Synthetic biology towards gene therapy: synthetic repressors in Huntington's disease

Mark Isalan m.isalan@imperial.ac.uk

Gene Network Engineering Group Imperial College London

wt

Engineering zinc fingers to bind new DNA sequences

The zinc finger code

5'-GCA-3'

G A

G

G A

т

Base specified

Huntington's Disease

- >1 in 10,000 people (up to <u>1 in 400</u> in elderly)
- Autosomal dominant
- Typical onset: 35 to 45 yrs

- Abnormal movements, loss of cognitive function, dementia and death
- •Pathology: specific neuronal cell death in striatum and frontal cortex
- •Only palliative treatments, although RNAi and antisense are promising

Zinc fingers to bind poly-CAG

PNAS 109:E3136 (2012)

•Huntington's disease: expanded poly-CAG repeats

•Zinc fingers to bind GCA, GCT (ie CAG)

ZF11xHunt-Koxl reduces mut *HTT* mRNA in a dose-dependent manner

PNAS 109:E3136 (2012)

(2 weeks)

R6/2 phenotype: clasping and rotarod

ZF expression transient at this stage

pNSE-mZF-KRAB constructs mediate long-term repression in whole brain samples after single intraventricular injections.

Agustín-Pavón C et al. *Molecular Neurodegeneration* **11**(1):64 (2016).

Repression of mutant *HTT* ~25% in whole brain after 24 weeks! Other genes (incl. mouse endogenous WT Htt) unaffected Thanks

Imperial College London Marta Ciechonska Marc Sturrock Richard Amaee Alice Grob

Diego Barcena Vivek Raj Senthivel

Masue Marbiah Andreas Broedel

Mireia Garriga-Canut

Natalie Scholes

Dett billingen

Alicia Broto

4. 1 - 4444 12 Kin 2 - 19.

Michal Mielcarek

N-BAN

wellcome^{trust}

EMBL

erc