

PAVING THE WAY FOR INNOVATIVE MEDICINES

NETosis Inhibitors

NET Formation

Neutrophil Extracellular Traps

Academic Partners:

Prof. Arturo Zychlinsky, Max Planck Institute Infection Biology, Berlin (Prof. Herbert Waldmann, MPI Molecular Physiology, Dortmund)

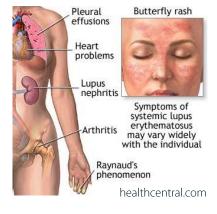
Executive Summary

Target rationale:

- Excessive NET formation is linked to several diseases incl. SLE, thrombosis, fibrosis, etc.
- Addressing a completely novel therapeutic principle with first-in-class potential

Key achievements:

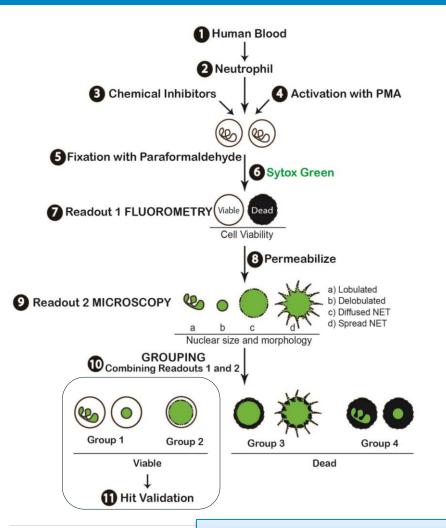
- ➤ Imaging-based phenotypic HTS of human primary neutrophils (190k compound library) identified multiple sub-µM hits series for different phenotypes
- Triaging and validation of hit compounds through assay cascade and additional functional PBMC assays
- Several unexplored hits available
- Molecular NET formation target class II identified

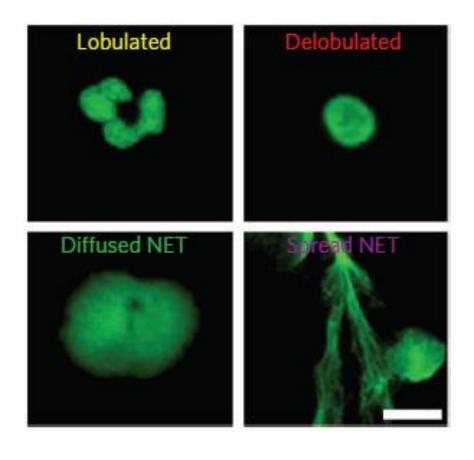

Next steps:

- > Investigating frontrunner compounds under disease-specific stimuli
- Selection of in vivo efficacy model
- To establish binding assays for target class II

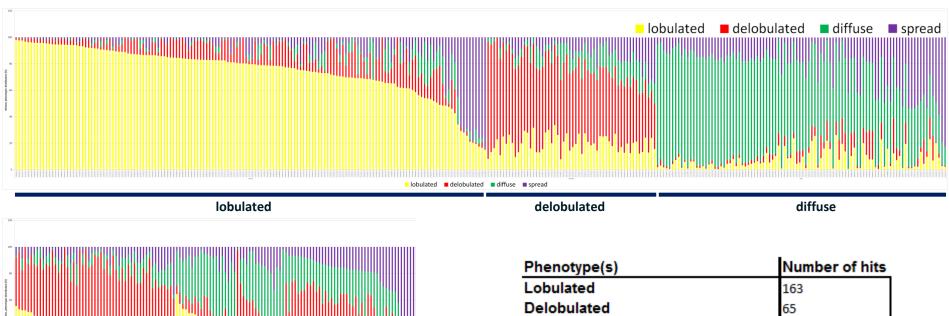
NETosis and Diseases

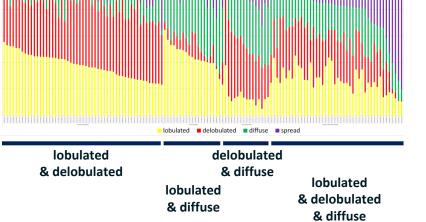
- Systemic Lupus Erythematosus (Villanova, 2011; Knight, 2013)
- Rheumatoid arthritis (Li, 2010)
- Atherosclerosis (Warnatsch, 2015)
- Small vessel vascularitis (Kessenbrock, 2009)
- Thrombosis (Fuchs, von Brühl; both 2012)
- Sepsis (Xu, 2009)
- ALI, TRALI (Narasaraju, 2011; Thomas, 2012)
- COPD (Obermayer, 2014)
- Cystic fibrosis (Papayannanopoulos, 2011)
- Cancer metastasis (Berger-Achituv, 2013; Cools-Lartigue, 2013; Podaza, 2016; Park, 2016)
- Preeclampsia (Gupta, 2007)
- Cardiac (or brain) reperfusion (Ge, 2015)
- Asthma (Dworski, 2011)
- Diabetes, diabetic wound healing (Wong, 2015)
- Periodontitis (White , 2016)
- Psoriasis (Chu-Sung Hu, 2016)
- Dermatomysitis, Polymyositis (Zhang, 2014)
- Excessive NET formation is a pathogenic principle (cause or consequence?) associated with many inflammatory pathologies





