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SUMMARY

Lactate is an important metabolic intermediate
released by skeletal muscle and other organs includ-
ing the adipose tissue, which converts glucose into
lactate under the influence of insulin. Here we show
that lactate activates the G protein-coupled receptor
GPR81, which is expressed in adipocytes and
mediates antilipolytic effects through Gi-dependent
inhibition of adenylyl cyclase. Using GPR81-deficient
mice, we demonstrate that the receptor is not
involved in the regulation of lipolysis during inten-
sive exercise. However, insulin-induced inhibition of
lipolysis and insulin-induced decrease in adipocyte
cAMP levels were strongly reduced in mice lacking
GPR81, although insulin-dependent release of lactate
by adipocytes was comparable between wild-type
and GPR81-deficient mice. Thus, lactate and its
receptor GPR81 unexpectedly function in an auto-
crine and paracrine loop to mediate insulin-induced
antilipolytic effects. These data show that lactate
can directly modulate metabolic processes in a
hormone-like manner, and they reveal a new mecha-
nism underlying the antilipolytic effects of insulin.

INTRODUCTION

Lactate is produced from glucose through glycolysis and the

conversion of pyruvate by lactate dehydrogenase (Meyerhof

and Kiessling, 1935). It serves as a precursor for hepatic gluco-

neogenesis and may also be an energy substrate for aerobic

oxidation via the citric acid cycle in various peripheral tissues

(Brooks, 2002; Kreisberg, 1980). The role of lactate in the delivery

of oxidative and gluconeogenic substrates is described by the

‘‘lactate shuttle’’ concept (Brooks, 2009). The skeletal muscle

is regarded as the major site of lactate production. While it forms

and utilizes lactate continuously under resting conditions, lactate

formation increases during exercise (Bergman et al., 1999;

Margaria et al., 1933). Also, the adipose tissue is an important
C

source for lactate (Crandall et al., 1983; DiGirolamo et al.,

1992; Ellmerer et al., 1998; Jansson et al., 1990; Marin et al.,

1987). It can convert more than 50% of the metabolized glucose

to lactate, a process stimulated by insulin and glucose uptake

(Coppack et al., 1989; Hagstrom et al., 1990; Henry et al.,

1996; Jansson et al., 1994; Qvisth et al., 2007).

The major role of the adipose tissue is to store energy in the

form of triglycerides, which are constantly turned over by lipol-

ysis and re-esterification (Duncan et al., 2007; Wang et al.,

2008). Net lipolysis increases when energy demands are high

and insulin levels are low, for example, during mild and interme-

diate exercise as well as during fasting, while it decreases

postprandially after energy uptake. The second messenger

cyclic AMP (cAMP) plays an important role in the regulation of

lipolysis, as it can activate lipolytic enzymes via stimulation of

the cAMP-dependent kinase (Langin, 2006; Zechner et al.,

2005). During exercise and starvation, activation of b-adrenergic

receptors induces lipolysis through the activation of cAMP

formation by adenylyl cyclase, a process mediated by the G

protein Gs (Horowitz, 2003; Ros et al., 1989). Insulin is the major

hormone exerting an antilipolytic effect in the fed state. Its action

is mediated by phosphatidylinositoI-3-kinase (PI-3-kinase)-

dependent activation of phosphodiesterase 3B (PDE3B) result-

ing in an increased rate of cAMP degradation (Degerman et al.,

1998; Duncan et al., 2007; Langin, 2006). Several other antilipo-

lytic regulators like adenosine, prostaglandin E2, neuropeptide Y,

3-hydroxy-butyrate, or the antidyslipidemic drug nicotinic acid

act through Gi-coupled receptors, resulting in an inhibition of

cAMP formation via adenylyl cyclase (Gille et al., 2008; Granne-

man and Moore, 2008; Langin, 2006; Wang et al., 2008).

Here we show that lactate activates the Gi-coupled receptor

GPR81, which is exclusively expressed on adipocytes, and that

lactate released from adipocytes in response to glucose and

insulin mediates insulin-induced antilipolysis by activation of

GPR81.

RESULTS

Lactate Activates the G Protein-Coupled Receptor
GPR81
GPR81 is an orphan G protein-coupled receptor (Lee et al.,

2001) closely related to GPR109A, a receptor activated by the
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Figure 1. Identification and Characterization of GPR81 Agonists

(A) Effect of the indicated substances at a concentration of 10 mM on [Ca2+]i in

CHO-K1 cells expressing GPR81, GPR109A, or GPR109B together with

a Ca2+-sensitive bioluminescent fusion protein and the promiscuous G protein

a subunit Ga15. RLU, relative light units.

