,4]dioxine	This paper	N/A	
Chemical compound, drug	5-(4-chloro-3-methoxyphenyl)-2,3dihydrobenzo[b][1,4]dioxine	This paper	N/A	
Chemical compound, drug	4-(2,3-dihydrobenzo[b] [1,4]dioxin-5-yl)-N-(4(dimethylamino) methyl)phenyll-2methoxyaniline	This paper	N/A	
Software, algorithm	Image J	National Institutes of Health	https://imagej.nih.gov/ ij/download.html RRID:SCR_003070	
Software, algorithm	Prism 7.0 c	GraphPad	https://www.graphpad.com/ scientific-software/prism/ RRID:SCR_002798	
Software, algorithm	PROCHECK	Laskowski et al. (1993a)	http://www.ccp4.ac.uk/html/ procheck_man/index.html	
Software, algorithm	REFMAC	Murshudov et al. (1997)	http://www.ccp4.ac.uk/ html/refmac5.html RRID:SCR 014225	

Continued on next page

Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Software, algorithm	MolProbity	Chen et al. (2010)	http://molprobity. biochem.duke.edu/ RRID:SCR_014226	
Software, algorithm	Phenix	Adams et al. (2010)	https://www.phenixonline.org/ RRID:SCR_014224	
Software, algorithm	PyMOL	Schrodinger	https://pymol.org/2/ RRID:SCR_000305	
Other	Opti-MEM I Reduced Serum Medium, no phenol red	Thermo-Fisher	Cat\#11058021	
Other	ViewPlate, White 96 -well plate, clear bottom for tissue culture	PerkinElmer	Cat\#6005181	
Other	BRET2 Dual Emission optical module	PerkinElmer	Cat\#2100-8140	
Other	Envision instrument, Multilabel Reader	PerkinElmer	Cat\#2103	

Cell culture

HEK293T human embryonic kidney cells, DLD-1 cells and H358 cells were grown in DMEM medium (Life Technologies) supplemented with 10% FBS (Sigma) and 1% Penicillin/Streptomycin (Life Technologies). Cells were grown at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ and were tested using a MycoAlert Mycoplasma Detection Kit (Lonza) and found to be mycoplasma-free before use.

Mutation detection of RAS mutations using RT-PCR

RNA was extracted from 5×10^{6} DLD-1 or H358 cells using the RNeasy Plus Mini Kit (Qiagen) according to the manufacturer's instructions. cDNA was synthesized from 1.5 to $2 \mu \mathrm{gNA}$ using SuperScript II Reverse Transcriptase (Invitrogen). Primers were designed to amplify KRAS DNA and incorporate HindIII and BamHI restriction sites for subcloning:

5'- TAAGCAAAGCTTATGACTGAATATAAACTTGTGGTAG-3' and
3'-GAAAATTAAAAAATGCATTATAATGTAAGGATCCTAAGCA-5'
DNA was amplified using Phusion High-Fidelity DNA Polymerase (New England Biolabs) and, following digestion with HindIII and BamHI, the DNA was cloned into pBlueScript II SK (+) (Stratagene). Plasmid DNA was prepared from indivudial DH5 α transformants using a OlAprep Spin Miniprep Kit (QIAGEN). KRAS mutations were verified by Sanger sequencing (Source Bioscience) of at least six clones from each cell line. The KRAS mutations in the two human cancer cell lines were confirmed as $K R A S^{G 13 D}$ in DLD-1 and $K R A S^{G 12 C}$ in H358.

Cell treatment

For dose response experiments (BRET and western blot), drugs were prepared in 100\% DMSO at 10 mM . Cells were treated with Abd-2 or 3344 compounds at concentration of 5,10 or $20 \mu \mathrm{M}$ for 3 hr (short-term incubation) or 20 hr (long-term incubation). The compounds were diluted in the BRET medium: OptiMEM no phenol red (Life Technologies) supplemented with 4% FBS and with a final concentration of 0.2% DMSO.

For serum starvation studies with the BRET assay, cells were grown 24 hr in the presence of OptiMEM no phenol red supplemented with 1% FBS and stimulated with $50 \mathrm{ng} / \mathrm{mL}$ EGF (Life Technologies) for 5 min at $37^{\circ} \mathrm{C}$. For serum-starvation studies of cancer cell lines, cells were grown 24 hr in the presence of DMEM without FBS and stimulated 10 min with $50 \mathrm{ng} / \mathrm{mL}$ EGF. The compound was incubated for 3 hr before the EGF stimulation at 2, 5, 10 and $20 \mu \mathrm{M}$.

Molecular cloning

Generation of pEF-RLuc8 and pEF-GFP² plasmids

RLuc8 and GFP ${ }^{2}$ cDNA was amplified by PCR from pRLuc8-N3 and PGFP 2-N3 vectors respectively (Felce et al., 2017). RLuc8 was cloned into the pEF-myc-cyto vector (Invitrogen) between BspHI/ Xhol sites to produce a pEF-RLuc8-MCS plasmid or between Notl/Xbal sites to produce a pEF-MCSRLuc8 plasmid. GFP ${ }^{2}$ was inserted into the pEF-myc-cyto vector between Ncol/Xhol sites to produce the pEF-GFP ${ }^{2}$-MCS plasmid or between Notl/Xbal to produce the pEF-MCS-GFP ${ }^{2}$ plasmid. A (GGGS) n linker was introduced between Xhol/Notl of all the RLuc8 and GFP ${ }^{2}$ plasmids.

Generation of KRAS mutants and BRET donor plasmids

The generation of the mutant and wild-type KRAS was PCR site-directed mutagenesis using pPGKKRAS ${ }^{\text {G12D }}$-CAAX-P2A-Puro as a template (a gift from Jennifer Chambers). The following full-length
 KRAS ${ }^{\text {S17N }}$ and KRAS ${ }^{W T}$, all with carboxy terminal CAAX. All RAS cDNAs (KRAS mutants, KRAS ${ }^{W T}$, NRAS ${ }^{\mathrm{Q} 61 \mathrm{H}}$ and HRAS ${ }^{\mathrm{G} 12 \mathrm{~V}}$-CAAX) were cloned between Notl/Xbal of the pEF-RLuc8-MCS plasmid.

LMO2 was amplified by PCR and cloned between Ncol/Xhol sites of the pEF-MCS-RLuc8 plasmid.

Generation of effectors/iDAb BRET plasmids

CRAF RBD (1-149), PI3K α RBD (161-315), full-length PI3K α (a gift from Roger Williams and Olga Perisic), PI3K γ RBD (190-315), RALGDS RA (788-884), iDAb RAS, iDAb ${ }_{\mathrm{dm}}$ RAS and iDAb LMO2 (iDAb control) were amplified by PCR and cloned between Ncol/Xhol sites of the pEF-MCS-GFP ${ }^{2}$ plasmid. The full-length $C R A F^{S 257 L}$ was cloned between Notl/Xbal sites of $\mathrm{pEF-GFP}{ }^{2}-\mathrm{MCS}$ as well as the $\mathrm{iDAb}_{\mathrm{dm}} \mathrm{LMO2}$.

All RAS and effectors are human sequences except RALGDS RA (mouse).
All the RAS BRET constructs DNA and protein sequences have been listed in the supplementary file 1.

BRET2 titration curves and competition assays

The BRET experiment protocols have been adapted from previous studies (Lavoie et al., 2013; Pfleger et al., 2006). For all BRET experiments (titration curves and competition assays) 650,000 HEK293T were seeded in each well of a six well plates. After 24 hr at $37^{\circ} \mathrm{C}$, cells were transfected with a total of $1.6 \mu \mathrm{~g}$ of DNA mix, containing the donor + acceptor \pm competitor plasmids, using Lipofectamine 2000 transfection reagent (Thermo-Fisher). Cells were detached 24 hr later, washed with PBS and seeded in a white 96 well plate (clear bottom, PerkinElmer) in OptiMEM no phenol red medium complemented with 4% FBS. Cells were incubated for an additional $20-24 \mathrm{hr}$ at $37^{\circ} \mathrm{C}$ before the BRET assay reading.

BRET2 measurements

BRET2 signal was determined immediately after addition of coelenterazine 400a substrate ($10 \mu \mathrm{M}$ final) to cells (Cayman Chemicals), using an Envision instrument (2103 Multilabel Reader, PerkinElmer) with the BRET2 Dual Emission optical module ($515 \mathrm{~nm}-30 \mathrm{~nm}$ and $410 \mathrm{~nm}-80 \mathrm{~nm}$; PerkinElmer). Total GFP ${ }^{2}$ fluorescence was detected with excitation and emission peaks set at 405 nm and 515 nm , respectively. Total RLuc8 luminescence was measured with the Luminescence 400-700 nm -wavelength filter.

The BRET signal or BRET ratio corresponds to the light emitted by the GFP ${ }^{2}$ acceptor constructs ($515 \mathrm{~nm}-30 \mathrm{~nm}$) upon addition of coelenterazine 400a divided by the light emitted by the RLuc8 donor constructs ($410 \mathrm{~nm}-80 \mathrm{~nm}$). The background signal is subtracted from that BRET ratio using the donor-only negative control where only the RLuc8 plasmid is transfected into the cells. The normalized BRET ratio is the BRET ratio normalized to a negative control (DMSO, no competitor or iDAb control) during a competition assay. Total GFP ${ }^{2}$ and RLuc8 signals were used to control the protein expression from each plasmid.

Western blot analysis

Cells were washed once with PBS and lysed in SDS-Tris buffer ($1 \% \mathrm{SDS}, 10 \mathrm{mM}$ Tris-HCl pH 7.4) supplemented with protease inhibitors (Sigma) and phosphatase inhibitors (Thermo-Fisher). Cell lysates were sonicated with a Branson Sonifier and the protein concentrations determined by using the Pierce BCA protein assay kit (Thermo-Fisher). Equal amounts of protein ($10 \mu \mathrm{~g}$) were resolved on 10 or 15% SDS-PAGE and subsequently transferred onto a PVDF membrane (GE). The membrane was blocked either with 10% non-fat milk (Sigma) or 10\% BSA (Sigma) in TBS-0.1\% Tween20 and incubated overnight with primary antibody at $4^{\circ} \mathrm{C}$. After washing the membrane was incubated with HRP conjugated secondary antibody for 1 hr at room temperature ($\mathrm{RT}, 25^{\circ} \mathrm{C}$). The membrane was washed with TBS-0.1\% Tween and developed using Pierce ECL Western Blotting Substrate (Thermo-Fisher) and CL-XPosure films (Thermo-Fisher). Primary antibodies include anti-phospho-p44/22 MAPK (ERK1/2) (CST), anti-p44/42 MAPK (total ERK1/2) (CST), anti-phospho-MEK1/2 (CST), anti-MEK1/2 (CST), anti-phospho-AKT S473 (CST), anti-AKT (CST), anti-pan-RAS (Millipore), anti-GFP (Santa Cruz Biotechnologies), anti- β-actin (Sigma). Secondary antibodies include anti-CMYC HRP-linked (Novus Biologicals), anti-mouse lgG HRP-linked (CST) and anti-rabbit lgG HRP-linked (CST).

WaterLOGSY NMR

The waterLOGSY NMR method (Dalvit et al., 2001) was used to measure RAS ligand interaction (Huang et al., 2017). WaterLOGSY experiments were conducted at a ${ }^{1} \mathrm{H}$ frequency of 600 MHz using a Bruker Avance spectrometer equipped with a BBI probe. All experiments were conducted at RT, $25^{\circ} \mathrm{C} .3 \mathrm{~mm}$ diameter NMR tubes with a sample volume of $200 \mu \mathrm{~L}$ in all experiments. Solutions were buffered using an $\mathrm{H}_{2} \mathrm{O}$ PBS buffer corrected to pH 7.4 . The sample preparation is exemplified as follows; the compound ($10 \mu \mathrm{~L}$ of a 10 mM solution in DMSO- d_{6}) was added to an Eppendorf tube before sequential addition of the $\mathrm{H}_{2} \mathrm{O}$ PBS buffer $(163.6 \mu \mathrm{~L}), \mathrm{D}_{2} \mathrm{O}(20 \mu \mathrm{~L})$, and protein $(6.4 \mu \mathrm{~L}, 311.8$ $\mu \mathrm{M})$. The resulting solution was vortexed to mix and transferred to a 3 mm NMR tube prior to the NMR analysis.

For competition experiments using anti-RAS scFv, protein preparation for NMR was carried out in a similar manner; the compound ($10 \mu \mathrm{~L}$ of a 10 nM solution in DMSO- d_{6}) was added to an Eppendorf tube before sequential addition of the $\mathrm{H}_{2} \mathrm{O}$ PBS buffer $(146.4 \mu \mathrm{~L}), \mathrm{D}_{2} \mathrm{O}(20 \mu \mathrm{~L})$, protein $(6.4 \mu \mathrm{~L}, 311.8$ $\mu \mathrm{M})$ and anti-RAS scFv ($17.2 \mu \mathrm{~L}, 116.6 \mu \mathrm{M}$). The resulting solution was vortexed to mix and transferred to a 3 mm NMR tube prior to the NMR analysis.

Negative controls (compound alone) were prepared in a similar manner, in order to obtain an end volume of $200 \mu \mathrm{~L}$.

Chemical synthesis procedures

All reactions involving moisture-sensitive reagents were carried out under a nitrogen atmosphere using standard vacuum line techniques and glassware that was flame-dried before use. Anhydrous solvents were prepared following the procedure outlined (Pangborn et al., 1996). Water was purified by an Elix UV-10 system. All other solvents and reagents were used as supplied (analytical or HPLC grade) without prior purification. Brine refers to a sat. aq. solution of NaCl . In vacuo refers to the removal of solvent by the use of a rotary evaporator attached to a diaphragm pump.

Thin layer chromatography was performed on normal phase Merck silical gel 60 F254 aluminumsupported thin layer chromatography sheets. Visualization of spots was either by absorption of ultra violet light ($\lambda \max 254 \mathrm{~nm}$), or by thermal development after staining with 1% aq. KMnO . Flash column chromatography was performed on Kieselgel 60 silica in a glass column, under a positive pressure.

NMR spectra were recorded on Bruker Avance spectrometer (AVIII 600) in the deuterated solvent stated. The field was locked by external referencing to the relevant deuteron resonance. Chemical shifts (δ) are reported in parts per million (ppm). The multiplicity of each signal is indicated by: app. (apparent), s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets) or m (multiplet). Coupling constants (J) are quoted in Hz and are reported to the nearest 0.1 Hz .

Low-resolution mass spectra were recorded on an Agilent 6120 spectrometer operating in positive or negative mode, from solutions of MeOH . Accurate mass measurements were run on either a Bruker MicroTOF internally calibrated with polyalanine, or a Micromass GCT instrument fitted with a

Scientific Glass Instruments BPX5 column ($15 \mathrm{~m} \times 0.25 \mathrm{~mm}$) using amyl acetate as a lock mass, by the mass spectrometry department of the Chemistry Research Laboratory, University of Oxford, UK. m / z values are reported in Daltons.

5-bromo-2,3-dihydrobenzo[b][1,4]dioxine (3)

Chemical structure 1.
DOI: https://doi.org/10.7554/eLife. 37122.017

A solution of 2-bromo-6-methoxyphenol $1(2.50 \mathrm{~g}, 12.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (80 mL) was cooled to $-78^{\circ} \mathrm{C}$ before dropwise addition of BBr_{3} (1 M in heptane, $14.8 \mathrm{~mL}, 14.8 \mathrm{mmol}$). The resulting mixture was warmed to room temperature and stirred for 2 hr before being poured onto an ice/water (200 $\mathrm{mL})$ and stirred for 30 min . The organic phase was separated, washed with water (100 mL) and brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the desired 3-bromobenzene-1,2-diol two as a brown oil ($2.24 \mathrm{~g}, 11.9 \mathrm{mmol}, 97 \%$), which was used in the next step without further purification.

A solution of diol $2(1.00 \mathrm{~g}, 5.35 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ was treated sequentially with $\mathrm{K}_{2} \mathrm{CO}_{3}(1.77$ $\mathrm{g}, 12.8 \mathrm{mmol}$), and 1,2-dibromoethane ($507 \mu \mathrm{~L}, 5.88 \mathrm{mmol}$) before being heated to $60^{\circ} \mathrm{C}$ for 18 hr . The reaction was then cooled down before addition of water and brine ($1: 1,50 \mathrm{~mL}$) and EtOAc (100 $\mathrm{mL})$. The organic phase was washed further with water and brine $(1: 1,4 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude material as a brown oil. Purification on silica gel (pentane/EtOAc, 4:1) afforded the desired 5-bromo-2,3-dihydrobenzo[b][1,4]dioxine three as a clear oil ($1.11 \mathrm{~g}, 5.19 \mathrm{mmol}, 97 \%$).

5-(4-chloro-3-methoxyphenyl)-2,3-dihydrobenzo[b][1,4]dioxine (4)

Chemical structure 2.

DOI: https://doi.org/10.7554/eLife.37122.018

Bromide 3 ($600 \mathrm{mg}, 2.79 \mathrm{mmol}$) was added to a vial before addition of 1,4-dioxane/water (5:1, 8 $\mathrm{mL})$; the solution was degassed before sequential addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.16 \mathrm{~g}, 8.37 \mathrm{mmol})$, 4-chloro-3methoxyphenyl boronic acid ($572 \mathrm{mg}, 3.07 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(100 \mathrm{mg}, 0.140 \mathrm{mmol})$. The vial was sealed and the reaction heated to $100^{\circ} \mathrm{C}$ for 18 hr , cooled down and concentrated in vacuo. The residue was purified on silica gel (pentane/EtOAc, 9:1) to afford the desired 5-(4-chloro-3-methoxyphenyl)-2,3-dihydrobenzo[b][1,4]dioxine four as a clear oil ($745 \mathrm{mg}, 2.70 \mathrm{mmol}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(1 \mathrm{H}, \mathrm{d}, J 8.1 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.08(1 \mathrm{H}, \mathrm{dd}, J 8.2,1.7 \mathrm{~Hz}), 6.91-6.89$ (3H, m), 4.31-4.28 (4 hr, m), 3.94 (3H, s); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,143.9,140.6,137.5$,

4-(2,3-dihydrobenzo[b][1,4]dioxin-5-yl)-N-(4-(dimethylamino)methyl) phenyl)-2-methoxyaniline (3344)

Chemical structure 3.
DOI: https://doi.org/10.7554/eLife.37122.019

Chloride 4 ($75 \mathrm{mg}, 0.272 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(266 \mathrm{mg}, 0.866 \mathrm{mmol}), 3$-((dimethylamino)methyl)aniline $(61 \mathrm{mg}, 0.408 \mathrm{mmol})$, XPhos ($13 \mathrm{mg}, 0.027 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.014 \mathrm{mmol})$ were added sequentially to a vial and degassed with N_{2} for 5 min . Degassed 1,4-dioxane (2 mL) was then added, the vial sealed and heated to $100^{\circ} \mathrm{C}$ for 18 hr . The mixture was cooled down, diluted with EtOAc (30 $\mathrm{mL})$, and washed with a $50 / 50$ solution of water and brine $(2 \times 30 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}, ~ 9: 1)$ afforded the desired 4-(2,3-dihydrobenzo[b][1,4]dioxin-5-yl)-N-(3-((dimethylamino) methyl)phenyl)-2-methoxyaniline 3344 as a yellow oil ($102 \mathrm{mg}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.26(1 \mathrm{H}, \mathrm{d}, ~ J 8.3 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{dd}, J 7.6,0.2 \mathrm{~Hz}) 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0$ Hz) 7.08-7.04 ($2 \mathrm{H}, \mathrm{m}$), $7.00(1 \mathrm{H}, \mathrm{dd}, J 8.3,2.0 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{dd}, J 7.6,2 \mathrm{~Hz}), 6.83(2 \mathrm{H}, ~ J 7.8,0.2 \mathrm{~Hz})$, $6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8,2.0 \mathrm{~Hz}), 4.25-4.20(4 \mathrm{H}, \mathrm{m}), 3.87(3 \mathrm{H}, \mathrm{s}), 3.45(2 \mathrm{H}, \mathrm{s}), 2.27(6 \mathrm{H}, \mathrm{s})$, NH was not observed; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.2,145.5,145.3,142.2,139.4,133.2,132.4,131.7$, 130.3, 123.5, 123.0, 122.9, 122.0, 120.1, 118.3, 117.1, 116.7, 113.6, 65.8, 65.5, 65.1, 56.4, 45.3; m/z (ESI') $38\left(\left[\mathrm{M}^{-} \mathrm{H}^{-}\right)\right.$; HRMS $\left(E S I^{-}\right)\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\right]$ requires 389.1865, found 389.1841.

${ }^{1}$ H CPMG NMR experiments for compound Kd calculation

Typical experimental parameters for Carr-Purcell-Meiboom-Gill (CPMG) NMR spectroscopy were the following: total echo time, 40 ms ; relaxation delay, 2 s ; and number of transients, 264 (Abboud et al., 2016). The PROJECT-CPMG sequence ($90^{\circ} x$ - $\left[T-180^{\circ} y \text {-T- } 90^{\circ} y-T-180^{\circ} y \text {-T] }\right]_{n}$-acq) was applied. Water suppression was achieved by presaturation. Prior to Fourier transformation, the data were multiplied with an exponential function with 3 Hz line broadening. The CPMG experiments were conducted at a ${ }^{1} \mathrm{H}$ frequency of 700 MHz using a Bruker Avance with 5 mm inverse $\mathrm{TCl} 1 \mathrm{hr} /$ 13C/15N cryoprobe. All experiments were conducted at RT and lapsed 128 scans. 3 mm diameter NMR tubes with a sample volume of $200 \mu \mathrm{~L}$ were used in all experiments. Solutions were buffered using a $\mathrm{D}_{2} \mathrm{O}$ PBS buffer corrected to pH 7.4 . The sample preparation is exemplified as follows: for a $5 \mu \mathrm{M}$ GST-KRAS ${ }^{\text {G12V }}$ sample: $55 \mu \mathrm{M}$ of the 3344 compound ($1.1 \mu \mathrm{~L}$ of a 10 mM solution in DMSOd_{6}) was added to an Eppendorf before sequential addition of the $D_{2} \mathrm{O}$ PBS buffer ($194.0 \mu \mathrm{~L}$) and GST-KRAS ${ }^{\text {G12V }}$ ($4.9 \mu \mathrm{~L}$ of a $205 \mu \mathrm{M}$ solution, the protein is in an $\mathrm{H}_{2} \mathrm{O}$ buffer for stability reason). The resulting solution was vortexed to be fully mixed and transferred to a 3 mm NMR tube before the run. Negative controls (compound alone, without the KRAS protein) were prepared in a similar manner, in order to obtain an end volume of $200 \mu \mathrm{~L}$.

CPMG experiments were carried out at a fixed 3344 concentration ($55 \mu \mathrm{M}$, optimal concentration for these CPMG NMR experiments) and a variable GST-KRAS ${ }^{\text {G12V }}$ concentration. The amount of GST-KRAS ${ }^{G 12 V}$ was increased from $0 \mu \mathrm{M}$ until the signals of the compound completely disappear in the proton NMR at $20 \mu \mathrm{M}$. Seven measurements were done in total with $0 \mu \mathrm{M}, 2.5 \mu \mathrm{M}, 5 \mu \mathrm{M}, 7.5$
$\mu \mathrm{M}, 10 \mu \mathrm{M}, 15 \mu \mathrm{M}$ and $20 \mu \mathrm{M}$ of GST-KRAS ${ }^{\mathrm{G} 12 \mathrm{~V}}$. The integrations of the protons acquired were all compared to the compound alone (with no KRAS) in order to obtain a percentage decrease for each concentration of KRAS. Three different proton signals were used and a mean was calculated for each run. KRAS concentration experiments were run in triplicate and a mean was also calculated for each concentration. Concentration and percentage of decrease were plotted and Kd fitting was run on the generated curve using Origin 2017 software with the following function: $A^{*}(1 /(2 * C))^{*}$ $\left((B+x+C)-\operatorname{sqrt}\left(((B+x+C) 2)-\left(4^{*} x^{\star} C\right)\right)\right)$ where A is the maximum \% of inhibition (i.e. 100), B is the Kd, C is the concentration of compound and x the concentration of KRAS protein necessary to reach 100% of signal reduction of the compound.

Recombinant protein expression for crystallography and NMR: KRAS ${ }^{\text {G12V }}$, KRAS ${ }^{\text {Q61H }}$ and scFv

KRAS ${ }^{G 12 V}$ cDNA was cloned into the pGEX vector in-frame with an N-terminal Glutathione-S transferase (GST) tag. pGEX-GST-KRAS ${ }^{G 12 \mathrm{~V}}$ was transformed into E.coli BL21 (DE3) cells. Bacterial cells were cultured at $37^{\circ} \mathrm{C}$ to an OD_{600} of 0.5 and induced with IPTG (isopropyl 1-thio-beta-D-galactopyranoside, final concentration 0.1 mM) at $16^{\circ} \mathrm{C}$ overnight. The bacteria cultures were harvested by centrifugation and the cell pellets re-suspended in 50 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,140 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ mercaptoethanol supplemented with complete protease inhibitor (Roche). The GST-fusion proteins were purified by glutathione-sepharose column chromatography (GE Healthcare) and eluted with 50 mM Tris- HCl pH8.0, 10 mM reduced glutathione, 1 mM mercaptoethanol, $5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$.

KRAS ${ }^{061 H}$ cDNA was cloned into the pRK-172 vector in-frame with an N-terminal 6 xHis-tag and TEV protease recognition site. The plasmid containing KRAS ${ }^{\boxed{661 H}}$ sequence was transformed into E. coli B834(DE3) pLysS cells, which were grown in 25 mL LB medium with $50 \mu \mathrm{~g} / \mathrm{mL}$ Carbenicillin and $34 \mu \mathrm{~g} / \mathrm{mL}$ Chloramphenicol for 16 hr , prior to inoculation of 1 L LB medium. Protein expression was induced at $\mathrm{OD}_{600}=0.6$ by addition of IPTG to a final concentration of 0.5 mM and cells grown overnight at $16^{\circ} \mathrm{C}$. Bacteria were harvested by centrifugation and sonicated in 50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$, $500 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl} 2$ and 10 mM imidazole and EDTA-free protease inhibitor cocktail (Roche Diagnostics). Proteins were purified using nickel agarose beads (Invitrogen) and bound proteins were eluted batch-wise in 50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,500 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl} 2$ and 300 mM imidazole. RAS protein samples were concentrated using Vivapore $10 / 20 \mathrm{~mL}$ concentrator (7.5 kDa molecular weight cut-off; Sartorius Vivapore) to a final volume of approximately 1 mL . Nucleotide exchange for crystallographic samples was carried out following published procedures (Herrmann et al., 1996). RAS proteins were further purified by gel filtration on a HiLoad Superdex 75 10/300 GL column (GE Healthcare) in a buffer containing 20 mM HEPES $\mathrm{pH} 8.0,150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl} 2$ and 1 mM DTT at a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$. Fractions corresponding to the protein were pooled and concentrated to $45-75 \mathrm{mg} / \mathrm{mL}$ for crystallization trials. Protein concentration was determined by extinction coefficient ($\varepsilon_{280}=12045 \mathrm{~L} / \mathrm{mol} / \mathrm{cm}$). Protein purity was analyzed by SDS-PAGE stained with Coomassie Brilliant Blue. scFv recombinant protein was expressed and purified as described elsewhere (Tanaka et al., 2007).

