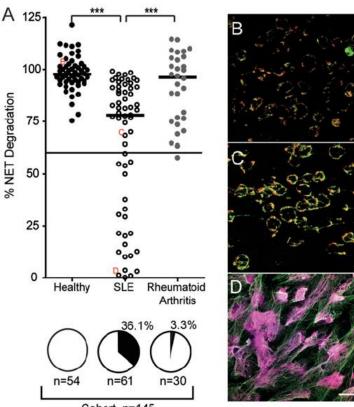
Asset Overview

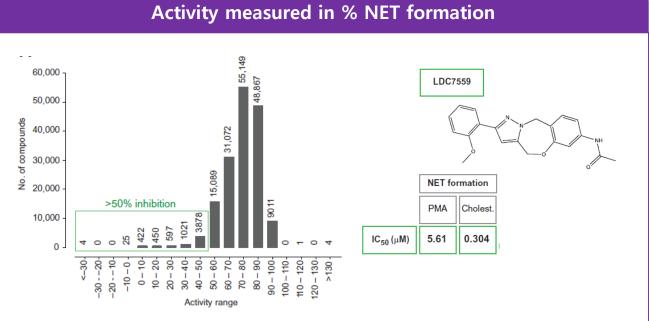

Product Type	Small Molecule	
Indication	Inflammatory diseases	
Current Stage	Hit	
Target(MoA)	NETs / NETosis	
Brief Description	 Neutrophils respond to infections and release extracellular traps (NETs), which are antimicrobial and are made of DNA, histones, and neutrophil proteins. The timely removal of NETs may be crucial for tissue homeostasis to avoid presentation of self-antigens Excessive NET formation is linked to several diseases Imaging based phenotypic HTS of human primary neutrophils (190k compound library) identified multiple sub µM hits series for different phenotypes Validation of hit compounds through assay cascade and additional functional PBMC assays 	
Organization	Lead Discovery Center	

Differentiation

- □ Novel target with potentially various indications
- · Addressing a completely novel therapeutic principle with first in class potential
- Excessive NET formation is a pathogenic principle associated with many inflammatory pathologies incl. SLE, RA, atherosclerosis, thrombosis, sepsis, COPD, etc.

Key Data

NET degradation is impaired in a subset of SLE patients



Cohort n=145

(A) We activated neutrophils isolated from healthy donors to make NETs, incubated them with 10% sera from our cohort for 6 h, and quantified NET degradation. Each circle corresponds to one individual donor. The samples are grouped into healthy donors, SLE patients, and RA patients as indicated. One hundred percent NET degradation was determined using the serum from the healthy donor of the neutrophils. We arbitrarily considered sera that degrade at least 60% of the NETs within 6 h as normal (horizontal line). Sera from all healthy donors (n = 54, black circles) degraded NETs normally; 36.1% of SLE patient sera (n = 61, open circles) and 3.3% of the RA sera (n = 30, gray circles) degraded NETs poorly. ***P < 0.001; Kruskal-Wallis test with Dunn's post hoc comparisons. (B–D) NETs were exposed to representative sera (labeled B, C, or D in A), fixed and immunostained for myeloperoxidase (green) and histones (red). DNA (blue) was stained with Draq5. Representative micrographs show efficiency of NET degradation, with serum from a healthy donor (B), from an SLE patient who degraded NETs (C), and from an SLE patient who did not disassemble NETs (D). (Scale bar in D, 25 μ m for B–D.)

GLOBAL C&D PROJECT

Key Data

GLOBAL C&D PROJECT

Screening results. NETs were quantified by image acquisition. A total of 6397 compounds reduced NET incidence to less than 50%, resulting in \approx 3.4% hit rate.

Frontrunner Profile

Class II			
Activity		Best compounds: <10nM	
hPBMC toxicity		no	
SAR		clear, broad, activity improved	
<i>in vitro</i> SPR	Solubility	low	
	Permeability	medium	
	MLM stability	good	
	MLM Phase 2	compound-dependent	
	Plasma stability (mouse)	compound-dependent	
Metabolites analysis		preliminary: soft are addressable	
Tool compound for target fishing		available	
in vivo PK	t _{1/2}	medium	
	V _d	low (except for LDC 202565)	
	CL	low	
	F%	good	
	↑AUC _{0-inf}	linear	
IP position		requires clear definition of scope	

Intellectual Property

Patent No.	
Application Date	
Status	
Country	

Contact Information

Contact Person	Sven Zimmer
Email	zimmer@lead-discovery.de
URL	https://www.lead-discovery.de/en/strategy/