(B and C) Effect of increasing concentrations of the indicated lactate stereoiso-

mers on [Ca2+]i in CHO-K1 cells transfected with cDNA encoding GPR81 (B) or

on the binding of GTPgS in membranes prepared from HEK293 cells trans-

fected with an empty vector (mock) or a vector encoding human (hGPR81)

or mouse GPR81 (mGPR81) (C).

(D) CHO-K1 cells cotransfected with GPR81 and the b2-adrenergic receptor

were untreated or treated overnight with 100 ng/ml pertussis toxin (PTX). Cells

were then incubated in the absence or presence of 10 mM (S)-lactate and/or

1 mM isoproterenol (Iso), and cAMP levels were determined as described in

the Experimental Procedures. Shown are mean values ± SEM of three inde-

pendently performed experiments. *p % 0.05.
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antidyslipidemic drug nicotinic acid as well as by the ketone

body 3-hydroxy-butyrate (Gille et al., 2008). Given that all known

natural and synthetic ligands of GPR109A carry a carboxylic acid

residue, we tested various naturally occurring carboxylic acids

as potential endogenous ligands for GPR81. Among a series of

short-chain carboxylic acids, we found that (S)-lactate activated

GPR81 when expressed heterologously in chinese hamster

ovary (CHO) cells (Figure 1A and data not shown). Structurally

related substances like pyruvate, (S)-alanine, or 3-hydroxy-buty-

rate had no activity, and the effect of (S)-lactate was specific

for GPR81, as the related receptors GPR109A and GPR109B

were not activated by lactate (Figure 1A). (S)-lactate activated

both human and mouse GPR81 with an EC50 of 1.5 mM when

tested in the GTPgS binding assay and about 7 mM when tested

in the Ca2+-aequorin assay (Figures 1B and 1C). (S)-lactate, the

metabolically relevant isomer, was much more potent than

(R)-lactate (Figure 1B). In cells expressing GPR81 together with

the b2-adrenergic receptor, lactate was able to decrease intra-

cellular cAMP levels raised by the b-adrenergic receptor agonist

isoproterenol in a pertussis toxin-sensitive manner (Figure 1D).

This indicates that GPR81 is coupled to Gi-type G proteins.

GPR81 Mediates Antilipolytic Effects of Lactate
Although it has recently been reported that lactate activates

GPR81 (Cai et al., 2008; Liu et al., 2009) and that the receptor

is coupled to Gi (Ge et al., 2008), its function is still unknown.

Earlier reports indicated that GPR81 expression is restricted to

adipocytes in mouse and human (Wise et al., 2003). To search

for other potential sites of expression, we generated a bacterial

artificial chromosome (BAC)-based transgenic mouse line

expressing monomeric red fluorescent protein (mRFP) under

the control of the mouse GPR81 promoter (for details, see the

Experimental Procedures). In three independent transgenic lines

we found expression indeed to be restricted to adipocytes of

subcutaneous, visceral, and epididymal white adipose tissue

as well as of brown adipose tissue (Figure 2A and data not

shown). To further explore the physiological role of GPR81, we

used GPR81-deficient mice (for details, see the Experimental

Procedures). Mice lacking GPR81 were viable and showed no

obvious abnormalities. In the past, lactate has been shown to

inhibit lipolysis in various species (Bjorntorp, 1965; Boyd et al.,

1974; De Pergola et al., 1989; Dieterle et al., 1969; Green and

Newsholme, 1979; Miller et al., 1964). Consistent with this, we

found that lactate dose-dependently induced an inhibition of

lipolysis in isolated murine adipocytes from epididymal fat

pads in a pertussis toxin-sensitive manner (Figure 2B). The anti-

lipolytic effect of lactate in vitro was not seen in GPR81-deficient

adipocytes (Figure 2C). While pretreatment of adipocytes with

pertussis toxin also blocked the antilipolytic effect of the adeno-

sine A1 receptor agonist (R)-N6-(2-phenylisopropyl)-adenosine

(PIA), PIA was still able to inhibit lipolysis in GPR81-deficient

adipocytes (Figures 2B and 2C), indicating that lack of GPR81

did not affect responsiveness of adipocytes to antilipolytic

stimuli acting via G protein-coupled receptors in general.

We then injected lactate i.p. in doses sufficient to reach a

plasma concentration of about 15 mM. The increase in the

lactate plasma concentration was accompanied by a decrease

in the free fatty acid plasma concentration in wild-type mice.

However, in GPR81-deficient mice a comparable elevation of
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the lactate plasma concentration had no effect on free fatty

acid levels (Figure 2D). The ability of GPR81-deficient mice to

respond to antilipolytic agents acting via Gi-coupled receptors

was not affected in general, as the adenosine A1 receptor agonist

PIA decreased free fatty acid levels to comparable extents in

wild-type and GPR81-deficient mice (Figure 2D). Thus, lactate

in millimolar concentrations exerts an antilipolytic effect that is

mediated by GPR81.