Crystal structure and 3344 soaking

For X-ray diffraction experiments, KRAS ${ }^{\mathrm{O61H}}$-GppNHp crystals were grown by vapour diffusion at $4^{\circ} \mathrm{C}$ by mixing $1.5+1.5$ volumes of KRAS solution at a concentration of $75 \mathrm{mg} / \mathrm{mL}$ KRAS ${ }^{\mathrm{Q} 61 \mathrm{H}}$, with $8-15 \%$ w/v Polyethylene Glycol 3350 and 0.2 M lithium citrate pH 5.5 . The resulting crystals are termed crystal form I hereafter. Prior to X-ray data collection, crystals were cryo-protected by addition of 20% glycerol to the crystallization buffer and flash-cooled in liquid nitrogen. 3344 was initially dissolved at 200 mM in 100% DMSO and sequentially mixed in a ratio of $1: 1$ with crystallization buffer ($8-15 \% \mathrm{w} / \mathrm{v}$ Polyethylene Glycol 3350, 0.2 M lithium citrate 7.0 and 20 mM Tris-HCl pH 7.0) to give a final concentration of compound of 50 mM and 25% DMSO in a $5 \mu \mathrm{~L}$ drop. Soaked crystals were flash-cooled in liquid nitrogen prior to data collection using the final DMSO concentration on the soaking drop as cryo-protectant. X-ray diffraction data were collected at beamline ID30A-1 (Bowler et al., 2015; Bowler et al., 2016; Nurizzo et al., 2016; Svensson et al., 2015) at The European Synchrotron Radiation Facility (ESRF, Grenoble, France). The structure of KRAS ${ }^{\text {Q61H }}$ GppNHp3344 was solved by molecular replacement using a KRAS169 ${ }^{\text {Q61H }}$ GPPNHP-Abd-2, (PDB ID 5OCO) as a search model within the program Phaser (McCoy, 2007; McCoy et al., 2007). Structures were
manually adjusted using COOT (Emsley et al., 2010) and refined using REFMAC (Murshudov et al., 1997). Crystal Form I (KRAS ${ }^{\mathrm{O} 61 \mathrm{H}}$) has six KRAS molecules in the asymmetric unit, assembled as a hexamer. Electron density maps averaged with six-fold non-crystallographic symmetry (NCS) were used to improve the definition of the bound compounds. Refinements were also performed with the six fold NCS applied. The refined models were validated using PROCHECK (Laskowski et al., 1993a), MolProbity (Chen et al., 2010) and Phenix software packages (Adams et al., 2010; Laskowski et al., 1993b). Figures were created using PyMOL (Schrodinger). Data collection and refinement statistics are summarized in Table 1.

Quantification and statistical analysis

All quantifications were performed using ImageJ or Prism 7.0 c (GraphPad Software), BRET titration curves and statistical analysis were performed using Prism 7.0 c (GraphPad Software). Data are typically presented as mean \pm SD or SEM as specified in the figure legends. Statistical analyses were performed with a one-way ANOVA followed by Dunnett's post-hoc tests or Sidak's post-hoc tests unless otherwise indicated in the figure legends. ${ }^{*} p<0.05,{ }^{* *} p<0.01$, ${ }^{* * *} p<0.001$, ${ }^{* * * *} p<0.0001$.

Data and software availability

Structure files and coordinates have been deposited to PDB under this accession number: 6F76.

Acknowledgements

This work was funded by grants from Wellcome Trust 100842/Z/12/Z, 099246/Z/12/Z, Bloodwise 12051 and MRC MR/J000612/1. We would like to thank Drs Roger Williams and Olga Perisic for the PI3K and p85 plasmids, Jennifer Chambers for KRAS ${ }^{\text {G12D }}$ FL plasmid and Dr James Felce for the GFP ${ }^{2}$ and RLuc8-N3 plasmids. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and we would like to thank Matthew Bowler for assistance in using beamline ID30A-1. We also thank Drs. Lydia Lee, Phillip Fallon, Jonathan Dunn, Robert Freem, Traore Tenin and Sophie Williams from Domainex for chemistry. We also acknowledge Professor Tim Claridge for his help in the setup of the waterLOGSY and CPMG NMR experiments and Dr Daniel Ebner for access to Envision 2103 plate reader.

Additional information

Competing interests

Abimael Cruz-Migoni: Employed by Immunocore; no other competing financial interests to declare. Angela Russell: Founder of OxStem; no other competing financial interests to declare. The other authors declare that no competing interests exist.

Funding

Funder	Grant reference number	Author
Medical Research Council	MR/J000612/1	Terence H Rabbitts
Wellcome	$099246 / Z / 12 / Z$	Terence H Rabbitts
Bloodwise	12051	Terence H Rabbitts
Wellcome	$100842 / Z / 12 / Z$	Terence H Rabbitts

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

Nicolas Bery, Conceptualization, Methodology, Formal analysis, Investigation, Writing—original draft, Writing—review and editing; Abimael Cruz-Migoni, Formal analysis, Investigation, Writingoriginal draft; Carole JR Bataille, Hanna Tulmin, Formal analysis, Writing—original draft; Camilo E Quevedo, Formal analysis, Writing—original draft, Writing—review and editing; Ami Miller,

Investigation, Writing—review and editing; Angela Russell, Formal analysis, Supervision; Simon EV Phillips, Stephen B Carr, Formal analysis, Supervision, Writing—original draft, Writing—review and editing; Terence H Rabbitts, Conceptualization, Formal analysis, Supervision, Funding acquisition, Investigation, Methodology, Writing—original draft, Project administration, Writing—review and editing

Author ORCIDs

Nicolas Bery (iD) http://orcid.org/0000-0002-2643-3897
Terence H Rabbitts (iD) http://orcid.org/0000-0002-4982-2609
Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.37122.025
Author response https://doi.org/10.7554/eLife. 37122.026

Additional files

Supplementary files

- Supplementary file 1. DNA and protein sequences of BRET biosensors constructs. The list of the DNA and protein sequences from the different RAS BRET biosensor constructs used in this study.
DOI: https://doi.org/10.7554/eLife.37122.020
- Transparent reporting form

DOI: https://doi.org/10.7554/eLife.37122.021
Data availability
Diffraction data have been deposited in PDB ID 6F76.
The following dataset was generated:
$\left.\begin{array}{lllll}\hline & & & & \begin{array}{l}\text { Database, license, } \\ \text { and accessibility }\end{array} \\ \text { information }\end{array}\right]$

References

Abboud MI, Damblon C, Brem J, Smargiasso N, Mercuri P, Gilbert B, Rydzik AM, Claridge TDW, Schofield CJ, Frère J-M. 2016. Interaction of avibactam with class B Metallo- β-Lactamases. Antimicrobial Agents and Chemotherapy 60:5655-5662. DOI: https://doi.org/10.1128/AAC.00897-16
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, GrosseKunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography 66:213-221. DOI: https://doi.org/10.1107/ S0907444909052925, PMID: 20124702
Arthur JS, Ley SC. 2013. Mitogen-activated protein kinases in innate immunity. Nature Reviews Immunology 13: 679-692. DOI: https://doi.org/10.1038/nri3495, PMID: 23954936
Assi SA, Tanaka T, Rabbitts TH, Fernandez-Fuentes N. 2010. PCRPi: Presaging Critical Residues in Protein interfaces, a new computational tool to chart hot spots in protein interfaces. Nucleic Acids Research 38:e86. DOI: https://doi.org/10.1093/nar/gkp1158, PMID: 20008102
Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, Baker SJ, Cosenza SC, Basu I, Gupta YK, Reddy MV, Ueno L, Hart JR, Vogt PK, Mulholland D, Guha C, Aggarwal AK, Reddy EP. 2016. A small molecule RAS-Mimetic disrupts RAS association with effector proteins to block signaling. Cell 165:643-655. DOI: https://doi.org/10. 1016/j.cell.2016.03.045, PMID: 27104980
Bacart J, Corbel C, Jockers R, Bach S, Couturier C. 2008. The BRET technology and its application to screening assays. Biotechnology Journal 3:311-324. DOI: https://doi.org/10.1002/biot.200700222, PMID: 18228541
Baldwin AJ, Kay LE. 2009. NMR spectroscopy brings invisible protein states into focus. Nature Chemical Biology 5:808-814. DOI: https://doi.org/10.1038/nchembio.238, PMID: 19841630
Beautrait A, Paradis JS, Zimmerman B, Giubilaro J, Nikolajev L, Armando S, Kobayashi H, Yamani L, Namkung Y, Heydenreich FM, Khoury E, Audet M, Roux PP, Veprintsev DB, Laporte SA, Bouvier M. 2017. A new inhibitor of
the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nature Communications 8:15054. DOI: https://doi.org/10.1038/ncomms15054, PMID: 28416805
Berndt N, Hamilton AD, Sebti SM. 2011. Targeting protein prenylation for cancer therapy. Nature Reviews Cancer 11:775-791. DOI: https://doi.org/10.1038/nrc3151, PMID: 22020205
Bowler MW, Nurizzo D, Barrett R, Beteva A, Bodin M, Caserotto H, Delagenière S, Dobias F, Flot D, Giraud T, Guichard N, Guijarro M, Lentini M, Leonard GA, McSweeney S, Oskarsson M, Schmidt W, Snigirev A, von Stetten D, Surr J, et al. 2015. MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules. Journal of Synchrotron Radiation 22:1540-1547. DOI: https://doi.org/10.1107/S1600577515016604, PMID: 26524320
Bowler MW, Svensson O, Nurizzo D. 2016. Fully automatic macromolecular crystallography: the impact of MASSIF-1 on the optimum acquisition and quality of data. Crystallography Reviews 22:233-249. DOI: https:// doi.org/10.1080/0889311X.2016.1155050
Burgering BM, de Vries-Smits AM, Medema RH, van Weeren PC, Tertoolen LG, Bos JL. 1993. Epidermal growth factor induces phosphorylation of extracellular signal-regulated kinase 2 via multiple pathways. Molecular and Cellular Biology 13:7248-7256. DOI: https://doi.org/10.1128/MCB.13.12.7248, PMID: 8246947
Burns MC, Sun Q, Daniels RN, Camper D, Kennedy JP, Phan J, Olejniczak ET, Lee T, Waterson AG, Rossanese OW, Fesik SW. 2014. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. PNAS 111:3401-3406. DOI: https://doi.org/10.1073/pnas.1315798111, PMID: 24550516
Castellano E, Downward J. 2011. RAS interaction with PI3K: more than just another effector pathway. Genes \& Cancer 2:261-274. DOI: https://doi.org/10.1177/1947601911408079, PMID: 21779497
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography 66:12-21. DOI: https://doi.org/10.1107/S0907444909042073, PMID: 20057044
Cool RH, Schmidt G, Lenzen CU, Prinz H, Vogt D, Wittinghofer A. 1999. The Ras mutant D119N is both dominant negative and activated. Molecular and Cellular Biology 19:6297-6305. DOI: https://doi.org/10.1128/ MCB.19.9.6297, PMID: 10454576
Corbel C, Wang Q, Bousserouel H, Hamdi A, Zhang B, Lozach O, Ferandin Y, Tan VB, Guéritte F, Colas P, Couturier C, Bach S. 2011. First BRET-based screening assay performed in budding yeast leads to the discovery of CDK5/p25 interaction inhibitors. Biotechnology Journal 6:860-870. DOI: https://doi.org/10.1002/biot. 201100138, PMID: 21681968
Couturier C, Deprez B. 2012. Setting up a bioluminescence resonance energy transfer high throughput screening assay to search for Protein/Protein interaction inhibitors in mammalian cells. Frontiers in Endocrinology 3:100. DOI: https://doi.org/10.3389/fendo.2012.00100, PMID: 22973258
Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. 2014. Drugging the undruggable RAS: Mission possible? Nature Reviews Drug Discovery 13:828-851. DOI: https://doi.org/10.1038/nrd4389, PMID: 25323927
Dalvit C, Fogliatto G, Stewart A, Veronesi M, Stockman B. 2001. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. Journal of Biomolecular NMR 21:349-359. DOI: https:// doi.org/10.1023/A:1013302231549, PMID: 11824754
De A, Loening AM, Gambhir SS. 2007. An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects. Cancer Research 67:7175-7183. DOI: https://doi. org/10.1158/0008-5472.CAN-06-4623, PMID: 17671185
Downward J. 2003. Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer 3:11-22. DOI: https://doi.org/10.1038/nrc969, PMID: 12509763
Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallographica Section D Biological Crystallography 66:486-501. DOI: https://doi.org/10.1107/S0907444910007493, PMID: 20383002
Felce JH, Latty SL, Knox RG, Mattick SR, Lui Y, Lee SF, Klenerman D, Davis SJ. 2017. Receptor quaternary organization explains G Protein-Coupled Receptor Family Structure. Cell Reports 20:2654-2665. DOI: https:// doi.org/10.1016/j.celrep.2017.08.072, PMID: 28903045
Gentile DR, Rathinaswamy MK, Jenkins ML, Moss SM, Siempelkamp BD, Renslo AR, Burke JE, Shokat KM. 2017. Ras Binder induces a modified Switch-Il pocket in GTP and GDP states. Cell Chemical Biology 24:1455-1466. DOI: https://doi.org/10.1016/j.chembiol.2017.08.025, PMID: 29033317
Guillard S, Kolasinska-Zwierz P, Debreczeni J, Breed J, Zhang J, Bery N, Marwood R, Tart J, Overman R, Stocki P, Mistry B, Phillips C, Rabbitts T, Jackson R, Minter R. 2017. Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange. Nature Communications 8:16111. DOI: https://doi.org/10. 1038/ncomms16111, PMID: 28706291
Herrmann C, Horn G, Spaargaren M, Wittinghofer A. 1996. Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. Journal of Biological Chemistry 271:6794-6800. DOI: https://doi.org/10.1074/jbc.271.12. 6794, PMID: 8636102
Huang R, Bonnichon A, Claridge TD, Leung IK. 2017. Protein-ligand binding affinity determination by the waterLOGSY method: an optimised approach considering ligand rebinding. Scientific Reports 7:43727. DOI: https://doi.org/10.1038/srep43727, PMID: 28256624
Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD. 2015. Biochemical and structural analysis of common Cancer-Associated KRAS mutations. Molecular Cancer Research 13:1325-1335. DOI: https://doi.org/10.1158/1541-7786.MCR-15-0203, PMID: 26037647

James GL, Goldstein JL, Brown MS. 1995. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. Journal of Biological Chemistry 270:6221-6226. DOI: https://doi.org/10.1074/jbc.270.11.6221, PMID: 7890759
Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP. 2016. Pancreatic cancer. Nature Reviews Disease Primers 2:16022. DOI: https://doi.org/ 10.1038/nrdp.2016.22, PMID: 27158978

Lange-Carter CA, Johnson GL. 1994. Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science 265:1458-1461. DOI: https://doi.org/10.1126/science.8073291, PMID: 8073291
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993a. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26:283-291. DOI: https://doi. org/10.1107/S0021889892009944
Laskowski RA, Moss DS, Thornton JM. 1993b. Main-chain bond lengths and bond angles in protein structures. Journal of Molecular Biology 231:1049-1067. DOI: https://doi.org/10.1006/jmbi.1993.1351, PMID: 8515464
Lavoie H, Thevakumaran N, Gavory G, Li JJ, Padeganeh A, Guiral S, Duchaine J, Mao DY, Bouvier M, Sicheri F, Therrien M. 2013. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nature Chemical Biology 9:428-436. DOI: https://doi.org/10.1038/nchembio.1257, PMID: 23685672
Lito P, Solomon M, Li LS, Hansen R, Rosen N. 2016. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 351:604-608. DOI: https://doi.org/10.1126/science.aad6204, PMID: 26841430
Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJ, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G. 2012. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. PNAS 109:5299-5304. DOI: https://doi.org/10.1073/pnas.1116510109, PMID: 22431598
Mazars A, Fåhraeus R. 2010. Using BRET to study chemical compound-induced disruptions of the p53-HDM2 interactions in live cells. Biotechnology Journal 5:377-384. DOI: https://doi.org/10.1002/biot.200900272, PMID: 20235143
McCormick F. 2016. K-Ras protein as a drug target. Journal of Molecular Medicine 94:253-258. DOI: https://doi. org/10.1007/s00109-016-1382-7, PMID: 26960760
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. Journal of Applied Crystallography 40:658-674. DOI: https://doi.org/10.1107/S0021889807021206, PMID: 19461840
McCoy AJ. 2007. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallographica Section D Biological Crystallography 63:32-41. DOI: https://doi.org/10.1107/ S0907444906045975, PMID: 17164524
Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M. 2002. Quantitative assessment of beta 1- and beta 2adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. Journal of Biological Chemistry 277:44925-44931. DOI: https://doi.org/10.1074/jbc.M205767200, PMID: 12244098
Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximumlikelihood method. Acta Crystallographica Section D Biological Crystallography 53:240-255. DOI: https://doi. org/10.1107/S0907444996012255, PMID: 15299926
Nakhaeizadeh H, Amin E, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. 2016. The RAS-Effector interface: isoformspecific differences in the effector binding regions. PLoS One 11:e0167145. DOI: https://doi.org/10.1371/ journal.pone. 0167145, PMID: 27936046
Nassar N, Singh K, Garcia-Diaz M. 2010. Structure of the dominant negative S17N mutant of Ras. Biochemistry 49:1970-1974. DOI: https://doi.org/10.1021/bi9020742, PMID: 20131908
Nurizzo D, Bowler MW, Caserotto H, Dobias F, Giraud T, Surr J, Guichard N, Papp G, Guijarro M, MuellerDieckmann C, Flot D, McSweeney S, Cipriani F, Theveneau P, Leonard GA. 2016. RoboDiff: combining a sample changer and goniometer for highly automated macromolecular crystallography experiments. Acta Crystallographica Section D Structural Biology 72:966-975. DOI: https://doi.org/10.1107/S205979831601158X, PMID: 27487827
Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. 2013. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548-551. DOI: https://doi.org/10.1038/nature12796, PMID: 24256730
Pangborn AB, Giardello MA, Grubbs RH, Rosen RK, Timmers FJ. 1996. Safe and convenient procedure for solvent purification. Organometallics 15:1518-1520. DOI: https://doi.org/10.1021/om9503712
Patricelli MP, Janes MR, Li LS, Hansen R, Peters U, Kessler LV, Chen Y, Kucharski JM, Feng J, Ely T, Chen JH, Firdaus SJ, Babbar A, Ren P, Liu Y. 2016. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discovery 6:316-329. DOI: https://doi.org/10.1158/2159-8290.CD-15-1105, PMID: 26739882
Pfleger KD, Seeber RM, Eidne KA. 2006. Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nature Protocols 1:337-345. DOI: https://doi.org/10.1038/nprot. 2006.52, PMID: 17406254

Prior IA, Lewis PD, Mattos C. 2012. A comprehensive survey of Ras mutations in cancer. Cancer Research 72: 2457-2467. DOI: https://doi.org/10.1158/0008-5472.CAN-11-2612, PMID: 22589270
Ramsay D, Kellett E, McVey M, Rees S, Milligan G. 2002. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely
related sequences. Biochemical Journal 365:429-440. DOI: https://doi.org/10.1042/bj20020251, PMID: 11 971762
Razzaque MA, Nishizawa T, Komoike Y, Yagi H, Furutani M, Amo R, Kamisago M, Momma K, Katayama H, Nakagawa M, Fujiwara Y, Matsushima M, Mizuno K, Tokuyama M, Hirota H, Muneuchi J, Higashinakagawa T, Matsuoka R. 2007. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nature Genetics 39: 1013-1017. DOI: https://doi.org/10.1038/ng2078, PMID: 17603482
Robinson KH, Yang JR, Zhang J. 2014. FRET and BRET-based biosensors in live cell compound screens. Methods in molecular biology 1071:217-225. DOI: https://doi.org/10.1007/978-1-62703-622-1_17, PMID: 24052392
Sewell H, Tanaka T, El Omari K, Mancini EJ, Cruz A, Fernandez-Fuentes N, Chambers J, Rabbitts TH. 2014. Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi-protein transcription complex. Scientific Reports 4:3643. DOI: https://doi.org/10.1038/srep03643, PMID: 24407558
Shima F, Yoshikawa Y, Ye M, Araki M, Matsumoto S, Liao J, Hu L, Sugimoto T, ljiri Y, Takeda A, Nishiyama Y, Sato C, Muraoka S, Tamura A, Osoda T, Tsuda K, Miyakawa T, Fukunishi H, Shimada J, Kumasaka T, et al. 2013. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Raseffector interaction. PNAS 110:8182-8187. DOI: https://doi.org/10.1073/pnas.1217730110, PMID: 23630290
Spiegel J, Cromm PM, Zimmermann G, Grossmann TN, Waldmann H. 2014. Small-molecule modulation of Ras signaling. Nature Chemical Biology 10:613-622. DOI: https://doi.org/10.1038/nchembio.1560, PMID: 2492 9527
Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW. 2012. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angewandte Chemie International Edition 51:6140-6143. DOI: https://doi.org/10.1002/anie.201201358, PMID: 22566140
Svensson O, Malbet-Monaco S, Popov A, Nurizzo D, Bowler MW. 2015. Fully automatic characterization and data collection from crystals of biological macromolecules. Acta Crystallographica Section D Biological Crystallography 71:1757-1767. DOI: https://doi.org/10.1107/S1399004715011918, PMID: 26249356
Tanaka T, Rabbitts TH. 2003. Intrabodies based on intracellular capture frameworks that bind the RAS protein with high affinity and impair oncogenic transformation. The EMBO Journal 22:1025-1035. DOI: https://doi.org/ 10.1093/emboj/cdg106, PMID: 12606568

Tanaka T, Rabbitts TH. 2008. Interfering with protein-protein interactions: potential for cancer therapy. Cell Cycle 7:1569-1574. DOI: https://doi.org/10.4161/cc.7.11.6061, PMID: 18469527
Tanaka T, Rabbitts TH. 2010. Interfering with RAS-effector protein interactions prevent RAS-dependent tumour initiation and causes stop-start control of cancer growth. Oncogene 29:6064-6070. DOI: https://doi.org/10. 1038/onc.2010.346, PMID: 20818422
Tanaka T, Sewell H, Waters S, Phillips SE, Rabbitts TH. 2011. Single domain intracellular antibodies from diverse libraries: emphasizing dual functions of LMO2 protein interactions using a single VH domain. The Journal of Biological Chemistry 286:3707-3716. DOI: https://doi.org/10.1074/jbc.M110.188193, PMID: 20980262
Tanaka T, Williams RL, Rabbitts TH. 2007. Tumour prevention by a single antibody domain targeting the interaction of signal transduction proteins with RAS. The EMBO Journal 26:3250-3259. DOI: https://doi.org/10. 1038/sj.emboj. 7601744, PMID: 17568777
Trinh TB, Upadhyaya P, Qian Z, Pei D. 2016. Discovery of a direct ras inhibitor by screening a combinatorial library of Cell-Permeable bicyclic peptides. ACS Combinatorial Science 18:75-85. DOI: https://doi.org/10. 1021/acscombsci.5b00164, PMID: 26645887
Upadhyaya P, Qian Z, Selner NG, Clippinger SR, Wu Z, Briesewitz R, Pei D. 2015. Inhibition of Ras signaling by blocking Ras-effector interactions with cyclic peptides. Angewandte Chemie International Edition 54:76027606. DOI: https://doi.org/10.1002/anie.201502763, PMID: 25950772
van den Berghe N, Cool RH, Horn G, Wittinghofer A. 1997. Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). Oncogene 15:845-850. DOI: https://doi.org/10.1038/sj.onc.1201407, PMID: 9266971
Waldmann H, Karaguni IM, Carpintero M, Gourzoulidou E, Herrmann C, Brockmann C, Oschkinat H, Müller O. 2004. Sulindac-derived Ras pathway inhibitors target the Ras-Raf interaction and downstream effectors in the Ras pathway. Angewandte Chemie International Edition 43:454-458. DOI: https://doi.org/10.1002/anie. 200353089, PMID: 14735533
Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Sanchez-Martin M, Badgley MA, Huang CS, Tran TH, Akkiraju H, Brown LM, Nandakumar R, Cremers S, Yang WS, Tong L, Olive KP, Ferrando A, Stockwell BR. 2017. Multivalent Small-Molecule Pan-RAS inhibitors. Cell 168:878-889. DOI: https://doi.org/10. 1016/j.cell.2017.02.006
Wennerberg K, Rossman KL, Der CJ. 2005. The Ras superfamily at a glance. Journal of Cell Science 118:843846. DOI: https://doi.org/10.1242/jcs.01660, PMID: 15731001

Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK. 1997. K- and N -Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. Journal of Biological Chemistry 272:14459-14464. DOI: https://doi.org/10.1074/jbc.272.22.14459, PMID: 9162087
Yan J, Roy S, Apolloni A, Lane A, Hancock JF. 1998. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. Journal of Biological Chemistry 273:24052-24056. DOl: https://doi.org/10.1074/jbc. 273.37.24052, PMID: 9727023

Zhang B, Li S, Harbrecht BG. 2011. Akt-mediated signaling is induced by cytokines and cyclic adenosine monophosphate and suppresses hepatocyte inducible nitric oxide synthase expression independent of MAPK P44/42. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1813:73-79. DOI: https://doi.org/10. 1016/j.bbamcr.2010.10.001, PMID: 20934465 Bastiaens PI, Waldmann H. 2013. Small molecule inhibition of the KRAS-PDE interaction impairs oncogenic KRAS signalling. Nature 497:638-642. DOI: https://doi.org/10.1038/nature12205, PMID: 23698361
c.