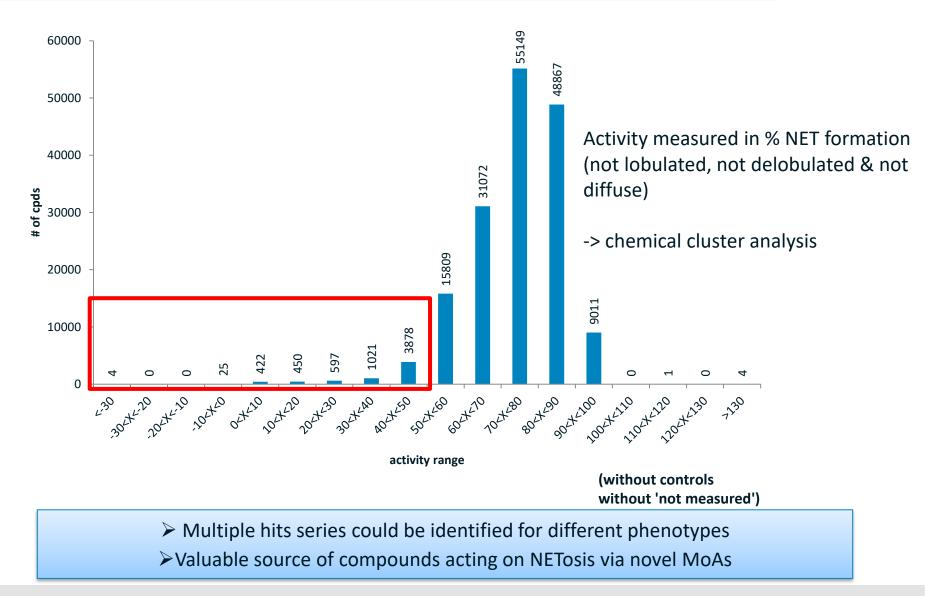
Screening Set-up (NETosis Inhibitors)





Novel phenotypic screening set-up developed by our academic partners suitable for high-throughput HCS

Screening Results



Phenotype(s)	Number of hits
Lobulated	163
Delobulated	65
Diffuse	83
Lobulated & Delobulated	52
Lobulated & Diffuse	20
Delobulated & Diffuse	15
Lobulated & Delobulated & Diffuse	41

> Multiple hits series could be identified for different phenotypes

> "Known" NET inhibitors (NE, MPO) have been identified further validating the assay performance

Screening Results – Source of Compounds

Frontrunner Profile

Class II		
Activity		Best compounds: <10nM
hPBMC toxi	city	no
SAR		clear, broad, activity improved
<i>in vitro</i> SPR	Solubility	low
	Permeability	medium
	MLM stability	good
	MLM Phase 2	compound-dependent
	Plasma stability (mouse)	compound-dependent
Metabolites	analysis	preliminary: soft are addressable
Tool compo	und for target fishing	available
in vivo PK	t _{1/2}	medium
	V _d	low (except for LDC 202565)
	CL	low
	F%	good
	↑AUC _{0-inf}	linear
IP position		requires clear definition of scope

Conclusions & Next Steps

- Completely novel therapeutic principle & novel mechanism identified for NET formation *per se* Potential for application in several possible indications associated with NETs
- Proteomics –based target ID potential & novel candidate targets identified
- H2L MedChem advancing 2 frontrunner classes; *in vivo* PK profiles known
 > eADME as well as PK/tolerance results favorable for further *in vivo* testing

Next steps:

- Profiling frontrunner compounds in murine ConA-induced NETosis assays
- > Extended PK/mechanistic PD model (ConA-induced NETosis and/or thrombosis)
- Selection of therapeutic relevant *in vivo* efficacy model (Sepsis, COPD, TRALI, lung diseases, etc.)
- > Further validation of MoA for frontrunner series