GPR81 Is Not Involved in the Regulation of Lipolysis
during Intensive Exercise
Under normal conditions the plasma concentration of lactate is

in the range of 0.5 and 2 mM (Huckabee, 1958; Marbach and

Weil, 1967; Niessner and Beutler, 1973), a concentration which

would be too low to lead to strong GPR81 activation. However,

systemic lactate concentrations as well as localized concentra-

tions of lactate in fat tissue can increase several-fold under

certain conditions (DiGirolamo et al., 1992; Hagström-Toft

et al., 1997; Kreisberg, 1980). The classic situation in which

plasma levels of lactate are increased is intensive exercise re-

sulting in lactate plasma levels as high as 10–15 mM (Osnes

and Hermansen, 1972; Turrell and Robinson, 1942). Since there

is a correlation between the increase of plasma lactate levels and



Figure 2. Expression of GPR81 and Generation of GPR81-Deficient Mice

(A) Whole-mount view and corresponding fluorescent image of subcutaneous adipose tissue (left panels) or fluorescent image of adipose tissue sections from

wild-type mice (WT) or mice transgenic for the mRFP expressing GPR81 reporter construct (Tg). Scale bars, 2 mm (left) and 50 mm (right).

(B) Wild-type adipocytes were treated in the absence or presence of 200 ng/ml pertussis toxin for 5 hr. Thereafter, glycerol release was determined after incu-

bation without or with 50 nM (�)isoproterenol (Iso) and the indicated concentrations of lactate or of the adenosine A1 receptor agonist PIA. NaCl was tested as

a control since lactate was applied as a sodium salt.

(C) Adipocytes were isolated from wild-type (WT) or GPR81-deficient mice (KO), and glycerol release was determined after incubation without or with 50 nM

(�)isoproterenol (Iso) and the indicated concentrations of (S)-lactate or PIA. Shown are mean values of triplicates ± SD.

(D) Wild-type mice (WT) or GPR81-deficient mice (KO) were injected with 1.25 mg/g lactate or PIA (0.15 nmoles/g). Fifteen minutes later, lactate and free fatty acid

(FFA) plasma concentrations were determined as described in the Experimental Procedures. Shown is a representative experiment with four animals per group.

*p % 0.05; **p % 0.01; ns, not significant.
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the decrease in fatty acid mobilization during intensive exercise,

and since lactate can inhibit lipolysis, we tested whether

GPR81 mediates a potential antilipolytic effect of lactate under

various conditions of intensive exercise in treadmill experiments

(Figure 3A). After a training period of several days (for details, see

the Experimental Procedures), plasma lactate levels reached

about 10 mM under exercise (see Figure 3B), a plasma concen-

tration sufficient to exert an antilipolytic effect after i.p. injection

of lactate in wild-type but not in GPR81-deficient mice (Figure 2D

and see Figure S1 available online). However, there was no dif-

ference in plasma levels of glycerol and free fatty acids between

exercising wild-type and GPR81-deficient mice (Figures 3C

and 3D). Thus, we conclude that GPR81 does not play a critical

role in regulating lipolysis during intensive exercise.

GPR81 Mediates Insulin-Dependent Antilipolysis
Since adipocytes have been shown to release lactate, a process

strongly increased upon insulin-induced glucose uptake (DiGiro-

lamo et al., 1992), we hypothesized that the locally released

lactate acts in an autocrine or paracrine fashion and exerts an

antilipolytic effect when plasma glucose levels are elevated.

Performing microdialysis in subcutaneous adipose tissue of
C

wild-type mice, we observed that i.p. injection of glucose

resulted in an increase in the lactate concentration in adipose

tissue while the release of free fatty acids declined (Figures 4A

and 4B). Interestingly, in GPR81-deficient mice, a comparable

increase in the lactate concentration could be seen while the

decrease in lipolysis was strongly reduced (Figures 4A and

4B), although insulin plasma levels were comparable between

wild-type and GPR81-deficient mice (Figure 4C). Very similar

defects in GPR81-deficient mice were observed on a systemic

level. An i.p. glucose challenge of fasted wild-type and GPR81-

deficient mice resulted in increased systemic levels of glucose,

lactate, and insulin in both groups (Figures 4D–4G and Fig-

ure S2). However, the decrease in systemic free fatty acid and

glycerol levels seen in wild-type mice was strongly reduced in

GPR81-deficient mice (Figures 4D and 4E). Similarly, the inhibi-

tion of lipolysis seen 30 min after refeeding of fasted wild-type

mice was reduced in the absence of GPR81 (Figures 4H–4K).