Figures and figure supplements

BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions

Nicolas Bery et al

Figure 1. RAS-effector BRET biosensors and interference of KRAS-effector interactions by a RAS-binding compound. An outline of the BRET2-based RAS biosensor system is shown in A. RAS bound to the plasma membrane (PM) is fused at its amino terminal end to the RLuc8 moiety (donor). When a protein fused to the GFP² moiety (acceptor) does not bind to RAS, it only produces a background BRET signal. However, when an acceptor binds to RAS, it induces a BRET signal, if the luciferase and GFP domains are within $100 \AA$. The BRET signal can be decreased by addition of a competitor (either by a macrodrug or a small molecule inhibitor). The interaction titration of full-length KRAS ${ }^{G 12 D}$-CAAX (for simplicity, the CAAX motif is omitted in all the RAS constructs described hereafter) with the four effector acceptor proteins and the effect on intracellular protein levels are shown in B and C. Competition assays show the specificity of the RAS biosensors in D (iDAb) and E (RAS-binding compounds). In D, the non-relevant anti-LMO2 iDAb (called hereafter iDAb control, Ctl) serves as a negative control and anti-RAS iDAb (herein named iDAb RAS) serves as a positive control. In E, 3344 (black bars) decreases KRAS ${ }^{G 12 D}$ /effector domain interactions in a dose-dependent manner showing its broad range of inhibition. Cells were treated with 5, 10 and $20 \mu \mathrm{M}$ of 3344 (black bars), Abd-2 (grey bars) or DMSO alone (white bars) as the negative control. Statistical analysis was performed with a one-way ANOVA followed by Dunnett's post-hoc tests (${ }^{*} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.001,{ }^{* * * *} \mathrm{p}<0.0001$). Each experiment was repeated three (B, D) or four times (E). Where error bars are presented, these correspond to mean values \pm SD of biological repeats (B, D-E). See also Figure 1-figure supplement 1, Figure 1—figure supplement 2, Figure 1—figure supplement 3 and supplementary file 1.
DOI: https://doi.org/10.7554/eLife. 37122.003

Figure 1-figure supplement 1. Optimization of the RAS biosensors. (A) Optimization of the donor and acceptor linker length. Top panel shows KRAS ${ }^{G 12 \mathrm{D}} / \mathrm{iDAb}$ RAS optimization and the bottom panel shows KRAS ${ }^{\text {G12D }} /$ /CRAF RBD optimization. The red stars indicate the linker length chosen for the study: all RLuc8-RAS constructs bear a (GGGS) $)_{3}$ linker, the iDAb-GFP² fusions a (GGGS) 2 linker and all effectors fused to the GFP² moiety a (GGGS) ${ }_{3}$ linker. (B) Background analysis with total GFP² and RLuc8 levels, emission signal at 410 nm and at 515 nm upon coelenterazine 400a addition from untransfected cells, RLuc8-KRAS ${ }^{\text {G12D }}$ transfected cells only, RALGDS RA-GFP² transfected cells only and cells transfected with the BRET pair KRAS ${ }^{\text {G12D }} /$ RALGDS RA. Each experiment was repeated twice (A-B). Where error bars are presented, they correspond to mean values \pm SEM of biological repeats.
DOI: https://doi.org/10.7554/eLife.37122.004

Figure 1-figure supplement 2. Validation of the RAS biosensors with the anti-iDAb RAS. (A) Total GFP² and RLuc8 levels from the BRET titration curves in Figure 1B. (B) Representative BRET titration curves of KRAS ${ }^{\text {S17N }}$ and RAS binders (RBDs and iDAb RAS) with total GFP ${ }^{2}$ and RLuc8 controls. (C) BRET titration curves of KRAS ${ }^{G 12 D}$ and iDAbs with total GFP² and RLuc8 controls. Statistical analyses were performed using an unpaired Student's test (** $p<0.01$). (D) Western blots for assessment of the expression levels of each KRAS ${ }^{G 12 D_{-i}}{ }^{\text {D }}$ Ab BRET pair. Each experiment was repeated three times (A-C). Where error bars are presented, they correspond to mean values \pm SD of biological repeats.
DOI: https://doi.org/10.7554/eLife. 37122.005

Figure 1—figure supplement 3. 3344 inhibits RAS-RBD interactions. (A) Chemical structure of 3344 . (B) ${ }^{1} \mathrm{H}$ NMR and (C) ${ }^{13} \mathrm{C}$ NMR spectra of 3344 were recorded on a Bruker Avance spectrometer $(600 \mathrm{MHz})$ at room temperature in a solution of the deuterated solvent $\left(\mathrm{CDCl}_{3}\right)$. The field was locked by
Figure 1—figure supplement 3 continued on next page

Figure 1—figure supplement 3 continued
external referencing to the relevant deuteron resonance. Chemical shifts are reported in parts per million (ppm). (D) NMR Carr-Purcell-Meiboom-Gill (CPMG) evaluation of 3344 Kd . Dose-dependent CPMG spectra of 3344 (at a fixed concentration of $55 \mu \mathrm{M}$) were recorded on a Bruker Avance spectrometer $(700 \mathrm{MHz})$ at room temperature against an array of concentration of GST-KRAS ${ }^{G 12 V}(0$ to $20 \mu \mathrm{M}$, left hand panel). The amount of protein was increased from $0 \mu \mathrm{M}$ until the signals of the compound completely disappear in the proton NMR (here $20 \mu \mathrm{M}$). The integrations of the proton acquired were all compared to the compound alone ($0 \mu \mathrm{M}$ of protein) in order to obtain a percentage of decrease for each concentration of GSTKRAS ${ }^{G 12 \mathrm{~V}}$. Concentration and percentage of decrease were plotted and Kd fitting was run on the generated binding curve using Origin ${ }^{\circledR}$ software (right hand panel, see Materials and methods for details). (E) WaterLOGSY spectra of 3344 interacting with GST-KRAS ${ }^{\text {G12V }}$-GppNHp. The proton NMR of 3344 is the lower spectrum (blue), the spectrum of 3344 with KRAS is shown in the top (green) and the inhibitory effect of added anti-RAS scFv on 3344 binding to KRAS is shown in the middle spectrum (red). (F) Chemical structure of Abd-2. (G-I) 3344 decreases KRAS ${ }^{G 12 D_{-i}}$-iDAb ${ }_{d m}$ RAS interaction in a dose-dependent manner and not with iDAb RAS or with a negative BRET-biosensor LMO2-iDAb ${ }_{d m}$ LMO2. Statistical analyses were performed using a one-way ANOVA followed by Dunnett's post-tests (${ }^{*} p<0.05$, ${ }^{* * * *} \mathrm{p}<0.0001$). (J) Total GFP ${ }^{2}$ and RLuc8 levels from the BRET competition assay shown in G-I and Figure 1E. Each experiment was repeated four times (G-I). Where error bars are presented, they correspond to mean values \pm SD of biological repeats.
DOI: https://doi.org/10.7554/eLife. 37122.006

Figure 2. BRET biosensors of KRAS ${ }^{G 12}$ mutants and full-length CRAF are inhibited by compound 3344. A biosensor for the full-length CRAF ${ }^{\text {S257L }}$ (CRAF ${ }^{\mathrm{FL}}$) protein was made and tested for interaction with mutants of KRAS glycine 12. For A and B, the plasmids expressing BRET pair KRAS ${ }^{\mathrm{G} 12 \mathrm{D} /}$ CRAF ${ }^{F L}$ was transfected into HEK293T cells and competed with iDAb expression as indicated; the BRET ratios are shown in A and western blot data in B. The iDAb RAS inhibition of phosphorylation of ERK and MEK signals are quantified in C. The β-actin loading control, iDAbs and BRET pair expression controls are shown in Figure 2—figure supplement 1. In D, the BRET ratio of KRAS ${ }^{G 12 D} / C R A F F^{F L}$ interaction was measured in the presence of an increasing dose of compound 3344. This induces a dose-dependent decrease of MEK and ERK kinase phosphorylation (E) after cells expressing the KRAS ${ }^{G 12 \mathrm{D}} / \mathrm{CRAF}^{\mathrm{FL}}$ biosensor pair were treated 20 hr with DMSO, 10 and $20 \mu \mathrm{M}$ of $\mathrm{Abd}-2$ and 3344 compounds or not treated (untreated lane). The β-actin loading control and BRET pair expression controls are shown in Figure 2-figure supplement 1. Quantification of the relative levels of pMEK1/ 2 and pERK1/2, normalized to total MEK1/2 and ERK1/2 respectively, are shown in F. The RAS biosensor toolkit includes KRAS G12A, G12C, G12V and G12R, in addition to KRAS G12D. In G, each was expressed with CRAF ${ }^{F L}$ and BRET ratios determined at $0,5,10$ and $20 \mu \mathrm{M}$ Abd-2 or 3344 . Statistical analyses in C were performed using a one-way ANOVA followed by Sidak's post-hoc tests and in A, D, F and G using a one-way ANOVA followed by Dunnett's post-tests (${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001,{ }^{* * * *} p<0.0001$). Each experiment was repeated twice ($E-F$), three times ($B-D$), four times (A) or five times (G). Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A, D, G) or correspond to mean \pm SEM of biological repeats (C, F). See also Figure 2—figure supplement 1.
DOI: https://doi.org/10.7554/eLife. 37122.007

Figure 2-figure supplement 1. Interactions of KRAS ${ }^{G 12 \mathrm{X}}$ mutants and full-length CRAF are inhibited by 3344. (A) BRET titration curves of KRAS mutants with full-length $C R A F^{S 257 L}\left(C R A F^{F L}\right)$. KRAS ${ }^{G 12 D}$ interacts with $G F P^{2}-C R A F^{F L}$ while it gives a low BRET ratio with CRAF ${ }^{F L}$-GFP ${ }^{2}$. The dominant negative KRAS ${ }^{\text {S17N }}$ does not interact with GFP²$^{2}-$ CRAF $^{\text {FL }}$ showing the accuracy and optimization of this biosensor. (B) Controls from Figure 2B. The expression level of the BRET pair was assessed by western blot with the GFP (for CRAF ${ }^{F L}$) and pan-RAS (for RLuc8-KRAS ${ }^{G 12 D}$) antibodies. iDAb expression was revealed using anti-FLAG antibody; anti- β-actin binding was used as the loading control. (C) Controls from Figure 2E. The expression level of the BRET pair was assessed with the GFP (for CRAF ${ }^{F L}$) and pan-RAS (for RLuc8-KRAS ${ }^{G 12 D}$) antibodies, anti- β-actin binding was used as the loading control. (D-F) Short-term incubation of the compounds (3 hr) on cells transfected with the KRAS ${ }^{G 12 D} /$ CRAF ${ }^{\text {FL }}$ biosensor. The BRET ratio was measured in the presence of an increasing dose of compound 3344 (D). This induces a dose-dependent decrease of MEK and ERK kinase phosphorylation (E) after cells expressing the KRAS ${ }^{G 12 D} /$ CRAF $^{F L}$ biosensor pair were treated 3 hr with DMSO, 10 and $20 \mu \mathrm{M}$ of Abd-2 and 3344 compounds or not treated (untreated lane). Quantification of the relative levels of pMEK1/2 and pERK $1 / 2$, normalized to total MEK $1 / 2$ and ERK1/2 respectively, are shown in panel F. (G) Controls from panel E. (H) Controls from Figure 2G. The expression level of each BRET pair was assessed with the GFP (for CRAF ${ }^{F L}$) and pan-RAS (for RLuc8-KRAS ${ }^{G 12 X}$) antibodies. One-way ANOVA followed by Dunnett's post-hoc tests were used to determine Figure 2-figure supplement 1 continued on next page

Figure 2—figure supplement 1 continued
the statistical significance of BRET, pERK and pMEK modulations induced by the compounds (${ }^{*} p<0.05, * * p<0.01, * * * * p<0.0001$). Each experiment was repeated twice ($\mathrm{A}, \mathrm{E}-\mathrm{F}$) or three times (D). Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A, D) or correspond to mean \pm SEM of biological repeats (F).
DOI: https://doi.org/10.7554/eLife. 37122.008

Figure 3. Wild-type KRAS and CRAF biosensor interaction-induced signaling is impaired by 3344. The BRET KRASWT/CRAF ${ }^{\text {FL }}$ pair was tested for interaction after EGF stimulation of HEK293T cells in presence of competitors. In A, cells were transfected with plasmids to express the KRASWT biosensor with or without iDAbs and stimulated by EGF ($50 \mathrm{ng} / \mathrm{mL}$). iDAb RAS shows an inhibition of KRAS ${ }^{W T} / \mathrm{CRAF}^{F L}$ interaction after EGF treatment in a dose-dependent manner. B is a western blot of the transfected cells from panel A showing the effect of the iDAbs on EGF-stimulated RAS-RAF-MEKERK signaling pathway (pMEK and pERK signals are quantified in C). β-actin loading control, iDAbs and BRET pair expression controls are shown in Figure 3-figure supplement 1. The effect on BRET2 signal of compounds Abd-2 (grey bars) and 3344 (black bars) on KRAS ${ }^{W T} / C R A F{ }^{F L}$ interaction after EGF treatment in a BRET competition experiment is shown in panel D. In panel E, HEK293T cells were transfected as in D with the plasmids expressing the BRET pair KRASWT/CRAF ${ }^{F L}$ for 24 hr and serum starved 20 hr in the presence of DMSO, 10 and $20 \mu \mathrm{M}$ of $\mathrm{Abd}-2$ and 3344 compounds. Cells were treated 5 min with EGF ($50 \mathrm{ng} / \mathrm{mL}$), lysed and analyzed by western blot. The expression level of the BRET protein pair is shown in Figure $3-$ figure supplement 1 as well as the loading control β-actin for the western blot. The western blot data are quantified in panel F. One-way ANOVA followed by Dunnett's post-hoc tests were used to determine the statistical significance of BRET, pERK and pMEK modulations induced by the compound or the iDAb (*p $<0.05,{ }^{* * *} p<0.001,{ }^{* * * *} p<0.0001$). Each experiment was repeated twice ($B-C$) or three times ($A, D-F$). Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A, D) or correspond to mean \pm SEM of biological repeats (C, F). See also
Figure 3—figure supplement 1.
DOI: https://doi.org/10.7554/eLife. 37122.009

Figure 3-figure supplement 1. 3344 inhibits $K R A S^{W T} / C R A F^{F L}$ interaction induced by EGF treatment. (A) BRET titration curves of KRAS ${ }^{W T}$ with $C R A F^{F L}$. After EGF stimulation ($50 \mathrm{ng} / \mathrm{mL}$), KRAS ${ }^{W T}$ contacts CRAF ${ }^{F L}$ as indicated by an increase of the BRET max value. (B) Controls from Figure $3 B$. The expression level of the BRET pair was assessed with the GFP (for CRAF ${ }^{F L}$) and pan-RAS (for RLuc8-KRAS ${ }^{W T}$) antibodies. iDAb expression is revealed by the CMYC tag antibody; anti- β-actin binding was used as the loading control. (C) Controls from Figure 3E. The expression level of the BRET pair was assessed with the GFP (for CRAF $^{F L}$) and pan-RAS (for RLuc8-KRAS ${ }^{W T}$) antibodies. Anti- β-actin binding was used as control. Panel D shows the shortterm effect on BRET2 signal of compounds Abd-2 (grey bars) and 3344 (black bars) on KRAS ${ }^{W T}$ /CRAF ${ }^{F L}$ interaction after EGF treatment in a BRET competition experiment (3 hr incubation of the compounds). In panel E, HEK293T cells were transfected with the plasmids expressing the BRET pair $K_{R A S}{ }^{W T} / C R A F^{F L}$ for 24 hr , serum starved 24 hr and then incubated for 3 hr with DMSO, 10 and $20 \mu \mathrm{M}$ of Abd- 2 and 3344 compounds. Cells were treated 5 min with EGF ($50 \mathrm{ng} / \mathrm{mL}$), lysed and analysed by western blot. Quantification of panel E is shown in panel F. (G) Controls from panel E. Oneway ANOVA followed by Dunnett's post-hoc tests were used to determine the statistical significance of BRET, pERK and pMEK modulations induced by the compounds (${ }^{* *} \mathrm{p}<0.01, * * * \mathrm{p}<0.001, * * * * \mathrm{p}<0.0001$). Each experiment was repeated twice ($\mathrm{A}, \mathrm{E}-\mathrm{F}$) or three times (D). Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A, D) or correspond to mean \pm SEM of biological repeats (F).
DOI: https://doi.org/10.7554/eLife. 37122.010

Figure 4. Interaction between mutant KRAS and full-length PI3K α BRET pair interaction is impeded by 3344 . The BRET signal produced from the interaction of the KRAS ${ }^{G 12 D}$ and full-length PI3K $\alpha\left(P I 3 K \alpha^{F L}\right)$ was obtained by transfecting HEK239T cells with plasmids encoding this BRET pair. In A, cells were co-transfected with the biosensor and increasing levels of competitor plasmids encoding iDAbs RAS (black striped bars) or iDAb control (grey striped bars) or biosensor alone (white bar). iDAb RAS impedes KRAS ${ }^{G 12 D} /$ PI3K $\alpha^{F L}$ interaction and this inhibition causes a decrease of pAKT at serine 473 as shown by western blot in B and its quantification in C. UT is for untransfected cells. In D, HEK293T cells transfected with the BRET biosensor KRAS ${ }^{G 12 D} / \mathrm{PI} 3 \mathrm{~K} \alpha^{F L}$ were treated for 20 hr with DMSO (white bar), 5, 10 and $20 \mu \mathrm{M}$ of Abd-2 (grey bars) and 3344 (black bars) compounds and the BRET signal of the biosensor was assessed. In panel E, the cells were transfected and treated as in D but with 10 and $20 \mu \mathrm{M}$ of $\mathrm{Abd}-2$ and 3344 compounds. 20 hr after the treatment, cells were lysed and analysed by western blot using anti-pAKT (Ser 473) or anti-pan-AKT antibody. The signal in the western blot is quantitated in F. Related controls are shown on Figure 4-figure supplement 1. One-way ANOVA followed by Dunnett's post-hoc tests were used to determine the statistical significance of BRET and pAKT modulations induced by the compound or the iDAb (*p $<0.05, * * p<0.01$, ${ }^{* * *} p<0.001,{ }^{* * * *} p<0.0001$). Each experiment was repeated twice ($\mathrm{E}-\mathrm{F}$) or three times (A-D). Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A, D) or correspond to mean $\pm S E M$ of biological repeats (C, F). See also Figure 4 -figure supplement 1.
DOI: https://doi.org/10.7554/eLife.37122.011

Figure 4-figure supplement 1. Interaction of KRAS ${ }^{G 12 D}$ with $P I 3 K \alpha^{F L}$ is inhibited by 3344. (A) BRET titration curves of $K R A S^{G 12 D}$ and $K R A S^{S 17 N}$ mutants with full-length $\mathrm{PI} 3 \mathrm{~K} \alpha\left(\mathrm{PI} 3 \mathrm{~K} \alpha^{\mathrm{FL}}\right)$. $\mathrm{KRAS}^{\mathrm{G} 12 \mathrm{D}}$ interacts with $\mathrm{PI} 3 \mathrm{~K} a^{\mathrm{FL}}$ when the full-length regulatory subunit p85a is co-expressed along with the
 The expression level of the BRET pair was assessed with the GFP (for PI3K $\alpha^{F L}$) and pan-RAS (for RLuc8-KRAS ${ }^{G 12 D}$) antibodies. iDAb and p85 $\alpha^{F L}$ expression was revealed by the CMYC tag antibody, β-actin was used as the loading control. (C) Controls from Figure 4E. The expression level of the BRET pair was assessed with the GFP (PI3K $\alpha^{F L}$) and pan-RAS (RLuc8-KRAS ${ }^{G 12 D}$) and CMYC (p85 $\alpha^{F L}$) antibodies. Anti- β-actin was used as the loading control. In panel D, HEK293T cells transfected with the BRET biosensor KRAS ${ }^{G 12 D} / \mathrm{PI} 3 \mathrm{~K} \alpha^{F L}$ were treated for 3 hr with DMSO (white bar), 5,10 and $20 \mu \mathrm{M}$ of Abd-2 (grey bars) and 3344 (black bars) compounds and the BRET signal of the biosensor was assessed. In panel E, the cells were transfected and treated as in panel D but with 10 and $20 \mu \mathrm{M}$ of $\mathrm{Abd}-2$ and 3344 compounds. 3 hr after the treatment, cells were lysed and analyzed by western blot using anti-pAKT (Ser 473) or anti-pan-AKT antibody. The signal in the western blot is quantitated in panel F. (G) Controls from panel E. One-way ANOVA followed by Dunnett's post-hoc tests were used to determine the statistical significance of BRET and pAKT modulations induced by the compounds (${ }^{* *} p<0.01,{ }^{* * * *} p<0.0001$). Each experiment was repeated twice ($\mathrm{A}, \mathrm{E}-\mathrm{F}$) or three times (D). Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A, D) or correspond to mean \pm SEM of biological repeats (F).
DOI: https://doi.org/10.7554/eLife. 37122.012

Figure 5. Compound 3344 inhibits NRAS and HRAS-effector BRET-based biosensors. HEK293T cells were transfected 24 hr with plasmids expressing the NRAS ${ }^{\mathrm{Q61H}}(\mathrm{~A}, \mathrm{C})$ and $\mathrm{HRAS} S^{G 12 V}(B, D)$ biosensors together with the indicated RBDs of PI3K, CRAF and RALGDS (A, B) or full-length CRAF (C, D). These were treated with 5, 10 and $20 \mu \mathrm{M}$ of Abd-2 (grey bars) or 3344 (black bars) compounds for 20 hr . DMSO (white bar) was used as the negative control. Statistical analyses were performed using a one-way ANOVA followed by Dunnett's post-tests (${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001,{ }^{* * * *} \mathrm{p}<0.0001$). Each experiment was repeated at least four times. Where error bars are presented, they correspond to mean values \pm SD of biological repeats (A-D). See also Figure 5-figure supplement 1.
DOI: https://doi.org/10.7554/eLife.37122.013

Figure 5-figure supplement 1. iDAb RAS inhibits mutant NRAS and HRAS interaction with CRAF ${ }^{F L}$. (A) BRET titration curves of NRAS ${ }^{\mathrm{Q61H}}$ and HRAS ${ }^{G 12 V}$ with CRAF ${ }^{F L}$ with total GFP2 and RLuc8 controls. (B) BRET titration curves of NRAS ${ }^{661 H}$ and HRAS ${ }^{\text {G12V }}$ with iDAb RAS. (C, D) Competition assays show the inhibition of NRAS ${ }^{\mathrm{Q61H}} / \mathrm{CRAF}^{\mathrm{FL}}$ interaction (C) and HRAS ${ }^{\mathrm{G} 12 \mathrm{~V}} / \mathrm{CRAF}{ }^{\mathrm{FL}}$ interaction (D) by iDAb RAS (black striped bars) in a dosedependent manner compared to the non-relevant iDAb control (grey striped bars) and the no competitor control (-, white bar). (E, F) Total GFP ${ }^{2}$ and RLuc8 levels from the BRET competition assay shown in Figure 5A-D. Statistical analyses in C and D were performed using a one-way ANOVA followed by Dunnett's post-hoc tests (${ }^{* * * *} \mathrm{p}<0.0001$). Each experiment was repeated twice (A, B) or four times (C, D). Where error bars are presented, they correspond to mean values \pm SD biological repeats.
DOI: https://doi.org/10.7554/eLife. 37122.014

Figure 6. Compound 3344 interacts in a pocket close to the switch regions of KRAS. The interaction of mutant KRAS with compound 3344 was analyzed by X-ray crystallography. (A) KRAS ${ }^{\text {Q61H }}$ crystals were soaked with 3344 compound and crystal structures obtained from X-ray diffraction. The Figure 6 continued on next page

Figure 6 continued
compound is shown binding in the hydrophobic pocket near switch I (shown in red) and switch II (shown in blue). The electron density map of the compound (2Fo-Fc) is shown as green mesh, and contoured at 1.0 rms . (B) We have modeled the potential interactions that could prevent 3344 and a RAS effector binding simultaneously to the same RAS molecule by overlaying our structure of the KRAS-3344 complex onto the published structures of top panel: HRAS-CRAF RBD (PDB 4G3X), middle panel: HRAS-RALGDS RA (PDB 1LFD), bottom panel: HRAS-PI3K γ RBD (PDB 1HE8). (C, D) Two human mutant KRAS expressing lines (C: DLD-1 and D: H358) were serum-starved for 24 hr and treated 3 hr with different concentrations of 3344 ($2,5,10$ and $20 \mu \mathrm{M})$ before stimulation with EGF $(50 \mathrm{ng} / \mathrm{mL})$ for 10 min . Cells were harvested, proteins extracted and separated by SDS-PAGE for western blot analysis. Western membranes were treated with anti-pAKT S473; anti-pan AKT; anti-pERK1/2 and anti-ERK1/2 as indicated. Statistical analyses of pERK/ ERK and pAKT/AKT quantifications were performed using a one-way ANOVA followed by Dunnett's post-tests (${ }^{*} \mathrm{p}<0.05, * * p<0.01,{ }^{* * *} \mathrm{p}<0.001$, $* * * * \mathrm{p}<0.0001$). Where error bars are presented, they correspond to mean values \pm SEM of biological repeats (C-D). Each experiment was performed twice (C-D).
DOI: https://doi.org/10.7554/eLife.37122.015

Chemical structure 1.
DOI: https://doi.org/10.7554/eLife.37122.017

Chemical structure 2.

DOI: https://doi.org/10.7554/eLife.37122.018

Chemical structure 3.
DOI: https://doi.org/10.7554/eLife. 37122.019

Supplementary file 1: DNA and protein sequences of BRET biosensors constructs

Sequence: GFP2-iDAbdm control Range: 1 to 1209

GCCGCATAG
GGGCGTATC
A A *>

ATGGCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGTCATA TACCGGCTCCACGTCGACAACCTCAGACCCCCTCCGAACCATGTCGGACCCCCCAGGGACTCTGAGAGGACACGTCGGAGACCTAAGTCGAAGTCAGTAT
 TRANSLATION OF IDAB CONTROL-GFP2 [A]CAGGATACTTAACCCAGGCGGTCCGAGGTCCCTTCCCCGACCTCACCCAAAGTATGTAATCAATATTAAGAAGCTCATATATGATACGTCTGAGACACTT
 K G L
TRANSLATION
OF \qquad
\qquad $280 \quad 290$ 300 GGGCCGATTCACCATCTCCAGAGACAATTCCAAGACACACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTACTGTGCGAGA

 330 340 CCCAACTGCCTCAGAGAACTCAACTGCCGCCTAACCAAACTAATGACCCCGGTCCCTTGGGACCAGTGGCAATCAAGAGAGCTCCCGCCTCCGCCTAGAC
 $\begin{array}{llllll}D & F \\ \text { TRANSLATION OF } & \\ \text { IDAB CONTROL-GFP2 } & \text { [A] }\end{array}$ \qquad
\qquad 430 CGCCGCCTCCTAGACGCCGGCGTCCCTCACCATACCACTCGTTCCCGCTCCTCGACAAGTGGCCCCACCACGGGTAGGACCAGCTCGACCTGCCGCTGCA
 $\begin{array}{lllllllll}510 & 520 & 530 & 540 & 550 & 560 & 570 & 580 & 590\end{array}$ AAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTG ATTGCCGGTGTTCAAGTCGCACAGGCCGCTCCCGCTCCCGCTACGGTGGATGCCGTTCGACTGGGACTTCAAGTAGACGTGGTGGCCGTTCGACGGGCAC
 (A]

610	620	630	640	650	660	670	680	690

 GGGACCGGGTGGGAGCACTGGTGGGACTCGATGCCGCACGTCACGAAGTCGGCGATGGGGCTGGTGTACTTCGTCGTGCTGAAGAAGTTCAGGCGGTACG

 GGCTTCCGATGCAGGTCCTCGCGTGGTAGAAGAAGTTCCTGCTGCCGTTGATGTTCTGGGCGCGGCTCCACTTCAAGCTCCCGCTGTGGGACCACTTGGC | P | E | G | Y | V | Q | E | R | T | I | F | F | K | D | D | G | N | Y | K | T | R | A | E | V | K | F | E | G | D | T | L | V |
| :--- |

810	820	830	840	850	860	870	880
CATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCCGAC							

 TTCGTCTTCTTGCCGTAGTTCCACTTGAAGTTCTAGGCGGTGTTGTAGCTCCTGCCGTCGCACGTCGAGCGGCTGGTGATGGTCGTCTTGTGGGGGTAGC
 $\begin{array}{ccccccc}1010 & 1020 & 1030 & 1040 & 1050 & 1060 & 1070\end{array}$

1110
1120
1130
1140
1150

GTTCGTGACCGCCGCCGGGATCACTCTCAGCATGGACGAGCTGTACAAGTAA
CAAGCACTGGCGGCGGCCCTAGTGAGAGTCGTACCTGCTCGACATGTTCATT

TGGCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTE $50 \quad 60 \quad 70 \quad 80 \quad 90 \quad 100$ ATGGCGAGG

110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | machaiclo 200 TTAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATTAGTAGGACGTCGAAGACGATATACTATGCAGACTCTGTGAA AATCGTACTTGACCCAGGCGGTCCGAGGTCCCTTCCCCGACCTCACCCAAAGTATGTAATCATCCTGCAGCTTCTGCTATATGATACGTCTGAGACACTT

\qquad 260 \qquad
GGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTACTGTGCGAGA GGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTACTGTGCGAGA
 TRANSLATION OF IDAB RAS-GFP2 [A] \qquad
 GGGAGATTCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTTAGTTCTCTCGAGGGCGGAGGCGGATCTGGGCGGCGGAGGATCTGCGGCCGCAGGGA ССТСТАAGAAACTGATGACCCCGGTCCCTTGGGACCAGTGGCAATCAAGAGAGCTCCCGCCTCCGCCTAGACCGCCGCCTCC
 TRANSLATION OF IDAB RAS-GFP2 [A]
$470 \quad 480$
$480 \quad 490$
GTGGTATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGG CACCATACCACTCGTTCCCGCTCCTCGACAAGTGGCCCCACCACGGGTAGGACCAGCTCGACCTGCCGCTGCATTTGCCGGTGTTCAAGTCGCACAGGCC
 GCTCCCGCTCCCGCTACGGTGGATGCCGTTCGACTGGGACTTCAAGTAGACGTGGTGGCCGTTCGACGGGCACGGGACCGGGTGGGAGCACTGGTGGGAC $\begin{array}{lllllllllllllllllllllllllllllll}\mathrm{E} & \mathrm{G} & \mathrm{E} & \mathrm{G} & \mathrm{D} & \mathrm{A} & \mathrm{T} & \mathrm{Y} & \mathrm{G} & \mathrm{K} & \mathrm{L} & \mathrm{T} & \mathrm{L} & \mathrm{K} & \mathrm{F} & \mathrm{I} & \mathrm{C} & \mathrm{T} & \mathrm{T} & \mathrm{G} & \mathrm{K} & \mathrm{L} & \mathrm{P} & \mathrm{V} & \mathrm{P} & \mathrm{W} & \mathrm{P} & \mathrm{T} & \mathrm{L} & \mathrm{V} & \mathrm{T}\end{array} \mathrm{T} \begin{aligned} & \mathrm{L}\end{aligned}$
\qquad
$670680 \quad 690$

AGCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCA AGCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCA

| 710 | 720 | 730 | 740 | 750 | 760 | 770 | 780 | 790 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | TCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAA AGAAGAAGTTCCTGCTGCCGTTGATGTTCTGGGCGCGGCTCCACTTCAAGCTCCCGCTGTGGGACCACTTGGCGTAGCTCGACTTCCCGTAGCTGAAGTT

$870 \quad 880$
890
900
GGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAAC ССTCСTGCCGTTGTAGGACCCCGTGTTCGACCTCATGTTGATGTTGTCGGTGTTGCAGATATAGTACCGGCTGTTCGTCTTCTTGCCGTAGTTCCACTTG

 AAGTTCTAGGCGGTGTTGTAGCTCCTGCCGTCGCACGTCGAGCGGCTGGTGATGGTCGTCTTGTGGGGGTAGCCGCTGCCGGGGCACGACGACGGGCTGT $\begin{array}{llllllllllllllllllllllllllllllllll}\mathrm{F} & \mathrm{K} & \mathrm{I} & \mathrm{R} & \mathrm{H} & \mathrm{N} & \mathrm{I} & \mathrm{E} & \mathrm{D} & \mathrm{G} & \mathrm{S} & \mathrm{V} & \mathbf{Q} & \mathrm{L} & \mathrm{A} & \mathrm{D} & \mathrm{H} & \mathrm{Y} & \mathrm{Q} & \mathrm{Q} & \mathrm{N} & \mathrm{T} & \mathrm{P} & \mathrm{I} & \mathrm{G} & \mathrm{D} & \mathrm{G} & \mathrm{P} & \mathrm{V} & \mathrm{L} & \mathrm{L} & \mathrm{P} & \mathrm{D}> & \end{array}$ $\ldots \quad \mathrm{K} \quad \mathrm{R}$

| 1010 | 1020 | 1030 | 1040 | 1050 | 1060 | 1070 | 1080 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | TGGTGATGGACAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCT

 TRANSLATION OF IDAB RAS-GFP2 [A] \qquad 1110 1120
CAGCATGGACGAGCTGTACAAGTAA GTCGTACCTGCTCGACATGTTCATT
$\begin{array}{cccccccc}\text { S } & M & D & E & L & Y & K & \text { *> }\end{array}$ _TRANSLATION OF IDA \qquad
$\begin{array}{lllllllll}10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90\end{array}$ TGGCCGAGGTGCAGCTGTTGGAGTYGGGGGAGGAGAGCCTGGGGGG CCCTGAGACTCTCCTGTGCAGCCTCTGGATCGCCTTTGCTGCCT ACCGGCTCCACGTCGACAACC G G G
 \qquad
-
\qquad
\qquad 190
200
TTAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATTAGTAGGACGTCGAAGACGATATACTATGCAGACTCTGTGAA TTAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTTCATACATTAGTAGGACGTCGAAGACGATATACTATGCAGACTCTGTGAA AATCGTACTTGACCCAGGCGGTCCGAGGTCCCTTCCCCGACCTCACCCAAAGTATGTAATCATCCTGCAGCTTCTGCTATATGATACGTCTGAGACACTT

$210 \quad 220$ $\begin{array}{lllllll}230 & 240 & 250 & 260 & 270 & 280 & 290\end{array}$ CCCGGCTAAGTGGTAGAGGTCTCTGTTAAGGTTCTTGTGTGACATAGACGTTTACTTGTCGGACTCTCGGCTCCTGTGCCGACAGATAATGACACGCTCT
 $350 \quad 360$ CCCCCTCCGAAACTGATGACCCCGGTCCCTTGGGACCAGTGGCAATCAAGAGAGCTCCCGCCTCCGCCTAGACCGCCGCCTCCTAGACGCCGGCGTCCCT

$410 \quad 42$
$420 \quad 43$ $430 \quad 440$ 440 CACCATACCACTCGTTCCCGCTCCTCGACAAGTGGCCCCACCACGGGTAGGACCAGCTCGACCTGCCGCTGCATTTGCCGGTGTTCAAGTCGCACAGGCC

\qquad 590 600

 _

610	620	630	640	650	660	670	680	690

AGCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCA CGATGCCGCACGTCACGAAGTCGGCGATGGGGCTGGTGTACTTCGTCGTGCTGAAGAAGTTCAGGCGGTACGGGCTTCCGATGCAGGTCCTCGCGTGGT

 TCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAA

\qquad $\begin{array}{ccccccccc}810 & 820 & 830 & 840 & 850 & 860 & 870 & 880 & 890\end{array}$ GAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAAC CCTCCTGCCGTTGTAGGACCCCGTGTTCGACCTCATGTTGATGTTGTCGGTGTTGCAGATATAGTACCGGCTGTTCGTCTTCTTGCCGTAGTTCCACTTG

 AAGTTCTAGGCGGTGTTGTAGCTCCTGCCGTCGCACGTCGAGCGGCTGGTGATGGTCGTCTTGTGGGGGTAGCCGCTGCCGGGGCACGACGACGGGCTGT
 $\begin{array}{cccccccc}1010 & 1020 & 1030 & 1040 & 1050 & 1060 & 1070 & 1080\end{array}$ TGGTGATGGACTCGTGGGTCAGGCGGGACTCGTTTCTGGGGTTGCTCTTCGCGCTAGTGTACCAGGACGACCTCAAGCACTGGCGGCGGCCCTAGTGAGA

$$
1110 \quad 1120
$$

CAGCATGGACGAGCTGTACAAGTAA GTCGTACCTGCTCGACATGTTCATT
$\begin{array}{lllllll}\text { S M D } & \text { L } & \text { L } & \text { Y } & \text { K }\end{array}$ _ TRANSLATION OF IDA \qquad

Sequence: membrane bound FLAG-iDAb control-myc competitor Range: 1 to 528
$10 \quad 20 \quad 30$
$40 \quad 50$
$50 \quad 60$
$60 \quad 70$ \qquad $80 \quad 90$
$90 \quad 100$ ATGCTGTGCTGTATGAGAAGAACCAAACAGGTTGAAAAGAATGATGAGGACCAAAAGATCGTCGACATGGACTACAAGGACGACGATGACAGGCCCATGG TACGACACGACATACTCTTCTTGGTTTGTCCAACTTTTCTTACTACTCCTGGTTTTCTAGCAGCTGTACCTGATGTTCCTGCTGCTACTGTCCGGGTACC
 TRANSLATION OF MEMBRANE BOUND FLAG-IDAB CONTROL-MYC COMPETITOR [A]
$\begin{array}{llllllllll}110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200\end{array}$ CCGAGGTGCAGCTGTTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGTCATAGTCC GGCTCCACGTCGACAACCTCAGACCCCCTCCGAACCATGTCGGACCCCCCAGGGACTCTGAGAGGACACGTCGGAGACCTAAGTCGAAGTCAGTATCAGG

 $\begin{array}{llllllllll}210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300\end{array}$ TATGAATTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATTAGTTATAATTCTTTCGAGTATATACTATGCAGACTCTGTGAAGGGC ATACTTAACCCAGGCGGTCCGAGGTCCCTTCCCCGACCTCACCCAAAGTATGTAATCAATATTAAGAAGCTCATATATGATACGTCTGAGACACTTCCCG
促

CGATTCACCATCTCCAGAGACAATTCCAAGAACACACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTACTGTGCGAGAGGGT GCTAAGTGGTAGAGGTCTCTGTTAAGGTTCTTGTGTGACATAGACGTTTACTTGTCGGACTCTCGGCTCCTGTGCCGACAGATAATGACACGCTCTCCCA $\begin{array}{llllllllllllllllllllllllllllllllll}\mathrm{R} & \mathrm{F} & \mathrm{T} & \mathrm{I} & \mathrm{S} & \mathrm{R} & \mathrm{D} & \mathrm{N} & \mathrm{S} & \mathrm{K} & \mathrm{N} & \mathrm{T} & \mathrm{L} & \mathrm{Y} & \mathrm{L} & \mathrm{Q} & \mathrm{M} & \mathrm{N} & \mathrm{S} & \mathrm{L} & \mathrm{R} & \mathrm{A} & \mathrm{E} & \mathrm{D} & \mathrm{T} & \mathrm{A} & \mathrm{V} & \mathrm{Y} & \mathrm{Y} & \mathrm{C} & \mathrm{C} & \mathrm{A} & \mathrm{R} & \mathrm{R}\end{array}$ 480

490 $>$

TGACGGAGTCTCTTGAGTTGACGGCGGATTGGTTTGATTACTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGCGGCCGCAGAACAAAACTCATCTC TGACGGAGTCTCTTGAGTTGACGGCGGATTGGTTTGATTACTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGCGGCCGCAGAACAAAAACTCATCTC
 _TRANSLATION OF MEMBRANE BOUND FLAG-IDAB CONTROL-MYC COMPETITOR [A] \qquad
510 520
AGAAGAGGATCTGAATGGGGCCGCATAG
TCTTCTCCTAGACTTACCCCGGCGTATC
$\begin{array}{llllll}\text { E } & \text { E } & \text { D } & \text { L } & \text { G A A }\end{array}$ \qquad

Sequence: membrane bound FLAG-iDAb RAS-myc competitor Range: 1 to 501 TACGACACGACATACTCTTCTTGGTTTGTCCAACTTTTCTTACTACTCCTGGTTTTCTAGCAGCTGTACCTGATGTTTCTGCTGCTACTGTCCGGGTACC
 TRANSLATION OF MEMBRANE BOUND FLAG-IDAB RAS-MYC COMPETITOR [A]
\qquad
 GGCTCCACGTCGACAACCTCAGACCCCCTCCGAACCATGTCGGACCCCCCAGGGACTCTGAGAGGACACGTCGGAGACCTAAGTGGAAATCATGGAAATC GGCTCCACGTCGACAACCTCAGACCCCCTCCGAACCATGTCGGACCCCCCAGGGACTCTGAGAGGACACGTCGGAGACCTAAGTGAAATCATGGAACC
 210230 230 280290 300 CATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATTAGTAGGACGTCGAAGACGATATACTATGCAGA GTACTTGACCCAGGCGGTCCGAGGTCCCTTCCCCGACCTCACCCAAAGTATGTAATCATCCTGCAGCTTCTGCTATATGATACGTCTGAGACACTTCCCG
 GCTAAGTGGTAGAGGTCTCTGTTAAGGTTCTTGTGTGACATAGACGTTTACTTGTCGGACTCTCGGCTCCTGTGCCGACAGATAATGACACGCTCTCCCT
 410420 430 440 450 460

470
480
490 00
GATTCTTTGACTACTGGGGCCAGGGACCCTGGTCACCGTCTCGAGCGCGGCCGCAGAACAAAAACTCATCTCAGAAGAGGATCTGAATGCCCCCDATA GATTCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGCGGCCGCAGAACAAAAACTCATCTCAGAAGAGGATCTGAATGGGGCCGCATA CTAAGAAACTGATGACCCCGGTCCCTTGGGACCAGTGGCAGAGCTCGCGCCGGCGTCTTGTTTTTTGAGTAGAGTCTTCTCCTAGACTTACCCCGGCGTAT

G
C
$\xrightarrow[-]{C}$

Sequence: iDAb control-myc competitor Range: 1 to 432
$\begin{array}{ccccccccc}10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90\end{array}$ ATGGCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGTCATA TACCGGCTCCACGTCGACAACCTCAGACCCCCTCCGAACCATGTCGGACCCCCCAGGGACTCTGAGAGGACACGTCGGAGACCTAAGTCGAAGTCAGTAT
 TRANSLATION OF IDAB CONTROL-MYC COMPETITOR [A]

GTCCTATGAATTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATTAGTTATAATTCTTCGAGTATATACTATGCAGACTCTGTGAA GTCCTATGAATTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATTAGTTATAATTCTTCGAGTATATACTATGCAGACTCTGTGAA

 $\begin{array}{lllllllll}210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290\end{array}$ GGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTACTGTGCGAGA CCCGGCTAAGTGGTAGAGGTCTCTGTTAAGGTTCTTGTGTGACATAGACGTTTACTTGTCGGACTCTCGGCTCCTGTGCCGACAGATAATGACACGCTCT

GGGTTGACGGAGTCTCTTGAGTTGACGGCGGATTGGTTTGATTTACTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGCGGCCGCAGAACAAAAACTCA СССААСТGССТСАGAGAACTCAACTGCCGCCTAACCAAACTAATGACCCCGGTCCCTTGGGACCAGTGGCAGAGCTCGCGCCGGCGTCTTGTTTTTGAGT
 410 420 430
TCTCAGAAGAGGATCTGAATGGGGCCGCATAG
AGAGTCTTCTCCTAGACTTACCCCGGCGTATC
$\begin{array}{llllllcc}\text { I } & \text { S } & \text { E } & \text { E } & \text { L } & \text { N } & \text { G A } & \text { A } \\ & \text { TRANSLATION } & \text { OF } & \text { IDAB } & \text { CONTR }\end{array}$ \qquad
$\begin{array}{cccccccccc}10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100\end{array}$ ATGGCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTACCT TACCGGCTCCACGTCGACAACCTCAGACCCCCTCCGAACCATGTCGGACCCCCCAGGGACTCTGAGAGGACACGTCGGAGACCTAAGTGGAAATCATGGA

 $\begin{array}{llllllllll}110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200\end{array}$ TTAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATTAGTAGGACGTCGAAGACGATATACTATGCAGACTCTGTGAA TTAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATTAGTAGGACGTCGAAGACGATATACTATGCAGACTCTGTGAA

 $\begin{array}{llllllllll}210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300\end{array}$ GGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTACTGTGCGAGA CCCGGCTAAGTGGTAGAGGTCTCTGTTAAGGTTCTTGTGTGACATAGACGTTTACTTGTCGGACTCTCGGCTCCTGTGCCGACAGATAATGACACGCTCT
 $\begin{array}{llllllllll}310 & 320 & 330 & 340 & 350 & 360 & 370 & 380 & 390 & 400\end{array}$ GGGAGATTCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGCGGCCGCAGAACAAAAACTCATCTCAGAAGAGGATCTGAATGGGGCCG CCCTCTAAGAAACTGATGACCCCGGTCCCTTGGGACCAGTGGCAGAGCTCGCGCCGGCGTCTTGTTTTTGAGTAGAGTCTTCTCCTAGACTTACCCCGGC

CATAG
GTATC
\qquad
$>$

Sequence: myc-p85alpha Range: 1 to 2217
1020
30
40
50
60
70
80
80
90
100
ATGGAGCAGAAACTCATCTCTGAAGAGGATCTGGGCGGATCCATGAGTGCTGAGGGGTACCAGTACAGAGCGCTGTATGATTATAAAAAGGAAAGAGAAG TACCTCGTCTTTGAGTAGAGACTTCTCCTAGACCCGССТAGGTACTCACGACTCCCCATGGTCATGTCTCGCGACATACTAATATTTTTCCTTTCTCTTC
 _TRANSLATION OF MYC-P85ALPHA [A]
$\begin{array}{llllllllll}110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200\end{array}$ AAGATATTGACTTGCACTTGGGTGACATATTGACTGTGAATAAAGGGTCCTTAGTAGCTCTTGGATTCAGTGATGGACAGGAAGCCAGGCCTGAAGAAAT TTCTATAACTGAACGTGAACCCACTGTATAACTGACACTTATTTCCCAGGAATCATCGAGAACCTAAGTCACTACCTGTCCTTCGGTCCGGACTTCTTTA

 ACCGACCAATTTACCGATATTACTTTGGTGTCCCTTTCCCCCTGAAAGGCCCTTGAATGCATCTTATATAACCTTCCTTTTTAGAGCGGAGGGT
 $\begin{array}{llllllllll}310 & 320 & 330 & 340 & 350 & 360 & 370 & 380 & 390 & 400\end{array}$ CCAAAGCCCCGGCCACCTCGGCCTCTTCCTGTTGCACCAGGTTCTTCGAAAACTGAAGCAGATGTTGAACAACAAGCTTTGACTCTCCCGGATCTTGCAG TTGGAGCCGGAGAAGGACAACGTGGTC

410
420
430
440
450
460
470
480
490
500
AGCAGTTTGCCCCTCCTGACATTGCCCCGCCTCTTCTTATCAAGCTCGTGGAAGCCATTGAAAAGAAAGGTCTGGAATGTTCAACTCTATACAGAACACA TCGTCAAACGGGGAGGACTGTAACGGGGCGGAGAAGAATAGTTCGAGCACCTTCGGTAACTTTTCTTTCCAGACCTTACAAGTTGAGATATGTCTTGTGT
 510520530 540

550
560
570
580
590
600
GAGCTCCAGCAACCTGGCAGAATTACGACAGCTTCTTGATTGTGATACACCCTCCGTGGACTTGGGAAATGATCGATGTGCACGTTTTGGCTGACGCTTTC CTCGAGGTCGTTGGACCGTCTTAATGCTGTCGAAGAACTAACACTATGTGGGAGGCACCTGAACCTTTACTAGCTACACGTGCAAAACCGACTGCGAAAG
 _TRANSLATION OF MYC-P85ALPHA [A]
$\begin{array}{lllllllll}610 & 620 & 630 & 640 & 650 & 660 & 670 & 680 & 690\end{array}$
AAACGCTATCTCCTGGACTTACCAAATCCTGTCATTCCAGCAGCCGTTTACAGTGAAATGATTTCTTTTAGCTCCAGAAGTACAAAGCTCCGAAGAATATA TTTGCGATAGAGGACCTGAATGGTTTAGGACAGTAAGGTCGTCGGCAAATGTCACTTTACTAAAGAAATCGAGGTCTTCATGTTTCGAGGCTTCTTATAT

 TTCAGCTATTGAAGAAGCTTATTAGGTCGCCTAGCATACCTCATCAGTATTGGCTTACGCTTCAGTATTTGTTAAAACATTTCTTCAAGCTCTCTCAAAC

 $810 \begin{array}{lllllllll}820 & 830 & 840 & 850 & 860 & 870 & 880 & 890 & 900\end{array}$ CTCCAGCAAAAATCTGTTGAATGCAAGAGTACTCTCTGAAATTTTCAGCCCTATGCTTTTCAGATTCTCAGCAGCCAGCTCTGATAATACTGAAAACCTC GAGGTCGTTTTTAGACAACTTACGTTCTCATGAGAGACTTTAAAAGTCGGGATACGAAAAGTCTAAGAGTCGTCGGTCGAGACTATTATGACTTTTGGAG
 $10-930$ [A]

970980990 ATAAAAGTTATAGAAATTTTAATCTCAACTGAATGGAATGAACGACAGCCTGCACCAGCACTGCCTCCTAAACCACCAAAACCTACTACTGTAGCCAACA TATTTTCAATATCTTTAAAATTAGAGTTGACTTACCTTACTTGCTGTCGGACGTGGTCGTGACGGAGGATTTGGTGGTTTTGGATGATGACATCGGTTGT

 _TRANSLATION OF MYC-P85ALPHA [A]
1120
1130
1140
1150
1160
1170
1180
1190
1200

GACCTTTTTGGTACGAGATGCGTCTACTAAAATGCATGGTGATTATACTCTTACACTAAGGAAAGGGGGAAATAACAAATTAATCAAAATATTTCATCGA CTGGAAAAACCATGCTCTACGCAGATGATTTTACGTACCACTAATATGAGAATGTGATTCCTTTCCCCCTTTATTGTTTAATTAGTTTTATAAAGTAGCT

$\begin{array}{llllllllll}1210 & 1220 & 1230 & 1240 & 1250 & 1260 & 1270 & 1280 & 1290 & 1300\end{array}$ GATGGGAAATATGGCTTCTCTGACCCATTAACCTTCAGTTCTGTGGTTGAATTAATAAACCACTACCGGAATGAATCTCTAGCTCAGTATAATCCCAAAT СTACCСTTTATACCGAAGAGACTGGGTAATTGGAAGTCAAGACACCAACTTAATTATTTGGTGATGGCCTTACTTAGAGATCGAGTCATATTAGGGTTTA
 _ ANSLATION OF MYC-P85ALPHA [A]
$\begin{array}{llllllllll}1310 & 1320 & 1330 & 1340 & 1350 & 1360 & 1370 & 1380 & 1390 & 1400\end{array}$ TGGATGTGAAATTACTTTATCCAGTATCCAAATACCAACAGGATCAAGTTGTCAAAGAAGATAATATTGAAGCTGTAGGGAAAAAATTACATGAATATAA АССТАСАСТTTAATGAAATAGGTCATAGGTTTATGGTTGTCCTAGTTCAACAGTTTCTTCTATTATAACTTCGACATCCCTTTTTTAATGTACTTATATT
 RANSLATION OF MYC-P85ALPHA [A]
 GTGAGTCAAAGTTCTTTTTTCAGCTCTTATACTATCTAATATACTTCTTATATGGGCGTGTAGGGTCCTTTAGGTTTACTTTTCCTGTCGATAACTTCGT
 TRANSLATION OF MYC-P85ALPHA [A]

| 1510 | 1520 | 1530 | 1540 | 1550 | 1560 | 1570 | 1580 | 1590 | 1600 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | TTTAATGAAACCATAAAAATATTTGAAGAACAGTGCCAGACCCAAGAGCGGTACAGCAAAGAATACATAGAAAAGTTTAAACGTGAAGGCAATGAGAAAG АААТТАСТTTGGTATTTTTATAAACTTCTTGTCACGGTCTGGGTTCTCGCCATGTCGTTTCTTATGTATCTTTTCAAATTTGCACTTCCGTTACTCTTTC

 85ALPHA [A]

| 1610 | 1620 | 1630 | 1640 | 1650 | 1660 | 1670 | 1680 | 1690 | 1700 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AAATACAAAGGATTATGCATAATTATGATAAGTTGAAGTCTCGAATCAGTGAAATTATTGACAGTAGAAGAAGATTGGAAGAAGACTTGAAGAAGCAGGC TTTATGTTTCСТААТАСGTATTAATACTATTCAACTTCAGAGCTTAGTCACTTTAATAACTGTCATCTTCTTCTAACCTTСTTCTGAACTTCTTCGTCCG

AGCTGAGTATCGAGAAATTGACAAACGTATGAACAGCATTAAACCAGACCTTATCCAGCTGAGAAAGACGAGAGACCAATACTTGATGTGGTTGACTCAA TCGACTCATAGCTCTTTAACTGTTTGCATACTTGTCGTAATTTGGTCTGGAATAGGTCGACTCTTTCTGCTCTCTGGTTATGAACTACACCAACTGAGTT

\qquad TRANSLATION OF MYC-P85ALPHA [A] \qquad
$\begin{array}{lllllllll}1810 & 1820 & 1830 & 1840 & 1850 & 1860 & 1870 & 1880 & 1890\end{array}$ AAAGGTGTTCGGCAAAAGAAGTTGAACGAGTGGTTGGGCAATGAAAACACTGAAGACCAATATTCACTGGTGGAAGATGATGAAGATTTGCCCCATCATG ПTTCCACAAGCCGTTTTСТTСААСТTGCTCACCAACCCGTTACTTTTGTGACTTCTGGTTATAAGTGACCACCTTCTACTACTTCTAAACGGGGTAGTAC
 TRANSLATION OF MYC-P85ALPHA [A]

| 1910 | 1920 | 1930 | 1940 | 1950 | 1960 | 1970 | 1980 | 1990 | 2000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ATGAGAAGACATGGAATGTTGGAAGCAGCAACCGAAACAAAGCTGAAAACCTGTTGCGAGGGAAGCGAGATGGCACTTTTCTTGTCCGGGAGAGCAGTAA TACTCTTCTGTACCTTACAACCTTCGTCGTTGGCTTTGTTTCGACTTTTGGACAACGCTCCCTTCGCTCTACCGTGAAAAGAACAGGCCCTCTCGTCATT

 E K T W N V G S S N R N K A E N L I R G K \qquad

2010 | 2020 | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 | 2090 | 2100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ACAGGGCTGCTATGCCTGCTCTGTAGTGGTGGACGGCGAAGTAAAGCATTGTGTCATAAACAAAACAGCAACTGGCTATGGCTTTGCCGAGCCCTATAAC TGTCCCGACGATACGGACGAGACATCACCACCTGCCGCTTCATTTTCGTAACACAGTATTTGTTTTGTCGTTGACCGATACCGAAACGGCTCGGGATATTG

\qquad TTGTACAGCTCTCTGAAAGAACTGGTGCTACATTACCAACACACCTCCCTTGTGCAGCACAACGACTCCCTCAATGTCACACTAGCCTACCCAGTATATG TGTACAGCTCTCTGAAAGAACTGGTGCTACATTACCACACACCCCTTGTGCAGCACAACGACNCCCTCAAMCACACTAGCCTACCCAGTATATG