To test whether a role of lactate and GPR81 in insulin-induced

inhibition of lipolysis can also be seen in isolated adipose tissue

in vitro, we analyzed white adipose tissue from wild-type and

GPR81-deficient mice (see Figures 5A and 5B). While treatment

with the b-adrenergic agonist isoproterenol increased lipolysis
ell Metabolism 11, 311–319, April 7, 2010 ª2010 Elsevier Inc. 313



Figure 3. Effect of GPR81 on Lipolysis during Intensive Exercise

(A) Speed and duration of the different treadmill exercise programs.

(B–D) Lactate (B), glycerol (C), or free fatty acid plasma concentrations (D) were

determined in wild-type (WT) or GPR81-deficient mice (KO) before (no exer-

cise) and after the indicated treadmill exercise programs (n = 7–13 per group;

ns, not significant).

Shown are mean values ± SEM.
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both in wild-type and GPR81-deficient adipocytes, addition of

insulin in the presence of 300 mg/dl glucose strongly inhibited

lipolysis only in adipocytes from wild-type mice, whereas the

antilipolytic effect was strongly reduced in adipocytes from

GPR81-deficient mice (Figures 5A and 5B).

Insulin exerts its antilipolytic effects by inducing a decrease in

cAMP levels, a process involving activation of the cAMP-degrad-

ing enzyme PDE3B (Degerman et al., 1997). To test whether

insulin-induced decreases in cAMP levels are affected by

GPR81 deficiency, we determined intracellular cAMP levels in

mouse adipose tissue before and after an in vivo glucose chal-

lenge of wild-type and GPR81-deficient mice. cAMP levels

strongly decreased after i.p. injection of glucose into wild-type

mice. However, this effect was reduced by more than 50% in

GPR81-deficient mice (Figure 5C). This indicates that lactate,

which is released from adipocytes upon insulin-dependent

glucose uptake, inhibits cAMP production via its receptor

GPR81 and thereby mediates the postprandial inhibition of

lipolysis.

The Role of GPR81 in Metabolic Regulation
We then analyzed glucose tolerance and insulin sensitivity in

wild-type and GPR81-deficient animals (Figures 6A and 6B).

Neither in glucose tolerance assays nor in insulin tolerance tests

did we see an obvious difference between wild-type mice and

mice lacking GPR81. We also followed the body weight of

mice over several months. Under normal chow we did not

observe any difference in body weight between GPR81-deficient

and wild-type mice. However, under high-fat diet GPR81-defi-

cient mice had a reduced weight gain compared to wild-type
314 Cell Metabolism 11, 311–319, April 7, 2010 ª2010 Elsevier Inc.
mice (Figure 6C). This indicates that the lactate/GPR81-depen-

dent antilipolytic effect is involved in the weight gain under

hypercaloric diet. Glucose tolerance was comparable between

wild-type and GPR81-deficient mice under high-fat diet (Fig-

ure S5). The impaired antilipolytic effects of insulin observed

in GPR81-deficient mice under normal chow diet were still

present under high-fat diet conditions. While wild-type and

GPR81-deficient animals kept under high-fat diet showed

a reduced antilipolytic effect reflecting the insulin resistance of

animals kept under high-fat diet, the antilipolytic effect was

further reduced in mice lacking GPR81 kept on high-fat diet

(Figures 6D–6G). These data clearly show that the lactate/

GPR81-dependent antilipolytic mechanism is still operating in

diabetic mice.

DISCUSSION

Nutrients and their metabolites provide energy and substrates

for multiple metabolic processes. However, they can also exert

regulatory effects by activating specific membrane receptors.

Recently it has become clear that eukaryotes use membraneous

G protein-coupled receptors to sense the concentration of

nutrients and their metabolites in the metabolic or gustatory

system (Brown et al., 2005; Chandrashekar et al., 2006; He

et al., 2004; Holsbeeks et al., 2004). Here we report that the

orphan G protein-coupled receptor GPR81 functions as

a receptor for lactate, a central intermediate of energy metabo-

lism. GPR81 couples to Gi-type G proteins and is expressed

on adipocytes where it mediates lactate-induced antilipolytic

effects. We show that insulin-dependent glucose uptake in

adipocytes results in the local release of lactate, which in an

autocrine fashion induces inhibition of lipolysis. In animals lack-

ing GPR81, insulin-dependent inhibition of lipolysis as well as

insulin-induced decreases in cAMP levels are almost completely

abrogated. Thus, besides its well-established role as an interme-

diate of the energy metabolism, lactate functions as an autocrine

or paracrine signaling molecule that mediates insulin-induced

inhibition of adipocyte lipolysis and thereby critically contributes

to the change in metabolic fluxes during the transition from the

fasted to the fed state.