 \qquad 2210
ACAGCAGAGGCGATGA GTGTCGTCTCCGCTACT
A $Q \quad Q \quad R \quad R \quad$ * TRANSLATIO *> AGATAAGAGTTGACGGTTACCTGACAAAATGTTACGGTAGTATAAGGTCTGCGTAAAGGTGTCGATGTGAGCTCCCGCCGCCTCCTAGACCCCCGCCTCC
 $\begin{array}{lllllllll}510 & 520 & 530 & 540 & 550 & 560 & 570 & 580 & 590\end{array}$ AAGTGGGGGAGGGGGCTCTGCGGCCGCAGGGAGTGGTATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGC TTCACCCCCTCCCCCGAGACGCCGGCGTCCCTCACCATACCACTCGTTCCCGCTCCTCGACAAGTGGCCCCACCACGGGTAGGACCAGCTCGACCTGCCG

$670680 \quad 700$ GACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGC TGCATTTGCCGGTGTTCAAGTCGCACAGGCCGCTCCCGCTCCCGCTACGGTGGATGCCGTTCGACTGGGACTTCAAGTAGACGTGGTGGCCGTTCGACG

 GGCACGGGACCGGGTGGGAGCACTGGTGGGACTCGATGCCGCACGTCACGAAGTCGGCGATGGGGCTGGTGTTACTTCGTCGTGCTGAAGAAGTTCAGGCG

| 810 | 820 | 830 | 840 | 850 | 860 | 870 | 880 | | 90900 | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | CATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTG GTACGGGCTTCCGATGCAGGTCCTCGCGTGGTAGAAGAAGTTCCTGCTGCCGTTGATGTTCTGGGCGCGGCTCCACTTCAAGCTCCCGCTGTGGGACCAC

M	

910	920	930	940	950	960	970
AACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCCACAACGTCTATATCATGG						

 , TRANSLATION OF PI3KALPHA RBD-GFP2 [A] \qquad

$1010 \begin{array}{llllll}1020 & 1030 & 1040 & 1050 & 1060 & 1070\end{array}$ CCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCC GGCTGTTCGTCTTCTTGCCGTAGTTCCACTTGAAGTTCTAGGCGGTGTTTGTAGCTCCTGCCGTCGCACGTCGAGCGGCTGGTGATGGTCGTCTTGTGGGG | A | D | K | Q | K | N | G | I | K | V | N | F | K | I | R | H | N | I | E | D | G | S | V | Q | L | A | D | H | Y | Q | Q | N | T | $\mathrm{P}>$ |
| :--- | TRANSLATION OF PI3KALPHA RBD-GFP2 [A]

| 1110 | 1120 | 1130 | 1140 | 1150 | 1160 | 1170 | 1180 | 1190 | 1200 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | СATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTG GTAGCCGCTGCCGGGGCACGACGACGGGCTGTTGGTGATGGACTCGTGGGTCAGGCGGGACTCGTTTCTGGGGTTGCTCTTCGCGCTAGTGTACCAGGAC

$$
\begin{array}{ccccc}
1210 & 1220 & 1230 & 1240 & 1250
\end{array}
$$

CTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA
GACCTCAAGCACTGGCGGCGGCCCTAGTGAGAGCCGTACCTGCTCGACATGTTCATI
$\begin{array}{lllllllllllllllllll}\text { L } & \mathrm{E} & \mathrm{F} & \mathrm{V} & \mathrm{T} & \mathrm{A} & \mathrm{A} & \mathrm{G} & \mathrm{I} & \mathrm{T} & \mathrm{L} & \mathrm{G} & \mathrm{M} & \mathrm{D} & \mathrm{E} & \mathrm{L} & \mathrm{Y} & \mathrm{K} & \text { *> }\end{array}$ _TRANSLATION OF PI3KALPHA RBD-GFP2 [A] \qquad $>$

ATGCCCCCAAGAATCCTAGTAGAATGTTTACTACCAAATGGAATGATAGTGACTTTAGAATGCCTCCGTGAGGCTACATTAATAACCATAAAGCATGAAC TACGGGGGTTCTTAGGATCATCTTACAAATGATGGTTTACCTTACTATCACTGAAATCTTACGGAGGCACTCCGATGTAATTATTGGTATTTCGTACTTG
 IENGTH-GFP2 [A]
110
$120 \quad 130$
$130 \quad 140$
$140 \quad 150$
$150 \quad 160$
$160 \quad 170$
$170 \quad 180$
180190
$190 \quad 200$ TATTTAAAGAAGCAAGAAAATACCCCCTCCATCAACTTCTTCAAGATGAATCTTCTTACATTTTCGTAAGTGTTACTCAAGAAGCAGAAAGGGAAGAATT ATAAATTTCTTCGTTCTTTTATGGGGGAGGTAGTTGAAGAAGTTCTACTTAGAAGAATGTAAAAGCATTCACAATGAGTTCTTCGTCTTTCCCTTCTTAA
 TRANSLATION OF PI3KALPHA FULL-LENGTH-GFP2 [A]
$\begin{array}{lllllllll}210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290\end{array}$ TTTTGATGAAACAAGACGACTTTGTGACCTTCGGCTTTTTTCAACCCTTTTTAAAAGTAATTGAACCAGTAGGCAACCGTGAAGAAAAGATCCTCAATCGA AAAACTAСTTTGTTCTGCTGAAACACTGGAAGCCGAAAAAGTTTGGGAAAAATTTTCATTAACTTGGTCATCCGTTGGCACTTCTTTTCTAGGAGTTAGCT

$\begin{array}{llllllllll}310 & 320 & 330 & 340 & 350 & 360 & 370 & 380 & 390 & 400\end{array}$ GAAATTGGTTTTGCTATCGGCATGCCAGTGTGTGAATTTGATATGGTTAAAGATCCAGAAGTACAGGACTTCCGAAGAAATATTCTGAACGTTTTGTAAAG CTTTAACCAAAACGATAGCCGTACGGTCACACACTTAAACTATACCAATTTCTAGGTCTTCATGTCCTGAAGGCTTCTTTATAAGACTTGCAAACATTTC
 TRANSLATION OF PI3KALPHA FULI LENGTH GFP2 [A]
$410 \quad 420$ 430

440
450
460
470
480
490
500
AAGCTGTGGATCTTAGGGACCTCAATTCACCTCATAGTAGAGCAATGTATGTCTATCCTCCAAATGTAGAATCTTCACCAGAATTGCCAAAGCACATATA TTCGACACCTAGAATCCCTGGAGTTAAGTGGAGTATCATCTCGTTACATACAGATAGGAGGTTTACATCTTAGAAGTGGTCTTAACGGTTTCGTGTATAT $\begin{array}{lllllllllllllllllllllllllllllllll} & \mathrm{E} & \mathrm{A} & \mathrm{V} & \mathrm{D} & \mathrm{L} & \mathrm{R} & \mathrm{D} & \mathrm{L} & \mathrm{N} & \mathrm{S} & \mathrm{P} & \mathrm{H} & \mathrm{S} & \mathrm{R} & \mathrm{A} & \mathrm{M} & \mathrm{Y} & \mathrm{V} & \mathrm{Y} & \mathrm{P} & \mathrm{P} & \mathrm{N} & \mathrm{V} & \mathrm{E} & \mathrm{S} & \mathrm{S} & \mathrm{P} & \mathrm{E} & \mathrm{L}\end{array}$
560570

580590
600
TAATAAATTAGATAAAGGGCAAATAATAGTGGTGATCTGGGTAATAGTTTCTCCAAATAATGACAAGCAGAAGTATACTCTGAAAATCAACCATGACTGT АТТАТTTAATCTATTTCCCGTTTATTATCACCACTAGACCCATTATCAAAGAGGTTTATTACTGTTCGTCTTCATATGAGACTTTTAGTTGGTACTGACA
 -TRANSLATION OF PI3KALPHA FULL-LENGTH-GFP2 [A]
610
620
630
640
650
660
670

680
690
700
GTACCAGAACAAGTAATTGCTGAAGCAATCAGGAAAAAAACTCGAAGTATGTTGCTATCCTCTGAACAACTAAAACTCTGTGTTTTAGAATATCAGGGCA CATGGTCTTGTTCATTAACGACTTTCGTTAGTCCTTTTTTTGAGCTTCATACAACGATAGGAGACTTGTTGATTTTTGAGACACAAAATCTTATAGTCCCGT

$\begin{array}{lllllllll}710 & 720 & 730 & 740 & 750 & 760 & 770 & 780 & 790\end{array}$ AGTATATTTTAAAAGTGTGTGGATGTGATGAATACTTCCTAGAAAAATATCCTCTGAGTCAGTATAAGTATATAAGAAGCTGTATAATGCTTGGGAGGAT TСАТАТААААТТТTСАСАСАССТАСАСТАСТTATGAAGGATCTTTTTATAGGAGACTCAGTCATATTCATATATTCTTCGACATATTACGAACCCTCCTA
 -
830840850860
$870 \quad 880$
880890
890900
GCCCAATTTGATGTTGATGGCTAAAGAAAGCCTTTATTCTCAACTGCCAATGGACTGTTTTACAATGCCATCTTATTCCAGACGCATTTCCACAGCTACA CGGGTTAAACTACAACTACCGATTTCTTTCGGAAATAAGAGTTGACGGTTACCTGACAAAATGTTACGGTAGAATAAGGTCTGCGTAAAGGTGTCGATGT

 GGTATATACTTACCTCTTTGTAGATGTTTTAGGGAAACCCAATATTTATCACGTGAGTCTTATTTTTAAGAAACACGTTGGATGCACTTACATTTATAAG
 $1010-1020 \quad 1040 \quad 1050 \quad 1060$
 TCTGTAACTATTCTAGATACAAGCTTGTCCATAGATGGTACCTCCTCTTGGGAATACACTGTTACACTTGTGAGTTTCTCATGGAACAAGGTTAGGGTC
 $\begin{array}{llllllllllll}\text { T G I Y } & \text { H } & \text { G } \\ \text { TRANSLATION } & \text { OF } & \text { PI3KALPHA } & \text { FULL-LENGTH-GFP2 } & {[\mathrm{A}]}\end{array}$
$\begin{array}{llllllllll}1110 & 1120 & 1130 & 1140 & 1150 & 1160 & 1170 & 1180 & 1190 & 1200\end{array}$ GTGGAATGAATGGCTGAATTATGATATATACATTCCTGATCTTCCTCGTGCTGCTCGACTTTGCCTTTCCATTTGCTCTGTTAAAGGCCGAAAGGGTGCT САССТТАСТTACCGACTTAATACTATATATGTAAGGACTAGAAGGAGCACGACGAGCTGAAACGGAAAGGTAAACGAGACAATTTCCGGCTTTCCCACGA

 AAAGAGGAACACTGTCCATTGGCATGGGGAAATATAAACTTGTTTGATTACACAGACACTCTAGTATCTGGAAAAATGGCTTTGAATCTTTGGCCAGTAC TTTCTCCTTGTGACAGGTAACCGTACCCCTTTATATTTGAACAAACTAATGTGTCTGTGAGATCATAGACCTTTTTACCGAAACTTAGAAACCGGTCATG

$1310 \begin{array}{lllllllll}1320 & 1330 & 1340 & 1350 & 1360 & 1370 & 1380 & 1390 & 1400\end{array}$ CTCATGGATTAGAAGATTTGCTGAACCCTATTGGTGTTACTGGATCAAATCCAAATAAAGAAACTCCATGCTTAGAGTTGGAGTTTGACTGGTTCAGCAG

GTGGTAAAGTTCCCAGATATGTCAGTGATTGAAGAGCATGCCAATTGGTCTGTATCCCGAGAAGCAGGATTTAGCTATTCCCACGCAGGACTGAGTAAC AСАССАТТТСААGGGTСТАТАСАGTСАСТААСТТСТСGTACGGTTAACCAGACATAGGGСTСTTCGTССТАААТСGATAAGGGTGCGTCCTGACTCATTG

$$
\begin{array}{lllllllll}
1510 & 1520 & 1530 & 1540 & 1550 & 1560 & 1570 & 1580 & 1590
\end{array}
$$ AGACTAGCTAGAGACAATGAATTAAGGGAAAATGACAAAGAACAGCTCAAAGCAATTTCTACACGAGATCCTCTCTCTGAAATCACTGAGCAGGAGAAAG TCTGATCGATCTCTGTTACTTAATTCCCTTTTACTGTTTCTTGTCGAGTTTCGTTAAAGATGTGCTCTAGGAGAGAGACTTTAGTGACTCGTCCTCTTTC

 $\begin{array}{llllllllll}1610 & 1620 & 1630 & 1640 & 1650 & 1660 & 1670 & 1680 & 1690 & 1700\end{array}$ АTTTTCTATGGAGTCACAGACACTATTGTGTAACTATCCCCGAAATTCTACCCAAATTGCTTCTGTCTGTTAAATGGAATTCTAGAGATGAAGTAGCCCA TAAAAGATACCTCAGTGTCTGTGATAACACATTGATAGGGGCTTTAAGATGGGTTTAACGAAGACAGACAATTTACCTTAAGATCTCTACTTCATCGGGT

GATGTATTGCTTGGTAAAAGATTGGCCTCCAATCAAACCTGAACAGGCTATGGAACTTCTGGACTGTAATTACCCAGATCCTATGGTTCGAGGTTTTGCT TACATAACGAACCATTTTCTAACCGGAGGTTAGTTTGGACTTGTCCGATACCTTGAAGACCTGACATTAATGGGTCTAGGATACCAAGCTCCAAAACGA

| 1810 | 1820 | 1830 | 1840 | 1850 | 1860 | 1870 | 1880 | 1890 | 1900 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | GTTCGGTGCTTGGAAAAATATTTTAACAGATGACAAACTTTCTCAGTATTTAATTCAGCTAGTACAGGTCCTAAAATATGAACAATATTTGGATAACTTGC AAGCCACGAACCTTTTTATAAATTGTCTACTGTTTGAAAGAGTCATAAATTAAGTCGATCATGTCCAGGATTTTATACTTGTTATAAACCTATTGAACG $\begin{array}{lllllllllllllllllllllllllllllllll}\mathrm{V} & \mathrm{R} & \mathrm{C} & \mathrm{L} & \mathrm{E} & \mathrm{K} & \mathrm{Y} & \mathrm{L} & \mathrm{T} & \mathrm{D} & \mathrm{D} & \mathrm{K} & \mathrm{L} & \mathrm{S} & \mathrm{Q} & \mathrm{Y} & \mathrm{L} & \mathrm{I} & \mathrm{Q} & \mathrm{L} & \mathrm{V} & \mathrm{Q} & \mathrm{V} & \mathrm{L} & \mathrm{K} & \mathrm{Y} & \mathrm{E} & \mathrm{Q} & \mathrm{Y} & \mathrm{L}\end{array}$ TTGTGAGATTTTTACTGAAGAAAGCATTGACTAATCAAAGGATTGGCACTT $1960 \quad 1970 \quad 1980 \quad 1900$ AACACTCTAAAAATGACTTCTTTCGTAACTGATTAGTTTCCTAACCCGTGAAAAAGAAAACCGTAAATTTTAGACTCTACGTGTTATTTTGTCAATCGGT

\qquad 2030
$2050 \quad 2060 \quad 2070$
20802090
2100 GAGGTTTGGCCTGCTTTTTGGAGTCCTATTGTCGTGCATGTGGGATGTATTTGAAGCACCTGAATAGGCAAGTCGAGGCAATGGAAAAGCTCATTAACTTA СTCCAAACCGGACGAAAACCTCAGGATAACAGCACGTACACCCTACATAAACTTCGTGGACTTATCCGTTCAGCTCCGTTACCTTTTCGAGTAATTGAAT

| 2110 | 2120 | 2130 | 2140 | 2150 | 2160 | 2170 | 2180 | 2190 | 2200 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ACTGACATTCTCAAACAGGAGAAGAAGGATGAAACACAAAAGGTACAGATGAAGTTTTTAGTTGAGCAAATGAGGCGACCAGATTTCATGGATGCTCTAC TGACTGTAAGAGTTTGTCCTCTTCTTCCTACTTTGTGTTTTCCATGTCTACTTCAAAAATCAACTCGTTTACTCCGCTGGTCTAAAGTACCTACGAGATG

 AGGGCTTTСТGTСТССТСТАААСССТGСТСАТСААСТАGGAAACCTCAGGCTTGAAGAGTGTCGAATTATGTCCTCTGCAAAAAGGCCACTGTGGTTTGAA TCCCGAAAGACAGAGGAGATTTTGGGACGAGTAGTTGATCCTTTGGAGTCCGAACTTCTCACAGCTTAATACAGGAGACGTTTTTCCGGTGACACCAACTT
 [2310
$2310 \quad 2320 \quad 2330 \quad 2340 \quad 2350 \quad 2360 \quad 2370$

2380
400
TTGGGAGAACCCAGACATCATGTCAGAGTTACTGTTTCAGAACAATGAGATCATCTTTAAAAATGGGGATGATTTACGGCAAGATATGCTAACACTTCAA AACCCTCTTGGGTCTGTAGTACAGTCTCAATGACAAAGTCTTGTTACTCTAGTAGAAATTTTTACCCCTACTAAATGCCGTTCTATACGATTGTGAAGTT

$2410 \begin{array}{lllllllll}2420 & 2430 & 2440 & 2450 & 2460 & 2470 & 2480 & 2490 & 2500\end{array}$ ATTATTCGTATTATGGAAAATATCTGGCAAAATCAAGGTCTTGATCTTCGAATGTTACCTTAATGGTTGTCTGTCAATCGGTGACTGTGTGGGACTTATTG AATAAGCATA

$\begin{array}{llllllllll}2510 & 2520 & 2530 & 2540 & 2550 & 2560 & 2570 & 2580 & 2590 & 2600\end{array}$ AGGTGGTGCGAAATTCTCACACTATTATGCAAATTCAGTGCAAAGGCGGCTTGAAAGGTGCACTGCAGTTCAACAGCCACACACTACATCAGTGGCTCAA TCCACCACGCTTTAAGAGTGTGATAATACGTTTAAGTCACGTTTCCGCCGAACTTTCCACGTGACGTCAAGTTGTCGGTGTGTGATGTAGTCACCGAGTT | E | V | V | R | N | S | H | T | I | M | \mathbf{Q} | I | \mathbf{Q} | C | K | G | G | L | K | G | A | L | \mathbf{Q} | F | N | S | H | T | L | H | Q | W | L | $\mathrm{K}>$ |
| :--- | $2610 \begin{array}{llllllllllll}2620 & 2630 & 2640 & 2650 & 2660 & 2670 & 2680 & 2690 & 2700\end{array}$ AGACAAGAACAAAGGAGAAATATATGATGCAGCCATTGACCTGTTTACACGTTCATGTGCTGGATACTGTGTAGCTACCTTCATTTTGGGAATTGGAGAT ТСТGTTCTTGTTTССтСтTTATATACTACGTCGGTAACTGGACAAATGTGCAAGTACACGACCTATGACACATCGATGGAAGTAAAACCCTTAACCTCTA

 $2710 \quad 2720 \quad 2730 \quad 2740 \quad 2750 \quad 2760 \quad 2770 \quad 2780 \quad 2790$ GGTCACAATAGTAACATCATGGTGAAAGACGATGGACAACTGTTTCATATAGATTTTGGACACTTTTTGGATCACAAGAAGAAAAAATTTGGTTATAAAC GCAGTGTTATCATTGTAGTACCACTTTCTGCTACCTGTTGACAAAGTATATCTAAAACCTGTGAAAACCTAGTGTTCTTCTTTTTTTAAACCAATATTTG

 GAGAACGTGTGCCATTTGTTTTGACACAGGATTTCTTAATAGTGATTAGTAAAGGAGCCCAAGAATGCACAAAGACAAGAGAATTTGAGAGGTTTCAGGA

 $2910 \begin{array}{llllllllll}2920 & 2930 & 2940 & 2950 & 2960 & 2970 & 2980 & 2990 & 3000\end{array}$ GATGTGTTACAAGGCTTATCTAGCTATTCGACAGCATGCCAATCTCTTCATAAATCTTTTCTCAATGATGCTTGGCTCTGGAATGCCAGAACTACAATCT CTACACAATGTTCCGAATAGATCGATAAGCTGTCGTACGGTTAGAGAAGTATTTAGAAAAGAGTTACTACGAACCGAGACCTTACGGTCTTGATGTTAGA

 AAACTACTGTAACGTATGTAAGCTTTCTGGGATCGGAATCTATTTTGACTCGTTCTCCGAAACCTCATAAAGTACTTTGTTTACTTACTACGTGTAGTAC

| 3110 | 3120 | 3130 | 3140 | 3150 | 3160 |
| :---: | :---: | :---: | :---: | :---: | :---: | GTGGCTGGACAACAAAAATGGATTGGATCTTCCACACAATTAAACAGCATGCATTGAACCTCGAGGGCGGCGGAGGATCTGGGGGCGGAGGAAGTGGGGG САССGACCTGTTGTTTTTACCTAACCTAGAAGGTGTGTTAATTTGTCGTACGTAACTTGGAGCTCCCGCCGCCTCCTAGACCCCCGCCTCCTTCACCCCC

 IRANSLATION OF PI3KALPHA FULL-LENGTH-GFP2 [A] \qquad
$\begin{array}{llllllllll}3210 & 3220 & 3230 & 3240 & 3250 & 3260 & 3270 & 3280 & 3290 & 3300\end{array}$ AGGGGGCTCTGCGGCCGCAGGGAGTGGTATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAAC CCCCCGAGACGCCGGCGTCCCTCACCATACCACTCGTTCCCGCTCCTCGACAAGTGGCCCCACCACGGGTAGGACCAGCTCGACCTGCCGCTGCATTTG
 [GGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCT CGGTGTTCAAGTCGCACAGGCCGCTCCCGCTCCCGCTACGGTGGATGCCGTHGACTGGGACTICAA
 TRANSLATION OF PI3KALPHA FULL-LENGTH-GFP2 [A]

| 3410 | 3420 | 3430 | 3440 | 3450 | 3460 | 3470 | 3480 | 3490 | 3500 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | GGCCCACCCTCGTGACCACCCTGAGCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGA CGGGGTGGGAGCACTGGTGGGACTCGATGCCGCACGTCACGAAGTCGGCGATGGGGCTGGTGTACTTCGTCGTGCTGAAGAAGTTCAGGCGGTACGGGCT

TACTCGGCGCTGGGGTTCGAGATGCGGTACGTGGGCACCCACTGCAGGTTCGGGGAGGGCCTCATGGACACCTTCTTCTAACGGTTGTTGACGTAGAAGT
 [0]
\qquad $180 \quad 190$

| 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | TCGTCATTCACCGCAGCACCACCAGCCAGACCATTAAGGTCTCACCCGACGACACCCCCGGCGCCATCCTGCAGAGCTTCTTCACCAAGATGGCCAAGAA AGCAGTAAGTGGCGTCGTGGTGGTCGGTCTGGTAATTCCAGAGTGGGCTGCTGTGGGGGCCGCGGTAGGACGTCTCGAAGAAGTGGTTCTACCGGTTCTT

 AAAATCTC

 \qquad
 AACTTCCAGTGGGTGAGGCACTGCCTCAAGAACGGAGAAGAGATTCACGTGGTACTGGACACGCCTCCAGACCCGGCCCTCGAGGGCGGCGGAGGATCTG TTGAAGGTCACCCACTCCGTGACGGAGTTCTTGCCTCTTCTCTAAGTGCACCATGACCTGTGCGGAGGTCTGGGCCGGGAGCTCCCGCCGCCTCCTAGAC
 TRANSLATION OF PI3KGAMMA RBD-GFP2 [A]
 430 440 CCCCGCCTCCTTCACCCCCTCCCCCGAGACGCCGGCGTCCCTCACCATACCACTCGTTCCCGCTCCTCGACAAGTGGCCCCACCACGGGTAGGACCAGCT

510
520
530
540
550
560
570
580
590
600

GCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACC CGACCTGCCGCTGCATTTGCCGGTGTTCAAGTCGCACAGGCCGCTCCCGCTCCCGCTACGGTGGATGCCGTTCGACTGGGACTTCAAGTAGACGTGGTGG
 _TRANSLATION OF PI3KGAMMA RBD-GFP2 [A]

GGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCAСССТGAGCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCT GGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGAGCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCT CGTTTCGACGGGCACGGGACCGGGTGGGAGCACTGGTGGGACTCGATGCCGCACGTCACGAAGTCGGCGATGGGGCTGGTGTACTTCGTCGTGCTGAAGA

$770 \quad 780$
$>$
TCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGA AGTTCAGGCGGTACGGGCTTCCGATGCAGGTCCTCGCGTGGTAGAAGAAGTTCCTGCTGCCGTTGATGTTCTGGGCGCGGCTCCACTTCAAGCTCCCGCT

 GTGGGACCACTTGGCGTAGCTCGACTTCCCGTAGCTGAAGTTCCTCCTGCCGTTGTAGGACCCCGTGTTCGACCTCATGTTGATGTTGTCGGTGTTGCAG

 ATATAGTACCGGCTGTTCGTCTTCTTTGCCGTAGTTCCACTTGAAGTTCTTAGGCGGTGTTGTAGCTCCTGCCGTCGCACGTCGAGCGGCTGGTGATGGTCG

 TCTTGTGGGGGTAGCCGCTGCCGGGGCACGACGACGGGCTGTTGGTGATGGACTCGTGGGTCAGGCGGGACTCGTTTCTGGGGTTGCTCTTCGCGCTAGT
 TRANSLATION OF PI3KGAMMA RBD-GFP2 [A] \qquad
1110
1130
1140
1150
1160

CATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA
GTACCAGGACGACCTCAAGCACTGGCGGCGGCCCTAGTGAGAGCCGTACCTGCTCGACATGTTCATT

1020
 ATGGAGCACATACAGGGAGCTTGGAAGACGATCAGCAATGGTMAACATTCAAAGATGCCGTGTAGATGGCTCCAGCTGCATCTCTCCTACAATAGTTC $\mathrm{M} \quad \mathrm{E} \quad \mathrm{H}$ I

| 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AGCAGTTTGGCTATCAGCGCCGGGCATCAGATGATGGCAAACTCACAGATCCTTCTAAGACAAGCAACACTATCCGTGTTTTCTTGCCGAACAAGCAAAG TCGTCAAACCGATAGTCGCGGCCCGTAGTCTACTACCGTTTGAGTGTCTAGGAAGATTCTGTTTCGTTGTGATAGGCACAAAAGAACGGCTTGTTCGTTTC

 210220 R 230 L \qquad
\qquad 290 300 AACAGTGGTCAATGTGCGAAATGGAATGAGCTTGCATGACTGCCTTATGAAAGCACTCAAGGTGAGGGGCCTGCAACCAGAGTGCTGTGCAGTGTTCAGA TTGTCACCAGTTTACACGCTTTACCTTACTCGAACGTACTGACGGAATACTTTCGTGAGTTCCACTCCCCGGACGTTGGTCTCACGACACGTCACAAGTCT
 TRANSLATION OF CRAF RBD-GFP2 [A] \qquad
 CTTCTCCACGAACACAAAGGTAAAAAAGCACGCTTAGATTGGAATACTGATGCTGCGTCTTTGATTGGAGAAGAACTTCAAGTAGATTTCCTGGATCATG AAGAGGTGC

\qquad TТССССТСАСААСАСАСААСТТТGСТСGGAAGACGTTССТGAАGСТТААТТСАТСGСТСGAGGGCGGCGGAGGATCTGGGGGCGGAGGAAGTGGGGGAGG AAGGGGAGTGTTGTGTGTTGAAACGAGCCTTCTGCAAGGACTTCGAATTAAGTAGCGAGCTCCCGCCGCCTCCTAGACCCCCGCCTCCTTCACCCCCTCC
 $510 \quad 520$

520
530
540
550
560
570
580
590
600
GGGCTCTGCGGCCGCAGGGAGTGGTATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGC CCCGAGACGCCGGCGTCCCTCACCATACCACTCGTTCCCGCTCCTCGACAAGTGGCCCCACCACGGGTAGGACCAGCTCGACCTGCCGCTGCATTTGCCG
 $\begin{array}{lllllllll}610 & 620 & 630 & 640 & 650 & 660 & 670 & 680 & 690\end{array}$ CACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGC GTGTTCAAGTCGCACAGGCCGCTCCCGCTCCCGCTACGGTGGATGCCGTTCGACTGGGACTTCAAGTAGACGTGGTGGCCGTTCGACGGGCACGGGACCG

710 | 720 | 730 | 740 | 750 | 760 | 770 | 780 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ССАСССТСGTGACCACCCTGAGCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGG GGTGGGAGCACTGGTGGGACTCGATGCCGCACGTCACGAAGTCGGCGATGGGGCTGGTGTACTTCGTCGTGCTGAAGAAGTTCAGGCGGTACGGGCTTCC

 GATGCAGGTCCTCGCGTGGTAGAAGAAGTTCCTGCTGCCGTTGATGTTCTGGGCGCGGCTCCACTTCAAGCTCCCGCTGTGGGACCACTTGGCGTAGCTC
 $\begin{array}{ccccccc}910 & 920 & 930 & 940 & 950 & 960 & 970\end{array}$
 GACTTCCCGTAGCTGAAGTTCCTCCTGCCGTTGTAGGACCCCGTGTTCGACCTCATGTTGATGTTGTCGGTGTTGCAGATATAGTACCGGCTGTTCGTCT

 TСTTGCCGTAGTTCCACTTGAAGTTCTAGGCGGTGTTGTAGCTCCTGCCGTCGCACGTCGAGCGGCTGGTGATGGTCGTCTTGTGGGGGTAGCCGCTGCC
 TRANSLATION OF CRAF RBD-GFP2 [A]

$$
\begin{array}{lllllllll}
1110 & 1120 & 1130 & 1140 & 1150 & 1160 & 1170 & 1180 & 1190
\end{array}
$$ CCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTG GGGGCACGACGACGGGCTGTTGGTGATGGACTCGTGGGTCAGGCGGGACTCGTTTCTGGGGTTGCTCTTCGCGCTAGTGTACCAGGACGACCTCAAGCAC

$$
1210 \quad 1220 \quad 1230
$$

1240
ACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA TGGCGGCGGCCCTAGTGAGAGCCGTACCTGCTCGACATGTTCATT
$\begin{array}{lllllllllllllll}\mathrm{T} & \mathrm{A} & \mathrm{A} & \mathrm{G} & \mathrm{I} & \mathrm{T} & \mathrm{L} & \mathrm{G} & \mathrm{M} & \mathrm{D} & \mathrm{E} & \mathrm{L} & \mathrm{Y} & \mathrm{K} & \text { *> }\end{array}$ TRANSLATION OF CRAF RBD-GFP2 [A] \qquad

30

$10 \quad 20$
ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGG TACCACTCGTTCCCGCTCCTCGACAAGTGGCCCCACCACGGGTAGGACCAGCTCGACCTGCCGCTGCATTTGCCGGTGTTCAAGTCGCACAGGCCGCTCC
 [a] TRANSLATION

| 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | GCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGGCCCACCCTCGTGACCACCCTGAGCTA GCTCCCGCT

$\begin{array}{llllllllll}210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300\end{array}$ CGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC GCCGCACGTCACGAAGTCGGCGATGGGGCTGGTGTACTTCGTCGTGCTGAAGAAGTTCAGGCGGTACGGGCTTCCGATGCAGGTCCTCGCGTGGTAGAAG
 TRANSLATION OF GFP2- CRAF FULL-LENGTH S257L [A]

CAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTCGAGGGACACCTGGTGACCGCATCGACCTM $380 \quad 390$ AGTTССТGСTGCCAACTACAAGACCCGCGCCGAGGTGAAGTMGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCAICGACTHCAAGGAGG
作

410
420
430
440
450
460
470
480
490
ACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAA TGCCGTTGTAGGACCCCGTGTTCGACCTCATGTTGATGTTGTCGGTGTTGCAGATATAGTACCGGCTGTTCGTCTTCTTGCCGTAGTTCCACTTGAAGTT

520
530
540
550
560
570
580
590
600
GATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCAC CTAGGCGGTGTTGTAGCTCCTGCCGTCGCACGTCGAGCGGCTGGTGATGGTCGTCTTGTGGGGGTAGCCGCTGCCGGGGCACGACGACGGGCTGTTGGTG
 -RANSLAN OF GFP2- CRAF FULL-LENGTH S257L [A]
$\begin{array}{lllllllll}610 & 620 & 630 & 640 & 650 & 660 & 670 & 680 & 690\end{array}$
TACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCAGCA ATGGACTCGTGGGTCAGGCGGGACTCGTTTCTGGGGTTGCTCTTCGCGCTAGTGTACCAGGACGACCTCAAGCACTGGCGGCGGCCCTAGTGAGAGTCGT

$\begin{array}{lllllllll}710 & 720 & 730 & 740 & 750 & 760 & 770 & 780 & 790\end{array}$ TGGACGAGCTGTACAAGCTCGAGGGCGGCGGAGGATCTGGGGGCGGAGGAAGTGGGGGAGGGGGCTCTGCGGCCGCCATGGAGCACATACAGGGAGCTTG

$810 \quad 82$
830
840
850
860
870
880
890
900

GAAGACGATCAGCAATGGTTTTGGGATTCAAAGATGCCGTGTTTGATGGCTCCAGCTGCATCTCTCCTACAATAGTTCAGCAGTTTGGCTATCAGCGCCGG

 $\begin{array}{ccccccc}910 & 920 & 930 & 940 & 950 & 960 & 970\end{array} 980 \quad 990 \quad 1000$ CGTAGTCTACTACCGTTTGAGTGTCTAGGAAGATTCTGTTCGTTGTGATAGGCACAAAAGAACGGCTTGTTCGTTTTCTTGTCACCAGTTACACGCTTTAC
 $\begin{array}{cccccccc}1010 & 1020 & 1030 & 1040 & 1050 & 1060 & 1070 & 1080\end{array}$ СTTACTCGAACGTACTGACGGAATACTTTCGTGAGTTCCACTCCCCGGACGTTGGTCTCACGACACGTCACAAGTCTGAAGAGGTGCTTGTGTTTCCATT $\begin{array}{lllllllllllllllllllllllllllllllll}\text { G } & \text { M } & \text { S } & \text { L } & \text { H } & \text { D } & \text { C } & \text { L } & \text { M } & \text { K } & \text { A } & \text { L } & \text { K } & \text { V } & \text { R } & \text { G } & \text { L } & \text { Q } & \text { P } & \text { E } & \text { C } & \text { C } & \text { A } & \text { V } & \text { F } & \text { R } & \text { L } & \text { L } & \text { H } & \text { E } & \text { H } & \text { K } & \text { G } \\ \text { K }\end{array}$ TRANSLATION OF GFP2- CRAF FULL-LENGTH S257L [A]

| 1110 | 1120 | 1130 | 1140 | 1150 | 1160 | 1170 | 1180 | 1190 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AAAAGCACGCTTAGATTGGAATACTGATGCTGCGTCTTTGATTGGAGAAGAACTTCAAGTAGATTTCCTGGATCATGTTCCCCTCACAACACACAACTTT TTTTCGTGCGAATCTAACCTTATGACTACGACGCAGAAACTAACCTCTTCTTTGAAGTTCATCTAAAGGACCTAGTACAAGGGGAGTGTTGTGTGTTGAAA

\qquad
 GGAGCCTTCTGCAAGGACTTCGAACGGAAGACACTGTAGACAGTCTTTAAGGACGAGTTACCTAAAGCTACAGTCTGAACACCGATGTTTAAAGTACTCG

AGTAGCACCAAAGTACCTACTATGTGTGTGGACTGGAGTAACATCAGACAACTCTTTATTGTTTCCAAATTCCACTATTGGTGATAGTGGAGTCCCAGC AGACATCGTGGTTTCATGGATGATACACACACCTGACCTCATTGTAGTCTGTTGAGAATAACAAAGGTTTAAGGTGATAACCACTATCACCTCAGGGTCG
 TRANSLATION OF GFP2- CRAF FULL-LENGTH S257L [A]
$\begin{array}{llllllllll}1410 & 1420 & 1430 & 1440 & 1450 & 1460 & 1470 & 1480 & 1490 & 1500\end{array}$ AСTACCTTCTTTGACTATGCGTCGTATGCGAGAGTCTGTTTCCAGGATGCCTGTTAGTTCTCAGCACAGATATTCTACACCTCACGCCTTCACCTTTAAC TGATGGAAGAAACTGATACGCAGCATACGCTCTCAGACAAAGGTCCTACGGACAATCAAGAGTCGTGTCTATAAGATGTGGAGTGCGGAAGTGGAAATTG

$$
\begin{array}{lllllllll}
1510 & 1520 & 1530 & 1540 & 1550 & 1560 & 1570 & 1580 & 1590
\end{array}
$$ АССТССАGTСССТСАТСТGAAGGTTCССТСТСССАGAGGCAGAGGTTGACATCCACACCTAATGTCCACATGGTCAGCACCACCCTGCCTGTGGACAGCA TGGAGGTCAGGGAGTAGACTTCCAAGGGAGAGGGTCTCCGTCTCCAACTGTAGGTGTGGATTACAGGTGTACCAGTCGTGGTGGGACGGACACCTGTCGT

 TRANSLATION OF GFP2- CRAF FULL-LENGTH S257L [A]

| 1610 | 1620 | 1630 | 1640 | 1650 | 1660 | 1670 | 1680 | 1690 | 1700 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | GGATGATTGAGGATGCAATTCGAAGTCACAGCGAATCAGCCTCACCTTCAGCCCTGTCCAGTAGCCCCAACAATCTGAGCCCAACAGGCTGGTCACAGCC ССТАСТААСТССТАСGTTAAGCTTCAGTGTCGCTTAGTCGGAGTGGAAGTCGGGACAGGTCATCGGGGTTGTTAGACTCGGGTTGTCCGACCAGTGTCGG

GAAAACCCCCGTGCCAGCACAAAGAGAGCGGGCACCAGTATCTGGGACCCAGGAGAAAAACAAAATTAGGCCTCGTGGACAGAGAGATTCAAGCTATTAT CTTTTGGGGGCACGGTCGTGTTTCTCTCGCCCGTGGTCATAGACCCTGGGTCCTCTTTTTGTTTTAATCCGGAGCACCTGTCTCTCTAAGTTCGATAATA
 1810182018301850 \qquad 1900 TGGGAAATAGAAGCCAGTGAAGTGATGCTGTCCACTCGGATTGGGTCAGGCTCTTTTGGAACTGTTTATAAGGGTAAATGGCACGGAGATGTTGCAGTAA AСССТTTATCTTCGGTCACTTCACTACGACAGGTGAGCCTAACCCAGTCCGAGAAAACCTTGACAAATATTCCCATTTACCGTGCCTCTACAACGTCATT
 TRANSLATION OF GFP2- CRAF FULL-LENGTH S257L [A]

1910 | 1920 | 1930 | 1940 | 1950 | 1960 | 1970 | 1980 | 1990 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AGATCCTAAAGGTTGTCGACCCAACCCCAGAGCAATTCCAGGCCTTCAGGAATGAGGTGGCTGTTCTGCGCAAAACACGGCATGTGAACATTCTGCTTTTT TCTAGGATTTCCAACAGCTGGGTTGGGGTCTCGTTAAGGTCCGGAAGTCCTTACTCCACCGACAAGACGCGTTTTGTGCCGTACACTTGTAAGACGAAAA

\qquad $20302040 \quad 2050$

20502060
20802090 2090
 CATGGGGTACATGACAAAGGACAACCTGGCAATTGTGACCCAGTGGTGCGAGGGCAGCAGCCTCTACAAACACCTGCATGTCCAGGAGACCAAGTTTCAG

 ATGTTCCAGCTAATTGACATTGCCCGGCAGACGGCTCAGGGAATGGACTATTTGCATGCAAAGAACATCATCCATAGAGACATGAAATCCAACAATATAT TACAAGGTCGATTAACTGTAACGGGCCGTCTGCCGAGTCCCTTACCTGATAAACGTACGTTTCTTGTAGTAGGTATCTCTGTACTTTAGGTTGTTATAT

 \qquad
2210 2220 $2230 \quad 2240 \quad 2250 \quad 2260 \quad 2270 \quad 2280 \quad 2290$ (TCTCATGAAGGCTTAACAGTGAAAATTGGAGATTTTGGTTTGGCAACAGTAAAGTCACGCTGGAGTGGTTCTCAGCAGGTTGAACAACCTACTGGCTC TTCTCCATGAAGGCTTAACAGTGAAAATTGGAGATTTTTGGTTTGGCAACAGTAAAGTCACGCTGGAGTGGTTCTCAGCAGGTTGAACAACCTACTGGCTC AGGAGGTACTTCCGAATTGTCACTTTTAACCTCTAAAACCAAACCGTTGTCATTTCAGTGCGACCTCACCAAGAGTCGTCCAACTTGTTGGATGACCGAG

| 2310 | 2320 | 2330 | 2340 | 2350 | 2360 | 2370 | 2380 | 2390 | 2400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | TGTCCTCTGGATGGCCCCAGAGGTGATCCGAATGCAGGATAACAACCCATTCAGTTTCCAGTCGGATGTCTACTCCTATGGCATCGTATTGTATGAACTG ACAGGAGACCTACCGGGGTCTCCACTAGGCTTACGTCCTATTGTTGGGTAAGTCAAAGGTCAGCCTACAGATGAGGATACCGTAGCATAACATACTTGAC

$2410 \quad 2420 \quad 2430 \quad 2440 \quad 2450 \quad 2460 \quad 2470 \quad 2480 \quad 2490 \quad 2500$
 ATGACGGGGGAGCTTCCCTCGAAGGAATAAGAGTGTAGTTGTTGGCTCTAGTCTAGTAGAAGTACCACCCGGCTCCTATACGGAGGGGTCTAGAATCATTCGATATAT

 AGAACTGCCCCAAAGCAATGAAGAGGCTGGTAGCTGACTGTGTGAAGAAAGTAAAGGAAGAGAGGCCTCTTTTTCCCCAGATCCTGTCTTCCATTGAGCT TCTTGACGGGGTTTCGTTACTTCTCCGACCATCGACTGACACACTTCTTTCATTTCCTTCTCTCCGGAGAAAAAGGGGTCTAGGACAGAAGGTAACTCGA
 $2610 \quad 2620 \quad 2630 \quad 2640 \quad 2650 \quad 2660 \quad 2670 \quad 2680 \quad 2690 \quad 2700$ GCTCCAACAСTСTСTACCGAAGATCAACCGGAGCGCTTCCGAGCCATCCTTGCATCGGGCAGCCCACACTGAGGATATCAATGCTTGCACGCTGACCACG GGAGGTTGTGAGAGATGGCTTCTAGTTGGCCTCGCGAAGGCTCGGTAGGAACGTAGCCCGTCGGGTGTGACTCCTATAGTTACGAACGTGCGACTGGTGC
 27102720
CCCCGAGGCTGCCTGTCTTCTAG
AGGGGCTCCGACGGACAGAAGATC
S
$\begin{array}{rrrr}\text { TRANSLATION } & \mathrm{VF} & \mathrm{FF}\end{array}$ *>

Sequence: RALGDS RA-GFP2 Range: 1 to 1083

1020
$20 \quad 30 \quad 40$
50
60
70
80
90
ATGGCGCTGCCGCTCTACAACCAGCAGGTGGGCGACTGCTGCATCATCAGGGTCAGCCTGGATGTGGACAACGGCAACATGTACAAGAGCATCCTGGTGA TACCGCGACGGCGAGATGTTGGTCGTCCACCCGCTGACGACGTAGTAGTCCCAGTCGGACCTACACCTGTTGCCGTTGTACATGTTCTCGTAGGACCACT
 TRANSLATION OF RALGDS RA-GFP2 \qquad
$110 \quad 120$
$120 \quad 130$ 140

150
CCAGCCAGGATAAGGCTCCGACTGTCATCCGCAAGGCTATGGACAAACACAACCTAGATGAGGACGAGCCGGAGGATTATGAGCTGGTGCAGATCATCTC GGTCGGTCCTATTCCGAGGCTGACAGTAGGCGTTCCGATACCTGTTTTGTGTTGGATCTACTCCTGCTCGGCCTCCTAATACTCGACCACGTCTAGTAGAG
 $\begin{array}{llllllllllll}220 & 240 & 250 & 260 & 270 & 280 & 290 & 300\end{array}$

 [TRANSLATION OF RALGDS RA-GFP2 [A] \qquad $\begin{array}{llllllllllll}310 & 320 & 330 & 340 & 350 & 360 & 370 & 380 & 390 & 400\end{array}$ GGCGGCGGAGGATCTGGGGGCGGAGGAAGTGGGGGAGGGGGCTCTGCGGCCGCAGGGAGTGGTATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGG CCGCCGCCTCCTAGACCCCCGCCTCCTTCACCCCCTCCCCCGAGACGCCGGCGTCCCTCACCATACCACTCGTTCCCGCTCCTCGACAAGTGGCCCCACC
 [0]
$410 \quad 420$
TGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAA ACGGGTAGGACCAGCTCGACCTGCCGCTGCATTTGCCGGTGTTCAAGTCGCACAGGCCGCTCCCGCTCCCGCTACGGTGGATGCCGTTCGACTGGGACTT

\qquad
560
570
580
590
АТТСАТСТGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGAGCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG CAAGTAGACGTGGTGGCCGTTCGACGGGCACGGGACCGGGTGGGAGCACTGGTGGGACTCGATGCCGCACGTCACGAAGTCGGCGATGGGGCTGGTGTAC
 (A)

610	620	630	640	650	660	670	680	690

AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGG TCGTCGTGCTGAAGAAGTTCAGGCGGTACGGGCTTCCGATGCAGGTCCTCGCGTGGTAGAAGAAGTTCCTGCTGCCGTTGATGTTCTGGGCGCGGCTCC

 TGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTA

 GTTGTCGGTGTTGCAGATATAGTACCGGCTGTTCGTCTTCTTGCCGTAGTTTCCACTTGAAGTTCTAGGCGGTGTTTGTAGCTCCTGCCGTCGCACGTCGAG

 CGGCTGGTGATGGTCGTCTTGTGGGGGTAGCCGCTGCCGGGGCACGACGACGGGCTGTTGGTGATGGACTCGTGGGTCAGGCGGGACTCGTTTCTGGGGT

| 1010 | 1020 | 1030 | 1040 | 1050 | 1060 | 1070 | 080 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA TGCTCTTCGCGCTAGTGTACCAGGACGACCTCAAGCACTGGCGGCGGCCCTAGTGAGAGCCGTACCTGCTCGACATGTTCATT

 RANSLATION OF RALGDS RA-GFP2 [A]

$10 \quad 20$
 30
 40
 50

60
70
80
90
90
100
ATGACCAGCAAGGTGTACGACCCCGAGCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCTTCA TACTGGTCGTTCCACATGCTGGGGCTCGTCTCCTTCTCCTACTAGTGGCCGGGGGTCACCACCCGGTCCACGTTCGTCTACTTGCACGACCTGTCGAAGT

170

180
190
\qquad
$110-120 \quad 140 \quad 150 \quad 160-170$
60
TСААСТАСТАСGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCACTAGCAGCTACCTGTGGAGGCACGTGGTGCCCCACAT
200 AGTTGATGATGCTGTCGCTCTTCGTGCGGCTCTTGCGGCACTAGAAGGACGTGCCGTTGCGGTGATCGTCGATGGACACCTCCGTGCACCACGGGGTGTA

250
260
270

280
290
300
CGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGGCATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCTACAGGCTGCTGGACCACTACAAGTAC GCTCGGGCACCGGTCCACGTAGTAGGGGCTAGACTAGCCGTACCCGTTCTCGCCGTTCTCGCCGTTGCCGTCGATGTCCGACGACCTGGTGATGTTCATG

310
TRANSLATION OF RLUC8－KRASG12A FULL－LENGTH［A］
$320 \quad 330$
$340 \quad 350$
370
380
390
00
СTGACCGCCTGGTTCGAGCTCCTGAACCTGCCCAAGAAGATCATCTTCGTGGGCCACGACTGGGGCGCCGCCCTGGCCTTCCACTACGCCTACGAGCACC ACTGGCGGACCAAGCTCGAGGACTTGGACGGGTTCTTCTAGTAGAAGCACCCGGTGCTGACCCCGCGGCGGGACCGGAAGGTGATGCGGATGCTCGTGG
 （
410
420
430
440
450
460
470
$480 \quad 490$
490 0
AGGACAGGATCAAGGCCATCGTGCACATGGAGAGCGTGGTGGACGTGATCGAGAGCTGGGACGAGTGGCCAGACATCGAGGAGGACATCGCCCTGATCAA TССТGTCCTAGTTCCGGTAGCACGTGTACCTCTCGCACCACCTGCACTAGCTCTCGACCCTGCTCACCGGTCTGTAGCTCCTCCTGTAGCGGGACTAGTT

550560
570
580

$$
590
$$

600
GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC
 TRANSLATION OF RLUC8－KRASG12A FULL－LENGTH［A］
610
620
630
640
650
660
670
680
690
700

GCCTACCTGGAGCCCTTCAAGGAGAAGGGCGAGGTGAGAAGACCCACCCTGAGCTGGCCCAGAGAGATCCCCCTGGTGAAGGGCGGCAAGCCCGACGTGG CGGATGGACCTCGGGAAGTTCCTCTTCCCGCTCCACTCTTCTGGGTGGGACTCGACCGGGTCTCTCTAGGGGGACCACTTCCCGCCGTTCGGGCTGCACC
 710730750760
$70 \quad 780$
（8СттстTー

－ ACGTCTAGCACTCTTTGATGTTGCGGATGGACTCTCGGTCGCTGCTGGACGGGTTCGACAAGTAGCTCTCGCTGGGGCCGAAGAAGTCGTTGCGGTAGCA

$810 \quad 82$
820830
830840
840850
850860
860870
870880
890
900

GGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGTGAAGGTGAAGGGCCTGCACTTCCTCCAGGAGGACGCCCCCGACGAGATGGGCAAGTACATCAAG CCTCCCGCGGTTCTTCAAGGGGTTGTGGCTCAAGCACTTCCACTTCCCGGACGTGAAGGAGGTCCTCCTGCGGGGGCTGCTCTACCCGTTCATGTAGTTC

 AGCTTCGTGGAGAGAGTGCTGAAGAACGAGCAGCTCGAGGGCGGCGGAGGATCTGGGGGCGGAGGAAGTGGGGGAGGGGGCTCTGCGGCCGCTATGACCG
 $1010-1020-1050-1060$

$$
1070
$$

$$
70 \quad 108
$$

1080

$$
1090
$$

1100
AATATAAACTTGTGGTAGTTGGAGCTGCTGGCGTAGGCAAGAGTGCCTTGACGATACAGCTAATTCAGAATCATTTTTGTGGACGAATATGATCCAACAAT

 ． 1100 R
 AGAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAAACCTGTCTCTTGGATATTCTCGACACAGACAGTCTCGTTCATCATTAACTACCTCTTTGGACAGAGAACCTATAAGAGCTGTGTCGTCCAGTTCTCCTCATGTCACGTTACTCCCTG
 ＿TRANSLATION OF RLUC8－KRASG12A FULL－LENGTH［A］
俗信

1310

$$
1380 \quad 1390
$$ 1400 TTAAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCCAGAACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAG AATTCCTGAGACTTCTACATGGATACCAGGATCATCCTTTATTTACACTAAACGGAAGGTCTTGTCATCTGTGTTTTTGTCCGAGTCCTGAATCGTTCTTC

$$
\begin{array}{ccccccccc}
1410 & 1420 & 1430 & 1440 & 1450 & 1460 & 1470 & 1480 & 1490 \\
\text { GAATTCCTTTTATTGAAACATCAGCAAAGACAAGACAGGGTGTTGATGATGCCTTCTATACATTAGTTCGAGAAATTCGAAACATAAGAAAAG }
\end{array}
$$ TTATGGAATTCСTTTTATTGAAACATCAGCAAAGACAAGACAGGGTGTTGATGATGCCTTCTATACATTAGTTCGAGAAATTCGAAAACATAAAGAAAAG AATACCTTAAGGAAAATAACTTTGTAGTCGTTTCTGTTCTGTCCCACAACTACTACGGAAGATATGTAATCAAGCTCTTTAAGCTTTTGTATTTCTTTTTC

 $1510 \quad 1520 \quad 1530 \quad 1540 \quad 1550 \quad 1560$ ATGAGCAAAGATGGTAAAAAGAAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGTAA TACTCGTTTCTACCATTTTTCTTCTTTTTCTTCAGTTTCTGTTTCACACATTAATACATT $\begin{array}{lllllllllllllllllllll}M & S & K & D & G & K & K & K & K & K & K & S & K & T & K & C & V & I & M & *>\end{array}$
\qquad TRANSLATION OF RLUC8－KRASG12A FULL－LENGTH［A］

30
 40
 50

$10 \quad 20$
60
70
80
90
90
100
ATGACCAGCAAGGTGTACGACCCCGAGCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCTTCA TACTGGTCGTTCCACATGCTGGGGCTCGTCTCCTTCTCCTACTAGTGGCCGGGGGTCACCACCCGGTCCACGTTCGTCTACTTGCACGACCTGTCGAAGT

170

180
190
\qquad
$110-120-140-150-170$
60
TCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCACTAGCAGCTACCTGTGGAGGCACGTGGTGCCCCACAT
200 AGTTGATGATGCTGTCGCTCTTCGTGCGGCTCTTGCGGCACTAGAAAGGACGTGCCGTTGCGGTGATCGTCGATGGACACCTCCGTGCACCACGGGGTGTA

250
260
270

280
290
300
CGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGGCATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCTACAGGCTGCTGGACCACTACAAGTAC GCTCGGGCACCGGTCCACGTAGTAGGGGCTAGACTAGCCGTACCCGTTCTCGCCGTTCTCGCCGTTGCCGTCGATGTCCGACGACCTGGTGATGTTCATG

310
TRANSLATION OF RLUC8-KRASG12C FULL-LENGTH [A]
320 330
$340 \quad 350 \quad 360$
370 GACTGGCGGACCAAGCTCGAGGACTTGGACGGGTTCTTCTAGTAGAAGCACCCGGTGCTGACCCCGCGGCGGGACCGGAAGGTGATGCGGATGCTCGTGG
 (
410
420
430
440
450
460
470
480
490
AGGACAGGATCAAGGCCATCGTGCACATGGAGAGCGTGGTGGACGTGATCGAGAGCTGGGACGAGTGGCCAGACATCGAGGAGGACATCGCCCTGATCAA TССТGTCCTAGTTCCGGTAGCACGTGTACCTCTCGCACCACCTGCACTAGCTCTCGACCCTGCTCACCGGTCTGTAGCTCCTCCTGTAGCGGGACTAGTT