Especially during exercise, the skeletal muscle is the major site

of lactate production in the body. During low-intensity exercise,

fatty acid oxidation is the major source of energy. However, with

increasing exercise intensity, the anaerobic degradation of

carbohydrates via increased glycogenolysis and glycolysis to

lactate prevails (Brooks and Mercier, 1994; Romijn et al.,

1993). Since the accumulation of lactate in the blood during

intensive exercise coincides with the decrease in fatty acid

oxidation, a direct effect of lactate on fatty acid release from

adipocytes has been suggested (Boyd et al., 1974; Fredholm,

1971; Issekutz and Miller, 1962). While a causal link between

elevated lactate levels and a decreased fatty acid formation

and oxidation is plausible, no clear proof for this concept has

been provided, and the issue has remained controversial

(Trudeau et al., 1999). Since GPR81 would be in an ideal position

to mediate lactate-induced antilipolytic effects during exercise,

we tested whether GPR81 deficiency has an effect on free fatty

acid and glycerol plasma levels of exercising mice. When mice

were trained to exercise resulting in lactate plasma levels, which



Figure 4. The Role of GPR81 in Insulin-

Dependent Antilipolysis

(A–C) Wild-type (WT) and GPR81-deficient mice

(KO) were implanted with a microdialysis probe in

the subcutaneous adipose tissue. At time point

00, mice were injected with 3 mg/g glucose, and

lactate (A) or free fatty acid levels (B) in the dialysate

were determined at the indicated time points.

(B) The left and middle panels show absolute

values of four independently performed experi-

ments in wild-type (WT) and GPR81-deficient

mice (KO), respectively. The right panel shows nor-

malized values of four independently performed

experiments ± SEM. Insulin plasma concentrations

were determined in parallel (n = 5) (C).

(D–G) Wild-type and GPR81-deficient mice

anaesthetized with isoflurane were injected i.p.

with 3 mg/g glucose, and plasma free fatty acids

(D), glycerol (E), lactate (F), and glucose levels

(G) were determined at the indicated time points

(n = 6–9 per group).

(H–K) Wild-type (WT) and GPR81-deficient mice

(KO) were fasted for 12 hr during the light phase

and refed for 30 min at the beginning of the dark

phase. Before (fasted) and after refeeding (refed),

plasma glycerol (H), free fatty acid (I), lactate (J),

and glucose levels (K) were determined (n = 7

per group). *p % 0.05; **p % 0.01; ***p % 0.001.

Shown are mean values ± SEM.
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are able to induce strong antilipolytic effects, free fatty acid

plasma concentrations remained on comparable levels in wild-

type and GPR81-deficient animals. Thus, although lactate has

an antilipolytic activity under resting conditions which involves

GPR81, during intensive exercise this effect may not be sufficient

to overcome the strong stimulation of lipolysis via sympathetic

activation (Horowitz, 2003). Alternatively, it is also conceivable

that GPR81-independent mechanisms are involved in the rela-

tive reduction of the lipolytic rate during intensive exercise.

The rapid decrease in lipolytic activity in the presence of

sufficient supply of carbohydrates after a meal is an important

metabolic regulatory process which preserves energy stores in

adipocytes. Food uptake inhibits net lipolysis primarily through

the action of insulin, which by binding to its receptor on adipo-

cytes increases glucose uptake and exerts a strong and

potent antilipolytic effect that is primarily mediated by a decrease

in intracellular cAMP levels (Duncan et al., 2007; Wang et al.,
Cell Metabolism 11, 311–
2008). The classic pathway linking insulin

receptor activation in adipocytes with

the suppression of cAMP levels involves

the PI-3-kinase-dependent activation

of protein kinase B/Akt, which in turn

phosphorylates and activates PDE3B,

the major phosphodiesterase isoform

responsible for cAMP degradation in

adipocytes (Degerman et al., 1998). Our

data indicate that the mechanism

underlying the insulin-induced drop in

adipocyte cAMP levels is more complex

and involves insulin-stimulated release

of lactate from adipocytes. Adipocytes
have been shown to be a major site of lactate production by

conversion of glucose (DiGirolamo et al., 1992), a process

strongly increased by insulin (Hagstrom et al., 1990; Henry

et al., 1996). Lactate released from adipose tissue has been

regarded primarily as a source for hepatic gluconeogenesis

and glycogen synthesis. The fact that the lactate receptor

GPR81 is specifically expressed on adipocytes suggested that

an increased lactate release upon insulin-stimulated glucose

uptake would in an autocrine fashion result in Gi-mediated

inhibition of adenylyl cyclase, thereby contributing to the antili-

polytic effect of insulin. Indeed, while local free fatty acid levels

in the adipose tissue as well as systemic free fatty acid levels

dropped after an acute glucose challenge of wild-type mice,

this effect was greatly diminished in animals lacking the lactate

receptor GPR81. Comparable effects could be observed in

isolated wild-type and GPR81-deficient adipose tissue treated

with insulin.
319, April 7, 2010 ª2010 Elsevier Inc. 315



Figure 5. GPR81 Involvement in Insulin-

Dependent Antilipolytic Effects and

Decreases in cAMP Levels

(A and B) White adipose tissue explants from wild-

type (WT) or GPR81-deficient mice (KO) were

incubated without or with 10 nM (�)isoproterenol

(iso) in the presence or absence of 20 ng/ml insulin

for 4 hr. Thereafter, concentrations of glycerol (A)

and free fatty acids (B) in the supernatant were

determined. Shown are mean values ± SEM of

quadruplicates of a representative experiment.

(C) Wild-type (WT) and GPR81-deficient mice (KO)

were injected with 3 mg/g glucose. After 30 min,

epididymal fat pads were removed, and cAMP

levels were determined as described in the Exper-

imental Procedures (n = 5 per group). Shown are

mean values of triplicates ± SEM. *p % 0.05;

**p % 0.01; ns, not significant.
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Also, the decrease in adipocyte cAMP levels seen after an

acute glucose challenge in wild-type mice was strongly reduced

in mice lacking GPR81, indicating that the activation of PDE3B

alone was not sufficient to mediate the effect of insulin on

cAMP levels and lipolytic activity. The fact that insulin-depen-

dent antilipolysis is strongly inhibited after blockade of PDE3B

or in the absence of PDE3B in PDE3B-deficient mice (Choi

et al., 2006; Eriksson et al., 1995) does not speak against the

mechanism described here, since PDE3B inhibition or elimina-

tion does not only block the effect of insulin on cAMP degrada-

tion but also results in an increase in basal cAMP levels. The

latter effect is unlikely to be overcome by insulin-induced inhibi-

tion of cAMP formation via lactate and GPR81. Thus, a dual

regulation of adipocyte cAMP levels through the stimulation of

cAMP degradation via PDE3B and the inhibition of cAMP forma-

tion via lactate and GPR81 (Figure 7) is necessary for the rapid

and efficacious antilipolytic effect of insulin on adipocytes. This

mechanism explains the long-known phenomenon that lactate

can potentiate the antilipolytic effect of insulin (Green and
316 Cell Metabolism 11, 311–319, April 7, 2010 ª2010 Elsevier Inc.
Newsholme, 1979) and is the basis for a well-controlled switch

of energy sources from lipids to carbohydrates upon feeding.

A lack of insulin-dependent antilipolytic effects has been

shown in adipocyte-specific insulin receptor-deficient mice to

strongly reduce the increase in fat mass under the condition of

a hypercaloric diet (Bluher et al., 2002). Consistent with this,

GPR81-deficient mice had a reduced weight gain compared to

wild-type mice under high-fat diet. The reduced weight gain

was not accompanied by an increase in glucose tolerance

compared to wild-type animals. This may be due to transient

elevations in free fatty acid levels in GPR81-deficient mice, which

may negatively influence insulin sensitivity.

These data also indicate that lactate which has traditionally

been viewed primarily as a product of glucose metabolism

and as a source for hepatic gluconeogenesis exerts by itself

hormone-like effects by activating a specific G protein-coupled

receptor. Together with the recently discovered G protein-

coupled receptors for free fatty acids, ketone bodies, b-oxida-

tion intermediates, or citric acid cycle intermediates (Ahmed
Figure 6. Role of GPR81 in Metabolic

Regulation

(A) Wild-type (WT) or GPR81-deficient mice (KO)

were fasted overnight and injected i.p. with

3 mg/g glucose. Thereafter, plasma glucose levels

were determined at the indicated time points

(n = 10 per group).

(B) Wild-type (WT) or GPR81-deficient mice (KO)

were fasted overnight and injected i.p. with

0.75 mU/g insulin, and plasma glucose levels

were determined at the indicated time points

(n = 8 per group). Shown are mean values ± SEM.

(C) Wild-type (WT) or GPR81-deficient mice (KO)

were fed a high-fat diet (HFD) or normal chow

(NC). The gain in body weight was expressed as

percentage of initial body weight (n = 6–10 per

group). Shown are mean values ± SEM.

(D–G) Overnight fasted wild-type (WT) and

GPR81-deficient mice (KO) anaesthetized with

isoflurane were injected i.p. with 3 mg/g glucose,

and plasma levels of free fatty acids (D), glycerol

(E), lactate (F), and glucose (G) were determined

at the indicated time points (n = 10 per group).

Shown are mean values ± SEM.