550560
$560 \quad 570$
580

$$
590
$$

600
GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC СтСGСTССТСССGСтСттСтАССАСGACCTCTTGTTGAAGAAGCACCTCTGGCACGACGGGTCGTTCTAGTACTCTTTCGACCTCGGGCTCCTCAAGCGG

610
620
630
640
650
660
670
680

690
700
GССТАССТGGAGCCCTTCAAGGAGAAGGGCGAGGTGAGAAGACCCACCCTGAGCTGGCCCAGAGAGATCCCCCTGGTGAAGGGCGGCAAGCCCGACGTGG GGGATGGACCTCGGGAAGTTCCTCTTCCCGCTCCACTCTTCTGGGTGGGACTCGACCGGGTCTCTCTAGGGGGACCACTTCCCGCCGTTCGGGCTGCACC
 $710720730 \quad 750$-70
$70 \quad 780$
(8СттстTー

ACGTCTAGCACTCTTTGATGTTGCGGATGGACTCTCGGTCGCTGCTGGACGGGTTCGACAAGTAGCTCTCGCTGGGGCCGAAGAAGTCGTTGCGGTAGCA

$810 \quad 82$
820830
830840
840850
850860
$860 \quad 870$
870880
880 8
890
900

GGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGTGAAGGTGAAGGGCCTGCACTTCCTCCAGGAGGACGCCCCCGACGAGATGGGCAAGTACATCAAG

 AGCTTCGTGGAGAGAGTGCTGAAGAACGAGCAGCTCGAGGGCGGCGGAGGATCTGGGGGCGGAGGAAGTGGGGGGAGGGGGCTCTGCGGCCGCTATGACCG
 $1010-1020-1040-1060$

$$
1070
$$

$$
70 \quad 108
$$

1080
1090
1100
AATATAAACTTGTGGTAGTTGGAGCTTGTGGCGTAGGCAAGAGTGCCTTGACGATACAGCTAATTCAGAATCATTTTTGTGGACGAATATGATCCAACAAT

 1140 RLuc8-Krasgi2c
GAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTCGACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGAC CTTCCTAAGGATGTCCTTCGTTCATCATTAACTACCTCTTTGGACAGAGAACCTATAAGAGCTGTGTCGTCCAGTTCTCCTCATGTCACGTTACTCCCTG
 - RANSLATION OF RLUC8-KRASG12C FULL-LENGTH [A]
$\begin{array}{cccccccc}1210 & 1220 & 1230 & 1240 & 1250 & 1260 & 1270 & 1280\end{array}$解 CATGTACTCCTGACCCCTCCCGAAAGAAACACATAAACGGTATTYATTATGATTAGTAAACTMTATAAGTGGTAATATCTCTTGTTTAATTTTCTC

1310 1320 1330

TAAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCCAGAACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAG ATTCCTGAGACTTCTACATGGATACCAGGATCATCCTTTATTTACACTAAACGGAAGGTCTTGTCATCTGTGTTTTGTCCGAGTCCTGAATCGTTCTTC | V | K | D | S | E | D | V | P | M | V | L | V | G | N | K | C | D | L | P | S | R | T | V | D | T | K | Q | A | Q | D | L | A | R | S | |
| :--- | RRANLLATION OF RLUC8-KRASG12C FULL-LENGTH [A]

TATGGAATTCCTTTTATTGAAACATCAGCAAAGACAAGACAGGGTGTTGATGATGCCTTCTATACATTAGTTCGAGAAATTCGAAAACATAAAGAAAAG AATACCTTAAGGAAAATAACTTTGTAGTCGTTTCTGTTCTGTCCCACAACTACTACGGAAGATATGTAATCAAGCTCTTTAAGCTTTTGTATTTCTTTTC
 -
$1510 \quad 1520 \quad 1530 \quad 1540 \quad 1550 \quad 1560$
ATGAGCAAAGATGGTAAAAAGAAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGTAA
АСТСGTTTСТАССАТТТТТСТТСТТTTTСТТСАGTTTСТGTTTСАСАСАТТААТАСАТ
\qquad TRANSLATION OF RLUC8-KRASG12C FULL-LENGTH [A]

$10 \quad 20$
 30
 40
 50

60
70
80
90
90
100
ATGACCAGCAAGGTGTACGACCCCGAGCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCTTCA TACTGGTCGTTCCACATGCTGGGGCTCGTCTCCTTCTCCTACTAGTGGCCGGGGGTCACCACCCGGTCCACGTTCGTCTACTTGCACGACCTGTCGAAGT

170

180
190
\qquad
$110-120 \quad 140 \quad 150 \quad 160-170$
60
TСААСТАСТАСGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCACTAGCAGCTACCTGTGGAGGCACGTGGTGCCCCACAT
200 AGTTGATGATGCTGTCGCTCTTCGTGCGGCTCTTGCGGCACTAGAAGGACGTGCCGTTGCGGTGATCGTCGATGGACACCTCCGTGCACCACGGGGTGTA

250
260
270

280
290
300
CGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGGCATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCTACAGGCTGCTGGACCACTACAAGTAC GCTCGGGCACCGGTCCACGTAGTAGGGGCTAGACTAGCCGTACCCGTTCTCGCCGTTCTCGCCGTTGCCGTCGATGTCCGACGACCTGGTGATGTTCATG

310 TRANSLATION OF RLUC8-KRASG12D FULL-LENGTH [A
\qquad 350
360
370
380
390
4
СTGACCGCCTGGTTCGAGCTCCTGAACCTGCCCAAGAAGATCATCTTCGTGGGCCACGACTGGGGCGCCGCCCTGGCCTTCCACTACGCCTACGAGCACC GACTGGCGGACCAAGCTCGAGGACTTGGACGGGTTCTTCTAGTAGAAGCACCCGGTGCTGACCCCGCGGCGGGACCGGAAGGTGATGCGGATGCTCGTGG
 (A)

410
420
430
440
450
460
470
480
490
AGGACAGGATCAAGGCCATCGTGCACATGGAGAGCGTGGTGGACGTGATCGAGAGCTGGGACGAGTGGCCAGACATCGAGGAGGACATCGCCCTGATCAA TССТGTCCTAGTTCCGGTAGCACGTGTACCTCTCGCACCACCTGCACTAGCTCTCGACCCTGCTCACCGGTCTGTAGCTCCTCCTGTAGCGGGACTAGTT

550560570
570
580

$$
590
$$

600
GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC

610
620
630
640
650
660
670
680

690
700
GССТАССТGGAGCCCTTCAAGGAGAAGGGCGAGGTGAGAAGACCCACCCTGAGCTGGCCCAGAGAGATCCCCCTGGTGAAGGGCGGCAAGCCCGACGTGG GGGATGGACCTCGGGAAGTTCCTCTTCCCGCTCCACTCTTCTGGGTGGGACTCGACCGGGTCTCTCTAGGGGGACCACTTCCCGCCGTTCGGGCTGCACC
 $710720730 \quad 750 \quad 760$
$70 \quad 780$
(8СттстTС

ACGTCTAGCACTCTTTGATGTTGCGGATGGACTCTCGGTCGCTGCTGGACGGGTTCGACAAGTAGCTCTCGCTGGGGCCGAAGAAGTCGTTGCGGTAGCA

$\begin{array}{cccccccc}810 & 820 & 830 & 840 & 850 & 860 & 870 & 880\end{array}$ CCTCCCGCGGTTCTTCAAGGGGTTGTGGCTCAAGCACTTCCACTTCCCGGACGTGAAGGAGGTCCTCCTGCGGGGGCTGCTCTACCCGTTCATGTAGTTC

\qquad

\qquad $1080 \quad 10$ 1100
 TATATTTGAACACCATCAACCTCGACTGCCGCATCCGTTCTCACGGAACTGCTATGTCGATTAAGTCTTAGTAAAACACCTGCTTATACTAGGTTGTTA
 Dinslation of RLuc8-KRASG12d fuLL LENGTH [A]
1110
1120
11301140
1150
1160
1170
$1180 \quad 1190$
1200

AGAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTCGACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGAC TCTCCTAAGGATGTCCTTCGTTCATCATTAACTACCTCTTTGGACAGAGAACCTATAAGAGCTGTGTCGTCCAGTTCTCCTCATGTCACGTTACTCCCTG
 -RANSLATION OF RLUC8-KRASG12D FULL-LENGTH [A]
$\begin{array}{cccccccc}1210 & 1220 & 1230 & 1240 & 1250 & 1260 & 1270 & 1280\end{array}$俗 QATGTACTCCTGACCCCTCCCGAAAGAAACACATAAACGGTATTYATTATGATTAGTAAACTMTATAAGTGGTAATATCTCTTGTTTAATTTTCTC

1310 1320 1330

TAAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCCAGAACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAG ATTCCTGAGACTTCTACATGGATACCAGGATCATCCTTTATTTACACTAAACGGAAGGTCTTGTCATCTGTGTTTTGTCCGAGTCCTGAATCGTTCTTC | V | K | D | S | E | D | V | P | M | V | L | V | G | N | K | C | D | L | P | S | R | T | V | D | T | K | Q | A | Q | D | L | A | R | S | |
| :--- | RANLATION OF RLUC8-KRASGI2D FULL-LENGTH [A]

TATGGAATTCCTTT AATACCTTAAGGAAAATAACTTTGTAGTCGTTTCTGTTCTGTCCCACAACTACTACGGAAGATATGTAATCAAGCTCTTTAAGCTTTTGTATTTCTTTTC
 -

信

\qquad TRANSLATION OF RLUC8-KRASG12D FULL-LENGTH [A]

10
 20
 30
 40
 50

60
70
80
90
90
100
ATGACCAGCAAGGTGTACGACCCCGAGCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCTTCA TACTGGTCGTTCCACATGCTGGGGCTCGTCTCСTTСTССTACTAGTGGCCGGGGGTCACCACCCGGTCCACGTTCGTCTACTTGCACGACCTGTCGAAGT

170

180
190
\qquad
$110-120-140-150 \quad 170$
60
TCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCACTAGCAGCTACCTGTGGAGGCACGTGGTGCCCCACAT
200 AGTTGATGATGCTGTCGCTCTTCGTGCGGCTCTTGCGGCACTAGAAGGACGTGCCGTTGCGGTGATCGTCGATGGACACCTCCGTGCACCACGGGGTGTA

250
260
270

280
290
300
CGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGGCATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCTACAGGCTGCTGGACCACTACAAGTAC GCTCGGGCACCGGTCCACGTAGTAGGGGCTAGACTAGCCGTACCCGTTCTCGCCGTTCTCGCCGTTGCCGTCGATGTCCGACGACCTGGTGATGTTCATG

310
TRANSLATION OF RLUC8-KRASG12R FULL-LENGTH [A]
20330
$340 \quad 350 \quad 360$
370
380
390
$->$
СTGACCGCCTGGTTCGAGCTCCTGAACCTGCCCAAGAAGATCATCTTCGTGGGCCACGACTGGGGCGCCGCCCTGGCCTTCCACTACGCCTACGAGCACC GACTGGCGGACCAAGCTCGAGGACTTGGACGGGTTCTTCTAGTAGAAGCACCCGGTGCTGACCCCGCGGCGGGACCGGAAGGTGATGCGGATGCTCGTGG
 (A)

410
420
430
440
450
460
470
$480 \quad 490$
490 0
AGGACAGGATCAAGGCCATCGTGCACATGGAGAGCGTGGTGGACGTGATCGAGAGCTGGGACGAGTGGCCAGACATCGAGGAGGACATCGCCCTGATCAA TССТGTCCTAGTTCCGGTAGCACGTGTACCTCTCGCACCACCTGCACTAGCTCTCGACCCTGCTCACCGGTCTGTAGCTCCTCCTGTAGCGGGACTAGTT

550560570
570
580

$$
590
$$

600
GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC

610
620
630
640
650
660
670
680

690
700
GССТАССТGGAGCCCTTCAAGGAGAAGGGCGAGGTGAGAAGACCCACCCTGAGCTGGCCCAGAGAGATCCCCCTGGTGAAGGGCGGCAAGCCCGACGTGG GGGATGGACCTCGGGAAGTTCCTCTTCCCGCTCCACTCTTCTGGGTGGGACTCGACCGGGTCTCTCTAGGGGGACCACTTCCCGCCGTTCGGGCTGCACC
 $710720740 \quad 750 \quad 760$
$70 \quad 780$
(8СттстTС

ACGTCTAGCACTCTTTGATGTTGCGGATGGACTCTCGGTCGCTGCTGGACGGGTTCGACAAGTAGCTCTCGCTGGGGCCGAAGAAGTCGTTGCGGTAGCA

$810 \quad 82$
820830
840
850
860
870
880
890
900

GGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGTGAAGGTGAAGGGCCTGCACTTCCTCCAGGAGGACGCCCCCGACGAGATGGGCAAGTACATCAAG

| 910 | 920 | 930 | 940 | 950 | 960 | 970 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | TCGAAGCACCTCTCTCACGACTTCTTGCTCGTCGAGCTCCCGCCGCCTCCTAGACCCCCGCCTCCTTCACCCCCTCCCCCGAGACGCCGGCGATACTGGC

 $1010-1020-1040-1060$

$$
1070
$$

$$
70 \quad 108
$$

1080
1090
1100
AATATAAACTTGTGGTAGTTGGAGCTCGTGGCGTAGGCAAGAGTGCCTTGACGATACAGCTAATTCAGAATCATTTTTGTGGACGAATATGATCCAACAAT

 (1140

GAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTCGACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGAC TCTCCTAAGGATGTCCTTCGTTCATCATTAACTACCTCTTTGGACAGAGAACCTATAAGAGCTGTGTCGTCCAGTTCTCCTCATGTCACGTTACTCCCTG
 - RANSLATION OF RLUC8-KRASG12R FULL-LENGTH [A]
$\begin{array}{cccccccc}1210 & 1220 & 1230 & 1240 & 1250 & 1260 & 1270 & 1280\end{array}$解 QATGTACTCCTGACCCCTCCCGAAAGAAACACATAAACGGTATTYATTATGATTAGTAAACTMTATAAGTGGTAATATCTCTTGTTTAATTTTCTC

1310 1320 1330

TAAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCCAGAACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAG ATTCCTGAGACTTCTACATGGATACCAGGATCATCCTTTATTTACACTAAACGGAAGGTCTTGTCATCTGTGTTTTGTCCGAGTCCTGAATCGTTCTTC | V | K | D | S | E | D | V | P | M | V | L | V | G | N | K | C | D | L | P | S | R | T | V | D | T | K | Q | A | Q | D | L | A | R | S | |
| :--- | RANSLATION OF RLUC8-KRASGI2R FULL-LENGTH [A]

 AATACCTTAAGGAAAATAACTTTGTAGTCGTTTCTGTTCTGTCCCACAACTACTACGGAAGATATGTAATCAAGCTCTTTAAGCTTTTGTATTTCTTTTC
 RANSLATON OF

信

\qquad TRANSLATION OF RLUC8-KRASG12R FULL-LENGTH [A]

10
 20
 30
 40
 50
 60

70
80
90
90
100
ATGACCAGCAAGGTGTACGACCCCGAGCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCTTCA TACTGGTCGTTCCACATGCTGGGGCTCGTСTССTTСTССТАСTAGTGGCCGGGGGTCACCACCCGGTCCACGTTCGTCTACTTGCACGACCTGTCGAAGT

170
180

190
\qquad
$110-120 \quad 140 \quad 150 \quad 160-170$
160
TCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCACTAGCAGCTACCTGTGGAGGCACGTGGTGCCCCACAT
200 AGTTGATGATGCTGTCGCTCTTCGTGCGGCTCTTGCGGCACTAGAAAGGACGTGCCGTTGCGGTGATCGTCGATGGACACCTCCGTGCACCACGGGGTGTA

250
260
270

280
290
300
CGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGGCATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCTACAGGCTGCTGGACCACTACAAGTAC GCTCGGGCACCGGTCCACGTAGTAGGGGCTAGACTAGCCGTACCCGTTCTCGCCGTTCTCGCCGTTGCCGTCGATGTCCGACGACCTGGTGATGTTCATG

310 TRANSLATION OF RLUC8-KRASG12V FULL-LENGTH [A
\qquad 350
360
370 GACTGGCGGACCAAGCTCGAGGACTTGGACGGGTTCTTCTAGTAGAAGCACCCGGTGCTGACCCCGCGGCGGGACCGGAAGGTGATGCGGATGCTCGTGG
 (A)

410 TССТGTCCTAGTTCCGGTAGCACGTGTACCTCTCGCACCACCTGCACTAGCTCTCGACCCTGCTCACCGGTCTGTAGCTCCTCCTGTAGCGGGACTAGTT

510	520	530	540	550	560	570	580	590

GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC CTCGCTCСТСССGСТСТTСТАССАСGACCTCTTGTTGAAGAAGCACCTCTGGCACGACGGGTCGTTCTAGTACTCTTTCGACCTCGGGCTCCTCAAGCGG
 TRANSLATION OF RLUC8-KRASG12V FULL-LENGTH [A]
610
620
630
640
650
660
670
680
690

GССТАССТGGAGСССТТСААGGAGAAGGGCGAGGTGAGAAGACCСАСССТGAGCTGGCCCAGAGAGATCCCCCTGGTGAAGGGCGGCAAGCCCGACGTGG GGGATGGACCTCGGGAAGTTССТСTTCCCGCTCСАСTСTTCTGGGTGGGACTCGACCGGGTCTCTCTAGGGGGACCACTTCCCGCCGTTCGGGCTGCACC
 $710720730 \quad 750$ 760 770 \qquad
780
800
TGCAGATCGTGAGAAACTACAACGCCTACCTGAGAGCCAGCGACGACCTGCCCAAGCTGTTCATCGAGAGCGACCCCGGCTTCTTCAGCAACGCCATCGT ACGTCTAGCACTCTTTGATGTTGCGGATGGACTCTCGGTCGCTGCTGGACGGGTTCGACAAGTAGCTCTCGCTGGGGCCGAAGAAGTCGTTGCGGTAGCA

$810 \quad 820$
820830
$830 \quad 840$
$840 \quad 850$
860
870
880
890
900

GGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGTGAAGGTGAAGGGCCTGCACTTCCTCCAGGAGGACGCCCCCGACGAGATGGGCAAGTACATCAAG

 ACGAAGCACCTCTCTCACGACTTCTTGCTCGTCGAGCTCCCGCCGCCTCCTAGACCCCCGCCTCCTTCACCCCCTCCCCCGAGACGCCGGCGATACTGGC $\begin{array}{llllllllllllllllllllllllllllllllll}\mathrm{S} & \mathrm{F} & \mathrm{V} & \mathrm{E} & \mathrm{R} & \mathrm{V} & \mathrm{L} & \mathrm{K} & \mathrm{N} & \mathrm{E} & \mathrm{Q} & \mathrm{L} & \mathrm{E} & \mathrm{G} & \mathrm{G} & \mathrm{G} & \mathrm{G} & \mathrm{S} & \mathrm{G} & \mathrm{G} & \mathrm{G} & \mathrm{G} & \mathrm{S} & \mathrm{G} & \mathrm{G} & \mathrm{G} & \mathrm{G} & \mathrm{S} & \mathrm{A} & \mathrm{A} & \mathrm{A} & \mathrm{M} & \mathrm{T}> & \end{array}$ TRANSLATION OF RLUC8-KRASG12V FULL-LENGTH [A]_

10101020103 103010401050 1060 1070 1080 1090 1100 AATATAAACTTGTGGTAGTTGGAGCTGTTGGCGTAGGCAAGAGTGCCTTGACGATACAGCTAATTCAGAATCATTTTTGTGGACGAATATGATCCAACAAT

110
1130
1140
1150
1160
1170
$1180 \quad 1190$
1200
AGAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTCGACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGAC TCTCCTAAGGATGTCCTTCGTTCATCATTAACTACCTCTTTGGACAGAGAACCTATAAGAGCTGTGTCGTCCAGTTTCTCCTCATGTCACGTTACTCCCTG
 1210

123012401250
 TСАТGTACTССТGACCCCTCCCGAAAGAAACACATAAACGGTATTTATTATGATTTAGTAAACTTCTATAAGTAGTAATATCTCTTGTTTAATTTTCTC
 [-MANSLATION OF RLUC8-KRASG12V FULL LENGT [A]

| 1310 | 1320 | 1330 | 1340 | 1350 | 1360 | 1370 | 1380 | 1390 | 1400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | TTAAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCCAGAACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAG AATTCCTGAGACTTCTACATGGATACCAGGATCATCCTTTATTTACACTAAACGGAAGGTCTTGTCATCTGTGTTTTGTCCGAGTCCTGAATCGTTCTTC | V | K | D | S | E | D | V | P | M | V | L | V | G | N | K | C | D | L | P | S | R | T | V | D | T | K | Q | A | Q | D | L | A | R | S | |
| :--- | RANLATION OF RLUC8-KRASGI2V FULL-LENGTH [A] TATGGAATTCCTTTTATTGAAACATCAGCAAAGACAAGACAGGGTGTTGATGATGCCTTCTATACATTAGTTCGAGAAATTCGAAAACATAAAGAAAAG AATACCTTAAGGAAAATAACTTTGTAGTCGTTTCTGTTCTGTCCCACAACTACTACGGAAGATATGTAATCAAGCTCTTTAAGCTTTTGTATTTCTTTTC

 CRANLATON
\qquad TRANSLATION OF RLUC8-KRASG12V FULL-LENGTH [A]

$10 \quad 20$
 30
 40
 50
 60

70
80
90
90
100
ATGACCAGCAAGGTGTACGACCCCGAGCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCTTCA TACTGGTCGTTCCACATGCTGGGGCTCGTCTCСTTСTССTACTAGTGGCCGGGGGTCACCACCCGGTCCACGTTCGTCTACTTGCACGACCTGTCGAAGT

170
180

190
\qquad
$110-120 \quad 140-150 \quad 160-170$
60
TСААСТАСТАСGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCACTAGCAGCTACCTGTGGAGGCACGTGGTGCCCCACAT
200 AGTTGATGATGCTGTCGCTCTTCGTGCGGCTCTTGCGGCACTAGAAGGACGTGCCGTTGCGGTGATCGTCGATGGACACCTCCGTGCACCACGGGGTGTA

250
260
270

280
290
300
CGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGGCATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCTACAGGCTGCTGGACCACTACAAGTAC GCTCGGGCACCGGTCCACGTAGTAGGGGCTAGACTAGCCGTACCCGTTCTCGCCGTTCTCGCCGTTGCCGTCGATGTCCGACGACCTGGTGATGTTCATG

310
TRANSLATION OF RLUC8-KRASS17N FULL-LENGTH [A]
$320 \quad 330$
$340 \quad 350 \quad 360$
370
380
390
$>$
 GACTGGCGGACCAAGCTCGAGGACTTGGACGGGTTCTTCTAGTAGAAGCACCCGGTGCTGACCCCGCGGCGGGACCGGAAGGTGATGCGGATGCTCGTGG

(

410
420
430
440
450
460
470
$480 \quad 490$
490 500
AGGACAGGATCAAGGCCATCGTGCACATGGAGAGCGTGGTGGACGTGATCGAGAGCTGGGACGAGTGGCCAGACATCGAGGAGGACATCGCCCTGATCAA TССТGTCCTAGTTCCGGTAGCACGTGTACCTCTCGCACCACCTGCACTAGCTCTCGACCCTGCTCACCGGTCTGTAGCTCCTCCTGTAGCGGGACTAGTT

550560570
570
580

$$
590
$$

600
GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC
 TRANSLATION OF RLUC8-KRASS17N FULL-LENGTH [A]
610
620
630
640
650
660
670
680
690

GССТАССТGGAGСССтTСААGGAGAAGGGCGAGGTGAGAAGACCСАСССТGAGCTGGCCCAGAGAGATCCCCCTGGTGAAGGGCGGCAAGCCCGACGTGG CGGATGGACCTCGGGAAGTTCСTCTTCCCGCTCCACTCTTCTGGGTGGGACTCGACCGGGTCTCTCTAGGGGGACCACTTCCCGCCGTTCGGGCTGCACC
 $710720730750 \quad 760$ \qquad
780

TGCAGATCGTGAGAAACTACAACGCCTACCTGAGAGCCAGCGACGACCTGCCCAAGCTGTTCATCGAGAGCGACCCCGGCTTCTTCAGCAACGCCATCGT ACGTCTAGCACTCTTTGATGTTGCGGATGGACTCTCGGTCGCTGCTGGACGGGTTCGACAAGTAGCTCTCGCTGGGGCCGAAGAAGTCGTTGCGGTAGCA
 _
820
830
840
850
860
870
880
890
900

GGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGTGAAGGTGAAGGGCCTGCACTTCCTCCAGGAGGACGCCCCCGACGAGATGGGCAAGTACATCAAG

 AGCTTCGTGGAGAGAGTGCTGAAGAACGAGCAGCTCGAGGGCGGCGGAGGATCTGGGGGCGGAGGAAGTGGGGGGAGGGGGCTCTGCGGCCGCTATGACCG
 TRANSLATION OF RLUC8-KRASS17N FULL-LENGTH [A]_

10101020103 $10301040 \quad 1050 \quad 1060$ 1070 1080 1090 1100 AATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAACGCCTTGACGATACAGCTAATTCAGAATCATTTTTGTGGACGAATATGATCCAACAAT

110
$\begin{array}{ccccccc}1110 & 1120 & 1130 & 1140 & 1150 & 1160 & 1170\end{array} 1180 \quad 1190 \quad 1200$ CCTCCTAAGGATGTCCTTCGTTCATCATTAACTACCTCTTTGGACAGAGAACCTATAAGAGCTGTGTCGTCCAGTTCTCCTCATGTCACGTTACTCCCTG
 - TRANSLATION OF RLUC8-KRASSI7N FULL-LENGTH [A]
$\begin{array}{cccccccc}1210 & 1220 & 1230 & 1240 & 1250 & 1260 & 1270 & 1280\end{array}$解 Q

1310 1320 1330 TAAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCCAGAACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAG | V | K | D | S | E | D | V | P | M | V | L | V | G | N | K | C | D | L | P | S | R | T | V | D | T | K | Q | A | Q | D | L | A | R | $\mathrm{S}>$ |
| :--- | RANSLATION OF RLUC8-KRASSI7N FULL-LENGTH [A]

 AATACCTTAAGGAAAATAACTTTGTAGTCGTTTCTGTTCTGTCCCACAACTACTACGGAAGATATGTAATCAAGCTCTTTAAGCTTTTGTATTTCTTTTC
 -

信

\qquad TRANSLATION OF RLUC8-KRASS17N FULL-LENGTH [A]AGTTGATGATGCTGTCGCTCTTCGTGCGGCTCTTGCGGCACTAGAAGGACGTGCCGTTGCGGTGATCGTCGATGGACACCTCCGTGCACCACGGGGTGTA
230

| 310 | 320 | 330 | 340 | 350 | 360 | 370 | 380 | 390 | 400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | CTGACCGCCTGGTTCGAGCTCCTGAACCTGCCCAAGAAGATCATCTTCGTGGGCCACGACTGGGGCGCCGCCCTGGCCTTCCACTACGCCTACGAGCACC GACTGGCGGACCAAGCTCGAGGACTTGGACGGGTTCTTCTAGTAGAAGCACCCGGTGCTGACCCCGCGGCGGGACCGGAAGGTGATGCGGATGCTCGTGG