Figure 7. Model of the Mechanisms Underlying Insulin-Induced Inhi-

bition of Adipocyte Lipolysis via PDE3B-Mediated cAMP Degrada-

tion and Lactate/GPR81-Dependent Inhibition of cAMP Formation

For details, see text. PI-3-K, phosphatidylinositol-3-kinase; PDE3B, phospho-

diesterase 3B.
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et al., 2009; Brown et al., 2005; He et al., 2004; Taggart et al.,

2005), the lactate receptor GPR81 forms a group of metabolic

sensors, which detect local and systemic concentrations of

key metabolites in order to adjust metabolic fluxes to varying

metabolic states. Within this general concept, adipocytes use

GPR81 to indirectly sense the availability of sufficient amounts

of glucose, since high glucose levels result in increased

insulin-dependent glucose uptake and subsequent conversion

of glucose to lactate, which then activates GPR81. Activation

of GPR81 decreases the net rate of lipolysis in order to save

energy stored in adipocytes when glucose is available as an

energy source. Alterations in GPR81 expression or function may

contribute to dysfunctions of the metabolic system.

EXPERIMENTAL PROCEDURES

Materials

(�)-Isoproterenol hydrochloride; PIA ([R]-N6-[2-phenylisopropyl]-adenosine);

sodium (S)-, (R)-, and (R,S)-lactate; sodium pyruvate; (S)-alanine; sodium

(R,S)-3-hydroxybutyrate and bovine serum albumin (free fatty acid-free); and

collagenase type II (474 U/mg) were from Sigma. Pertussis toxin was obtained

from Calbiochem. Adenosine deaminase was obtained from Merck.

Cell Transfection and Determination of [Ca2+]i

CHO-K1 cells stably transfected with a Ca2+-sensitive bioluminescent fusion

protein consisting of aequorin and GFP (Baubet et al., 2000) were seeded in

96-well plates and were transfected with the indicated cDNAs (60 ng/well)

encoding receptors and the promiscuous G protein a subunit Ga15 (Offer-

manns and Simon, 1995) using FuGENE6 reagent (Roche). Determination of

[Ca2+]i was performed using a luminometer plate reader (Luminoskan ascent,

Lab Systems) as described (Tunaru et al., 2003, 2005).

GTPgS Binding

To directly determine GPR81-mediated G protein activation, plasma

membranes were prepared from HEK293T cells transfected with cDNAs

encoding the indicated receptors, and the binding of [35S]GTPgS was

measured in the absence or presence of the indicated ligands. Briefly, 50 mg

of membrane protein was incubated for 60 min at 35�C in a total volume of

100 ml buffer containing 100,000 cpm (0.4 nM) of [35S]GTPgS, 1 mM EDTA,

5 mM MgCl2, 1 mM dithiothreitol (DTT), 100 mM NaCl, 10 mM GDP, and
C

50 mM Tris-HCl (pH 7.4). Incubation was terminated by filtration over GF-B

glass fiber filters (Whatman) followed by two washes with 4 ml ice cold

buffer containing 50 mM Tris-HCl (pH 7.4), 5 mM MgCl2, and 0.02% CHAPS.

GTPgS bound to the filters was measured using a liquid scintillation counter

(Beckman).

Determination of cAMP Levels

The cAMP levels in cells transfected with GPR81 were determined as

described (Tunaru et al., 2003, 2005). To analyze cAMP levels in adipose

tissue, mice were anaesthetized with pentobarbital (60 mg/kg), and epididymal

adipose tissue samples were taken and snap frozen in liquid nitrogen. Samples

were weighed and homogenized using a rotor-stator system in ice-cold 0.1 N

HCl. After centrifugation (1500 3 g, 10 min, 4�C), the infranatant was carefully

removed with a needle and a syringe. After centrifugation (20,000 3 g, 5 min,

4�C), a 1:2 dilution of the sample was prepared for measuring cAMP using an

ELISA kit following the manufacturer’s instructions (Cayman).

Preparation of Adipocytes and Determination of Lipolysis

Adipocytes from mouse epididymal fat were isolated according to a modified

method described by Rodbell (Rodbell, 1964). Briefly, adipocytes were

digested with collagenase II (0.25 mg/ml) in a buffer containing 125 mM

NaCl, 5 mM KCl, 1 mM CaCl2, 2.5 mM MgCl2, 1 mM KH2PO4, 2% BSA,

4 mM glucose, and 25 mM Tris (pH 7.4) for 1 hr at 37�C. Cells were filtered

through a nylon mesh and washed three times with the same buffer. Adenosine

deaminase was present at 0.5 U/ml. Isolated adipocytes were incubated in

the presence or absence of the indicated ligands and/or isoproterenol at

37�C in a shaking waterbath. After 2 hr samples were taken, and glycerol

release from isolated adipocytes was measured using a colorimetric assay

kit (Randox).

Generation of GPR81-Deficient Mice

Mice lacking GPR81 were obtained from Texas Institute of Genomic Medicine

(Houston, TX). The exon encoding murine GPR81 was replaced by a cassette

encoding b-galactosidase as well as neomycin resistance by homologous

recombination in embryonic stem cells (ESCs). Correct targeting was verified

in ESCs by Southern blotting and PCR (Figure S3). Chimeric mice were gener-

ated and bred with C57Bl/6N to produce F1 heterozygotes. Germline trans-

mission was verified by PCR analysis. All procedures of animal care and use

in this study were approved by the local animal ethics committee (Regierung-

spräsidium Karlsruhe, Germany).

Generation of a Transgenic GPR81 Expression Reporter

To generate GPR81 expression reporter mouse lines, a cassette consisting of

the mRFP followed by a polyadenylation signal from bovine growth hormone

and a module containing the b-lactamase gene flanked by frt sites was intro-

duced into the coding ATG of the mouse GPR81 gene carried by a BAC using

ET recombination as described (Wirth et al., 2008) (Figure S4). Correct

recombinants were verified by Southern blotting. After FLPe-mediated recom-

bination, the recombined BAC was injected into pronuclei of FvB/N oocytes.

Transgenic offspring were analyzed for BAC insertion by genomic PCR. Three

different founders were used to generate GPR81 reporter lines in which mRFP

expression was determined by fluorescence microscopy of whole organs or

10–14 mm cryosections of various tissues.

Microdialysis Studies

For microdialysis studies, mice were kept under isoflurane/N2O anesthesia,

and a microdialysis probe (CMA20 Elite, 4 mm membrane length, CMA) was

implanted with an introducer needle into the inguinal subcutaneous tissue.

The system was connected to a perfusion pump (CMA 402, CMA) and rinsed

with a running buffer consisting of 0.9% NaCl and 2% free fatty acid-free BSA

for 15 min. The flow rate was set to 0.7 ml/min, and after a 10 min equilibration

period fractions were collected every 15 min with a microfraction collector

(CMA 142, CMA) to obtain a sample volume of 10.5 ml. One minute before

the end of the second fraction period, 3 mg/g glucose was injected intraperi-

toneally, and the following three fractions were collected. Recovery rates for

lactate and palmitate were determined under the same conditions in vitro

(see Figure S6).
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Determination of Insulin, Lactate, Glycerol, Glucose, and Free Fatty

Acid Levels

All metabolites were measured using enzyme-based colorimetric assay kits

according to the manufacturer’s instructions (Randox). Insulin levels were

determined using an ELISA kit (Millipore).

Treadmill Experiments

Exercise experiments were performed on a specialized animal treadmill

(Columbus Instruments). On the first day, mice were allowed to get used to

the device followed by a daily training period at different speeds (7 days, twice

per day, 18–30 m/min for approximately 10 min). The slope of the belt was set

to 5�. On the day of the experiment, mice ran according to the protocol shown

in Figure 3A. Following exercise, blood samples were taken under isoflurane

anesthesia.

In Vitro Lipolysis Assay

White adipose tissue explants of approximately 20 mg were incubated in

a buffer containing 125 mM NaCl, 5 mM KCl, 1 mM CaCl2, 2.5 mM MgCl2,

1 mM KH2PO4, 2% (w/v) BSA, 4 mM glucose, and 25 mM Tris (pH 7.4) for

4 hr at 37�C in a shaking water bath, and medium concentrations of free fatty

acids and glycerol were measured. Isoproterenol was used at 10 nM, and

insulin was added at 20 ng/ml. Adenosine deaminase was present at 0.5 U/ml.

In Vivo Lipolysis Assay

For determination of glucose-induced changes in lipolysis, mice were over-

night fasted and injected with 3 mg/g glucose, and blood samples were taken

at the indicated time points under isoflurane anesthesia. Determination of free

fatty acids, glycerol, lactate, or glucose was performed as described.

Glucose Tolerance and Insulin Tolerance Tests

Glucose-tolerance tests (GTTs) in awake mice kept on high-fat diet were

performed after overnight fasting followed by injection of glucose at 1 mg/g.

Blood samples were drawn from the tail tip at the indicated time points.

Glucose was measured using AccuCheck Glucometer (Roche). For GTT

in lean mice fed with normal chow under pentobarbital anesthesia, the

animals were overnight fasted and injected with 3 mg/g glucose, and blood

samples were taken from the retroorbital plexus. For insulin tolerance tests,

mice were injected with insulin (0.75 mU/g), and glucose levels were deter-

mined at the indicated time points.

Statistics

Statistical significance was assessed by unpaired Student’s t test using

GraphPad Prism software. Differences were considered statistically significant

at p < 0.05.

SUPPLEMENTAL INFORMATION
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