 TCCTGTCСTAGTTCCGGTAGCACGTGTACCTCTCGCACCACCTGCACTAGCTCTCGACCCTGCTCACCGGTCTGTAGCTCCTCCTGTAGCGGGACTAGTT
 $\begin{array}{lllllllll}510 & 520 & 530 & 540 & 550 & 560 & 570 & 580 & 590\end{array}$ GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC CTCGCTCСTСССGСТСтTСTACCACGACCTCTTGTTGAAGAAGCACCTCTGGCACGACGGGTCGTTCTAGTACTCTTTCGACCTCGGGCTCCTCAAGCGG
 _-TRANSLAIION OF RLUC8-KRASWT FULL-LENGTH [A] \qquad
610
620
630
640
650
660
670
680
690

GССТАССТGGAGCCCTTCAAGGAGAAGGGCGAGGTGAGAAGACCCACCCTGAGCTGGCCCAGAGAGATCCCCCTGGTGAAGGGCGGCAAGCCCGACGTGG GGGATGGACCTCGGGAAGTTССТСТTCCCGCTCСАСTСTTCTGGGTGGGACTCGACCGGGTCTCTCTAGGGGGACCACTTCCCGCCGTTCGGGCTGCACC

710 | 720 | 730 | 740 | 750 | 760 | 770 | 780 | 790 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | TGCAGATCGTGAGAAACTACAACGCCTACCTGAGAGCCAGCGACGACCTGCCCAAGCTGTTCATCGAGAGCGACCCCGGCTTCTTCAGCAACGCCATCGT ACGTCTAGCACTCTTTGATGTTGCGGATGGACTCTCGGTCGCTGCTGGACGGGTTCGACAAGTAGCTCTCGCTGGGGCCGAAGAAGTCGTTGCGGTAGCA

$810 \quad 82$
830
840
850
860
870
880
890
900

GGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGTGAAGGTGAAGGGCCTGCACTTCCTCCAGGAGGACGCCCCCGACGAGATGGGCAAGTACATCAAG

 TCGAAGCACCTCTCTCACGACTTCTTTGCTCGTCGAGCTCCCGCCGCCTCCTAGACCCCCGCCTCCTTCACCCCCTCCCCCGAGACGCCGGCGATACTGGC
 1040
$1070 \quad 1080$ $1080 \quad 1090$ 1100 AATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAGTGCCTTGACGATACAGCTAATTCAGAATCATTTTGTGGACGAATATGATCCAACAAT TATATTTGAACACCATCAACCTCGACCACCGCATCCGTTCTCACGGAACTGCTATGTCGATTAAGTCTTAGTAAAACACCTGCTTATACTAGGTTGTTA
 -

| 1110 | 1120 | 1130 | 1140 | 1150 | 1160 | 1170 | 1180 | 1190 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AGAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTCGACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGAC TCTCCTAAGGATGTCCTTCGTTCATCATTAACTACCTCTTTGGACAGAGAACCTATAAGAGCTGTGTCGTCCAGTTCTCCTCATGTCACGTTACTCCCTG

 Q

| 1210 | 1220 | 1230 | 1240 | 1250 | 1260 | 1270 | 1280 | 1290 | 1300 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AGGTACATGAGGACTGGGGAGGGCTTTCTTTGTGTATTTGCCATAAATAATACTAAATCATTTGAAGATATTCACCATTATAGAGAACAAATTAAAAGAG GTCATGTACTCCTGACCCCTCCCGAAAGAAACACATAAACGGTATTTATTATGATTTAGTAAACTTCTATAAGTGGTAATATCTCTTGTTTAATTTTCTC $\begin{array}{lllllllllllllllllllllllllllllllllll}Q & Y & M & R & T & G & E & G & F & L & C & V & F & A & I & N & N & T & K & S & F & E & D & I & H & H & Y & R & E & Q & I & K & R>\end{array}$

$$
\begin{array}{llllllllll}
1310 & 1320 & 1330 & 1340 & 1350 & 1360 & 1370 & 1380 & 1390 & 1400
\end{array}
$$ TTAAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCCAGAACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAG AАTTССТGAGACTTCTACATGGATACCAGGATCATCCTTTATTTACACTAAACGGAAGGTCTTGTCATCTGTGTTTTTGTCCGAGTCCTGAATCGTTCTTC

 RANSLATION OF RLUC8-KRASWT FULL-LENGTH [A]
 ATACCTTAAGGAAAATAACTTTGTAGTCGTTTCTGTTCTGTCCCACAACTACTACGGAAGATATGTAATCAAGCTCTTTAAGCTTTTGTATTTCTTTTC
 TRANSLATION OF RLUC8-KRASWT FULL-LENGTH [A] \qquad $1510 \quad 1520 \quad 1530 \quad 1540 \quad 1550 \quad 1560$ ATGAGCAAAGATGGTAAAAAGAAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGTAA АСТСGTTTСТАССАТТТТТСТТСТТTTTСТТСАGTTTСТGTTTСАСАСАТТААТАСАТ
$\begin{array}{lllllllllllllllllll}M & S & K & D & G & K & K & K & K & K & K & S & K & T & K & C & V & I & M\end{array}$
TRANSLATION OF RLUC8-KRASWT FULL-LENGTH [A] \qquad

30
 40
 50

$10 \quad 20$
60
70
80
90
90
100
ATGACCAGCAAGGTGTACGACCCCGAGCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCTTCA TACTGGTCGTTCCACATGCTGGGGCTCGTCTCCTTCTССTACTAGTGGCCGGGGGTCACCACCCGGTCCACGTTCGTCTACTTGCACGACCTGTCGAAGT

170

180
190
\qquad
$110-120 \quad 140 \quad 150 \quad 160-170$
160
TCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCACTAGCAGCTACCTGTGGAGGCACGTGGTGCCCCACAT
200 AGTTGATGATGCTGTCGCTCTTCGTGCGGCTCTTGCGGCACTAGAAGGACGTGCCGTTGCGGTGATCGTCGATGGACACCTCCGTGCACCACGGGGTGTA

240
250
260
270

230
280
290
300
CGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGGCATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCTACAGGCTGCTGGACCACTACAAGTAC GCTCGGGCACCGGTCCACGTAGTAGGGGCTAGACTAGCCGTACCCGTTCTCGCCGTTCTCGCCGTTGCCGTCGATGTCCGACGACCTGGTGATGTTCATG

310
TRANSLATION OF RLUC8-HRASG12V FULL-LENGTH [A]
$320 \quad 330$
$340 \quad 350-360$
370
380
390
$>$
 GACTGGCGGACCAAGCTCGAGGACTTGGACGGGTTCTTCTAGTAGAAGCACCCGGTGCTGACCCCGCGGCGGGACCGGAAGGTGATGCGGATGCTCGTGG
 (A)

410
420
430
440
450
460
470
$480 \quad 490$
490 00
AGGACAGGATCAAGGCCATCGTGCACATGGAGAGCGTGGTGGACGTGATCGAGAGCTGGGACGAGTGGCCAGACATCGAGGAGGACATCGCCCTGATCAA TCСTGTCCTAGTTCCGGTAGCACGTGTACCTCTCGCACCACCTGCACTAGCTCTCGACCCTGCTCACCGGTCTGTAGCTCCTCCTGTAGCGGGACTAGTT

530540550560
$70 \quad 58$
$580 \quad 590$
600
GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC CTCGCTCСТСССGСТСТTСТАССАСGACCTCTTGTTGAAGAAGCACCTCTGGCACGACGGGTCGTTCTAGTACTCTTTCGACCTCGGGCTCCTCAAGCGG
 TRANSLATION OF RLUC8-HRASG12V FULL-LENGTH [A]
610
620
630
640
650
660
70
680
690

GССТАССТGGAGСССтТСАAGGAGAAGGGCGAGGTGAGAAGACCСАСССТGAGCTGGCCCAGAGAGATCCCCCTGGTGAAGGGCGGCAAGCCCGACGTGG GGGATGGACCTCGGGAAGTTССТСTTCCCGCTCСАСТСTTCTGGGTGGGACTCGACCGGGTCTCTCTAGGGGGACCACTTCCCGCCGTTCGGGCTGCACC
 $710720730 \quad 750$ 760 70
$70 \quad 780$
(8СттстTс
790
-
TGCAGATCGTGAGAAACTACAACGCCTACCTGAGAGCCAGCGACGACCTGCCCAAGCTGTTCATCGAGAGCGACCCCGGCTTCTTCAGCAACGCCATCGT ACGTCTAGCACTCTTTGATGTTGCGGATGGACTCTCGGTCGCTGCTGGACGGGTTCGACAAGTAGCTCTCGCTGGGGCCGAAGAAGTCGTTGCGGTAGCA

820
830
840
850
860
870
880
890

900
GGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGTGAAGGTGAAGGGCCTGCACTTCCTCCAGGAGGACGCCCCCGACGAGATGGGCAAGTACATCAAG

 AGCTTCGTGGAGAGAGTGCTGAAGAACGAGCAGCTCGAGGGCGGCGGAGGATCTGGGGGCGGAGGAAGTGGGGGGAGGGGGCTCTGCGGCCGCTATGACCG

 AATACAAGCTTGTTGTTGTTGGCGCCGTCGGTGTGGGCAAGAGTGCGCTGACCATCCAGCTGATCCAGAACCATTTTGTGGACGAATACGACCCCACTAT

1110
1120
1130
1140
1150
1160
1170
11801190
1200

AGAGGATTCCTACCGGAAGCAGGTGGTCATTGATGGGGAGACGTGCCTGTTGGACATCCTGGATACCGCCGGCCAGGAGGAGTACAGCGCCATGCGGGAC TСТССTAAGGATGGCCTTCGTCCACCAGTAACTACCCCTCTGCACGGACAACCTGTAGGACCTATGGCGGCCGGTCCTCCTCATGTCGCGGTACGCCCTG
 - RANSLATION OF RLUC8-HRASG12V FULL-LENGTH [A]
 (29GAGAACGGG Q $\begin{array}{lllllllllllllllllllllllllllllllllll}\mathrm{Q} & \mathrm{Y} & \mathrm{M} & \mathrm{R} & \mathrm{T} & \mathrm{G} & \mathrm{E} & \mathrm{G} & \mathrm{F} & \mathrm{L} & \mathrm{C} & \mathrm{V} & \mathrm{F} & \mathrm{A} & \mathrm{I} & \mathrm{N} & \mathrm{N} & \mathrm{T} & \mathrm{K} & \mathrm{S} & \mathrm{F} & \mathrm{E} & \mathrm{D} & \mathrm{I} & \mathrm{H} & \mathrm{Q} & \mathrm{Y} & \mathrm{R} & \mathrm{E} & \mathrm{Q} & \mathrm{I} & \mathrm{K} & \mathrm{R}> & \end{array}$ [

GAAGGACTCGGATGACGTGCCCATGGTGCTGGTGGGGAACAAGTGTGACCTGGCTGCACGCACTGTGGAATCTCGGCAGGCTCAGGACCTCGCCCGAAG AСTTCCTGAGCCTACTGCACGGGTACCACGACCACCCCTTGTTCACACTGGACCGACGTGCGTGACACCTTAGAGCCGTCCGAGTCCTGGAGCGGGCTTC | V | K | D | S | D | D | V | P | M | V | L | V | G | N | K | C | D | L | A | A | R | T | V | E | S | R | Q | A | Q | D | L | A | R | S | |
| :--- | RANSLATION OF RLUC8-HRASG12V FULL-LENGTH [A] TACGGCATCCССTACATCGAGACCTCGGCCAAGACCCGGCAGGGAGTGGAGGATGCCTTCTACACGTTGGTGCGTGAGATCCGGCAGCACAAGCTGCGG GATGCCGTAGGGGATGTAGCTCTGGAGCCGGTTCTGGGCCGTCCCTCACCTCCTACGGAAGATGTGCAACCACGCACTCTAGGCCGTCGTGTTCGACGCC

 $15101520 \quad 1530 \quad 1540 \quad 1550 \quad 1560$ AAGCTGAACCCTCCTGATGAGAGTGGCCCCGGCTGCATGAGCTGCAAGTGTGTGCTCTCCTGA TTCGACTTGGGAGGACTACTCTCACCGGGGCCGACGTACTCGACGTTCACACACGAGAGGACT $\begin{array}{lllllllllllllllllllll}K & L & N & P & P & D & E & S & G & P & G & C & M & S & C & K & C & V & L & S & *>\end{array}$ TRANSLATION OF RLUC8-HRASG12V FULL-LENGTH [A] \qquad

10
 20
 30
 40
 50

60
70
80
90
90
100
ATGACCAGCAAGGTGTACGACCCCGAGCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCTTCA TACTGGTCGTTCCACATGCTGGGGCTCGTCTCCTTCTCCTACTAGTGGCCGGGGGTCACCACCCGGTCCACGTTCGTCTACTTGCACGACCTGTCGAAGT

170

180
190
\qquad
$\begin{array}{llllll}110 & 120 & 130 & 140 & 150 & 160\end{array}$
160
TGGA
200
TCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCACTAGCAGCTACCTGTGGAGGCACGTGGTGCCCCACAT AGTTGATGATGCTGTCGCTCTTCGTGCGGCTCTTGCGGCACTAGAAGGACGTGCCGTTGCGGTGATCGTCGATGGACACCTCCGTGCACCACGGGGTGTA

250
260
270

280
290
300
$\begin{array}{cccccc}210 & 220 & 230 & 240 & 250 & 260\end{array}$ GCTCGGGCACCGGTCCACGTAGTAGGGGCTAGACTAGCCGTACCCGTTCTCGCCGTTCTCGCCGTTGCCGTCGATGTCCGACGACCTGGTGATGTTCATG

310
TRANSLATION OF RLUC8-NRASQ61H FULL-LENGTH [A]
$320 \quad 330$
$340 \quad 350 \quad 360$
370
380
\longrightarrow
СTGACCGCCTGGTTCGAGCTCCTGAACCTGCCCAAGAAGATCATCTTCGTGGGCCACGACTGGGGCGCCGCCCTGGCCTTCCACTACGCCTACGAGCACC GACTGGCGGACCAAGCTCGAGGACTTGGACGGGTTCTTCTAGTAGAAGCACCCGGTGCTGACCCCGCGGCGGGACCGGAAGGTGATGCGGATGCTCGTGG
 (A)

410
420
430
440
450
460
470
$480 \quad 490$
490 0
AGGACAGGATCAAGGCCATCGTGCACATGGAGAGCGTGGTGGACGTGATCGAGAGCTGGGACGAGTGGCCAGACATCGAGGAGGACATCGCCCTGATCAA TССТGTCCTAGTTCCGGTAGCACGTGTACCTCTCGCACCACCTGCACTAGCTCTCGACCCTGCTCACCGGTCTGTAGCTCCTCCTGTAGCGGGACTAGTT

550560570
570
580

$$
590
$$

600
GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC GAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCGTGCTGCCCAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCC
 TRANSLATION OF RLUC8-NRASQ61H FULL-LENGTH [A]
610
620
630
640
650
660
670
680
690
700

GССТАССТGGAGСССтTСААGGAGAAGGGCGAGGTGAGAAGACCСАСССТGAGCTGGCCCAGAGAGATCCCCCTGGTGAAGGGCGGCAAGCCCGACGTGG CGGATGGACCTCGGGAAGTTCCTCTTCCCGCTCCACTCTTCTGGGTGGGACTCGACCGGGTCTCTCTAGGGGGACCACTTCCCGCCGTTCGGGCTGCACC
 [A]
$\begin{array}{lllllllll}710 & 720 & 730 & 740 & 750 & 760 & 770 & 780 & 790\end{array}$ TGCAGATCGTGAGAAACTACAACGCCTACCTGAGAGCCAGCGACGACCTGCCCAAGCTGTTCATCGAGAGCGACCCCGGCTTCTTCAGCAACGCCATCGT

810820
820830
$830 \quad 840$
$840 \quad 850$
850860
860870
870880
890

900
GGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGTGAAGGTGAAGGGCCTGCACTTCCTCCAGGAGGACGCCCCCGACGAGATGGGCAAGTACATCAAG

 TCGAAGCACCTCTCTCACGACTTCTTGCTCGTCGAGCTCCCGCCGCCTCCTAGACCCCCGCCTCCTTCACCCCCTCCCCCGAGACGCCGGCGATACTGAC
 - \qquad
10101020103
$10301040 \quad 1050 \quad 1060$
1070
1080

$$
1090
$$

GTACAAACTGGTGGTGGTTGGAGCAGGTGGTGTTGGGAAAAGCGCACTGACAATCCAGCTGATCCAGAACCACTTTGTAGATGAATATGATCCCACCAT TCATGTTTGACCACCACCAACCTCGTCCACCACAACCCTTTTCGCGTGACTGTTAGGTCGACTAGGTCTTGGTGAAACATCTACTTATACTAGGGTGGTA
 TRANSLATION OF RLUC8-NRASQ61H FULL-LENGTH [A]
110
11301140
1150
1160
1170
1180
1190
1200

AGAGGATTCTTACAGAAAACAAGTGGTTATAGATGGTGAAACCTGTTTGTTGGACATACTGGATACAGCTGGACATGAAGAGTACAGTGCCATGAGAGAC TСТССТААGAАTGTCTTTTTGTTCACCAATATCTACCACTTTGGACAAACAACCTGTATGACCTATGTCGACCTGTACTTCTCATGTCACGGTACTCTCTG
 TRANSLATION OF RLUC8-NRASQ61H FULL-LENGTH [A]
 GTTATGTACTCCTGTCCGCTTCCGAAGGAGACACATAAACGGTAGTTATTATCGTTCAGTAAACGCCTATAATTGGAGATGTCCCTCGTCTAATTCGCTC
 [

| 1310 | 1320 | 1330 | 1340 | 1350 | 1360 | 1370 | 1380 | 1390 | 1400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | TAAAAGACTCGGATGATGTACCTATGGTGCTAGTGGGAAACAAGTGTGATTTTGCCAACAAGGACAGTTGATACAAAACAAGCCCACGAACTGGCCAAGAG АтTTTCTGAGCCTACTACATGGATACCACGATCACCCTTTGTTCACACTAAACGGTTGTTCCTGTCAACTATGTTTTGTTCGGGTGCTTGACCGGTTCTC

| 1410 | 1420 | 1430 | 1440 | 1450 | 1460 | 1470 | 1480 | 1490 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | TTACGGGATTCCATTCATTGAAACCTCAGCCAAGACCAGACAGGGTGTTGAAGATGCTTTTTACACACTGGTAAGAGAAATACGCCAGTACCGAATGAAA AATGCCCTAAGGTAAGTAACTTTGGAGTCGGTTCTGGTCTGTCCCACAACTTCTACGAAAAATGTGTGACCATTCTCTTTATGCGGTCATGGCTTACTTT

 $15101520 \quad 1530 \quad 1540 \quad 1550 \quad 1560$ AAACTCAACAGCAGTGATGATGGGACTCAGGGTTGTATGGGATTGCCATGTGTGGTGATGTAA TTTGAGTTGTCGTCACTACTACCCTGAGTCCCAACATACCCTAACGGTACACACCACTACATT $\begin{array}{lllllllllllllllllllll}\mathrm{K} & \mathrm{L} & \mathrm{N} & \mathrm{S} & \mathrm{S} & \mathrm{D} & \mathrm{D} & \mathrm{G} & \mathrm{T} & \mathrm{Q} & \mathrm{G} & \mathrm{C} & \mathrm{M} & \mathrm{G} & \mathrm{L} & \mathrm{P} & \mathrm{C} & \mathrm{V} & \mathrm{V} & \mathrm{M} & \text { *> }\end{array}$ _TRANSLATION OF RLUC8-NRASQ61H FULL-LENGTH [A] \qquad

ATGAGTTCGGCCATCGAAAGGAAGAGCCTGGACCCGTCTGAGGAACCCGTGGATGAGGTGCTGCAGATACCCCCATCCCTGCTGACATGTGGTGGCTGCC TACTCAAGCCGGTAGCTTTССТTСTCGGACCTGGGCAGACTCCTTGGGCACCTACTCCACGACGTCTATGGGGGTAGGGACGACTGTACACCACCGACGG

110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AGCAGAACATAGGGGACCGCTACTTCCTGAAAGCCATCGACCAGTACTGGCATGAGGATTGCCTCAGCTGTGACCTCTGTGGGTGTCGGCTGGGAGAGGT TCGTCTTGTATCCCTTGGCGATGAAGGACTTTCGGTAGCTGGTCATGACCGTACTCCTAACGGATCGACACTGGAGACACCCACAGCCCACCCTCTCCA TCGTCTTGTATCCCCTGGCGATGAAGGACTTTCGGTAGCTGGTCATGACCGTACTCCTAACGGAGTCGACACTGGAGACACCCACAGCCGACCCTCTCCA

$240 \quad 250 \quad 260$
$270 \quad 280$ 290 300 GGGGAGGCGCCTCTACTACAAGCTGGGACGGAAATTGTGCAGGAGAGACTATCTCAGGCTTTTTTGGTCAGGATGGTCTCTGTGCATCCTGTGACAAGCGG

 TRANSLATION OF LMO2-RLUC8 [A] \qquad
$\begin{array}{lllllllll}310 & 320 & 330 & 340 & 350 & 360 & 370 & 380 & 390\end{array}$ ATCCGTGCCTATGAGATGACGATGCGGGTGAAAGACAAAGTGTATCACCTGGAGTGTTTCAAATGCGCCGCCTGTCAGAAGCATTTCTGTGTAGGTGACA TAGGCACGGATACTCTACTGCTACGCCCACTTTCTGTTTCACATAGTGGACCTCACAAAGTTTACGCGGCGGACAGTCTTCGTAAAGACACATCCACTGT
 TRANSLATION OF LMO2-RLUC8
410
420
430
440
450
460
470
480
\qquad GTTACC

 | R | Y | L | L | I | N | S | D | I | V | C | E | Q | D | I | Y | E | W | T | K | I | N | G | M | I | L | E | G | G | G | G | S | G | $\mathrm{G}>$ |
| :--- |

510
520
530
540
550
560
570
580
590
600
AGGTGGCAGTGCGGCCGCAGGGAGTGGTATGACCAGCAAGGTGTACGACCCCGAGCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGC TCCACCGTCACGCCGGCGTCCCTCACCATACTGGTCGTTCCACATGCTGGGGCTCGTCTCCTTCTCCTACTAGTGGCCGGGGGTCACCACCCGGTCCACG
 [ANS
$\begin{array}{lllllllll}610 & 620 & 630 & 640 & 650 & 660 & 670 & 680 & 690\end{array}$
AAGCAGATGAACGTGCTGGACAGCTTCATCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCACTAGCAGCT TTCGTCTACTTGCACGACCTGTCGAAGTAGTTGATGATGCTGTCGCTCTTCGTGCGGCTCTTGCGGCACTAGAAGGACGTGCCGTTGCGGTGATCGTCGA
 -740 760
$770 \quad 780$
 TGGACACCTCCGTGCACCACGGGGTGTAGCTCGGGCACCGGTCCACGTAGTAGGGGCTAGACTAGCCGTACCCGTTCTCGCCGTTCTCGCCGTTGCCGTC
 810820 840 80 -
 GATGTCCGACGACCTGGTGATGTTCATGGACTGGCGGACCAAGCTCGAGGACTTGGACGGGTTCTTCTAGTAGAAGCACCCGGTGCTGACCCCGCGGCGG $\begin{array}{lllllllllllllllllllllllllllllllll} & \end{array}$ $\begin{array}{ccccccc}910 & 920 & 930 & 940 & 950 & 960 & 970\end{array}$ GACCGGAAGGTGATGCGGATGCTCGTGGTCCTGTCCTAGTTCCGGTAGCACGTGTACCTCTCGCACCACCTGCACTAGCTCTCGACCCTGCTCACCGGTC
 $\begin{array}{cccccccc}1010 & 1020 & 1030 & 1040 & 1050 & 1060 & 1070 & 1080\end{array}$ TGTAGCTССТССТGTAGCGGGACTAGTTСТСGСTССТСССGСТСТТСТАССАСGACCTСTTGTTGAAGAAGCACCTCTGGCACGACGGGTCGTTCTAGTA
 TRANSLATION OF LMO2-RLUC8 [A]
110
1120
1130
1140
1150
1160
1170
1180 1190 1200 GAGAAAGCTGGAGCCCGAGGAGTTCGCCGCCTACCTGGAGCCCTTCAAGGAGAAGGGCGAGGTGAGAAGACCCACCCTGAGCTGGCCCAGAGAGATCCCC СтСттTCGACCTCGGGСТССТСAAGCGGCGGATGGACCTCGGGAAGTTCCTCTTCCCGСTССАСTСTTCTGGGTGGGACTCGACCGGGTCTCTCTAGGGG

12401250
12501260
1270
1280 1290 CTGGTGAAGGGCGGCAAGCCCGACGTGGTGCAGATCGTGAGAAACTACAACGCCTACCTGAGAGCCAGCGACGACCTGCCCAAGCTGTTCATCGAGAGCG GACCACTTCCCGCCGTTCGGGCTGCACCACGTCTAGCACTCTTTGATGTTGCGGATGGACTCTCGGTCGCTGCTGGACGGGTTCGACAAGTAGCTCTCGC $\begin{array}{llllllllllllllllllllllllllllllllll}\mathrm{L} & \mathrm{V} & \mathrm{K} & \mathrm{G} & \mathrm{G} & \mathrm{K} & \mathrm{P} & \mathrm{D} & \mathrm{V} & \mathrm{V} & \mathrm{Q} & \mathrm{I} & \mathrm{V} & \mathrm{R} & \mathrm{N} & \mathrm{Y} & \mathrm{N} & \mathrm{A} & \mathrm{Y} & \mathrm{L} & \mathrm{R} & \mathrm{A} & \mathrm{S} & \mathrm{D} & \mathrm{D} & \mathrm{L} & \mathrm{P} & \mathrm{Cl} & \mathrm{K} & \mathrm{L}\end{array}$
$\begin{array}{llllllllll}1310 & 1320 & 1330 & 1340 & 1350 & 1360 & 1370 & 1380 & 1390 & 1400\end{array}$ ACCCCGGCTTCTTTCAGCAACGCCATCGTGGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGGTGAAGGTGAAGGGCCTGCACTTCCTCCAGGAGGACGC
 TRANSLATION OF LMO2-RLUC8 [A] \qquad
$14101420 \quad 1430 \quad 1440 \quad 1450 \quad 1460$ CCCCGACGAGATGGGCAAGTACATCAAGAGCTTCGTGGAGAGAGTGCTGAAGAACGAGCAGTAA GGGGCTGCTCTACCCGTTCATGTAGTTCTCGAAGCACCTCTCTCACGACTTCTTGCTCGTCATT $\begin{array}{llllllllllllllllllll}\text { P } & \mathrm{D} & \mathrm{E} & \mathrm{M} & \mathrm{G} & \mathrm{K} & \mathrm{Y} & \mathrm{I} & \mathrm{K} & \mathrm{S} & \mathrm{F} & \mathrm{V} & \mathrm{E} & \mathrm{R} & \mathrm{V} & \mathrm{L} & \mathrm{K} & \mathrm{N} & \mathrm{E} & \mathrm{Q}\end{array}$ rRANSLATION OF LMO2-RLUC8 [A] \qquad

