

Business Unit

Drugs

Drug Discovery Programs (Meprin, AD Ab)

Overview "Business Unit Drugs & Vaccines"

- Small organic molecules
- Biopharmaceuticals
 - Antibodies
 - Peptides
- Natural Products
- Cell Therapies
- Vaccines
 - Protein-/peptide-, DNA-based

Oncology Infection E.g. Solid E.g. Emerging tumors, diseases leukemias, Pathogen CSC Control Inflammation **Neurology** E.g. Auto-E.g. Stroke immune and Neurodiseases degeneration (IBD, RA)

- Drug discovery programs
- Contract research, testing and manufacturing

Proprietary Drug Candidates Overview of selected partnering opportunities

- New antibody against modified Aβ species for AD treatment ⇒ preclinical stage (POC in mice demonstrated)
- Lead candidates for kidney failure and fibrosis (meprin β inhibitors) → preclinical stage
- RSV vaccine & therapeutics approaches
- Papilloma pseudoviruses for the delivery of genetic vaccines
- Clay minerals as toxin adsorber → preclinical stage (POC in mice and rats demonstrated)
- GCSF for treatment of stroke-induced immunodepression preclinical stage (clinical stage in a different setting, PoC for neurogenic immunodepression in rodents demonstrated)
- Extracellular vesicles as cell-free tools for therapies

Drug design and target validation services

Department Drug Design and Target Validation

Track Record*

Discovery of a new treatment against type 2 Diabetes

- Improved glucose control by inhibition of Dipeptidyl Peptidase 4 (DP4)
- Approved since 2007
- DP4-Inhibitors: 9.5 Billion US-\$ in 2012

Discovery of a new treatment against Alzheimer's disease

- Discovery of pyroglutamate (pGlu)-modifzied Aβ-Peptide toxicity in neurodegenerative disorders.
- Currently in clinical Phase II
- Enabled IPO of Probiodrug AG at EURONEXT on Oktober 27th, 2014

LETTERS

medicine

Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer's disease–like pathology Nature 2008

LETTER

Nature 2012

Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β

Department Drug Design and Target Validation Dual Business Strategy

Drug Development Expertise

Development of a pipeline of proprietary drug candidates

- Antibody for AD treatement → POC in vivo
- Small molecules for treatment of fibrosis and kidney diseases → Lead cpds
- Small molecules as new antibiotics → Lead cpds

Provide external partners with drug R&D services on a fee for service base

- MoA exploration (neurodegenerative und inflammatory disorders)
- Target identification and validation
- (GLP-) Analytics for preclinical and clinical studies of small molecules
- Biomarker identification for disease monitoring and therapy monitoring
- Conduct and (if required) generation of relevant in vitro und in vivo models
- Drug development including in silico screening, comprehensive medicinal chenistry capabilities

Drug Design and Analytical Chemistry Unit

Computer chemistry and bioinformatics

- Exact and rapid semi-empirical and quantum chemical methods
- MD simulations
- X-ray crystallography → quality assurance and refinement of models
- Molecular docking, incl. HTvS campaigns
- Department-wide central knowledge management system (ELN und DMS)

Medicinal and peptide chemistry

- Synthesis, purification and analysis of small molecules (without restrictions, multicomponent reactions, enantioselective synthesis)
- Synthesis, purification and analysis of peptides (fully automated, wide range of labels)
- Aided by peptide synthesizers, microwaves, »on-site« mass spectrometry

Small Molecules

Bioanalytics

- Binding analysis of ligand-protein and protein-protein interaction by biophysical methods (SPR, ITC)
- ELISA-based assay development for biomarker analysis
- Qualification of methods for preclinical and clinical analytics

Analytical Development

- Development of methodology for preclinical and clinical trials (LC-UV/VIS and LC-MS coupling)
- Metabolism studies using LC-MS (highly sensitive MS)
- MALDI-TOF/TOF for peptide analytics in biological and non-biological matrices
- Space-resolved MALDI-TOF/TOF for analysis of tissue slices (MALDI-Imaging)

Protein and Drug Biochemistry Unit

Isolation and characterization of proteins as drugs or drug targets

Areas of competence

- Isolation and characterization of proteins for in vitro and in vivo analysis
- Development and application of enzyme assays for drug characterization in vitro
- Isolation, characterization & humanization of antibodies
- Development of other protein drugs

Methods

- Molecular cloning of target gene sequences
- Heterologous expression of proteins in E. coli, yeast, insect and mammalian cells
- Column chromatographic purification of proteins
- Analysis of enzyme structure and function in vitro (spectroscopy and X-ray structure analysis, enzyme assays)
- Structure-based optimization of antibodies (protein engineering)

Scientific Focus

- Small molecules as novel drugs in fibrosis and kidney protection
- Scientific projects with industrial partners (e.g. assays and inhibitor characterization)
- Development of antibodies against modified target proteins, main focus Alzheimer's Disease

Molecular Biotechnology Unit

Target identification and target validation for human pathologies

In vitro pharmacology

 Characterization of drugs with regard to toxicity and transport and/or efficacy in cellular model

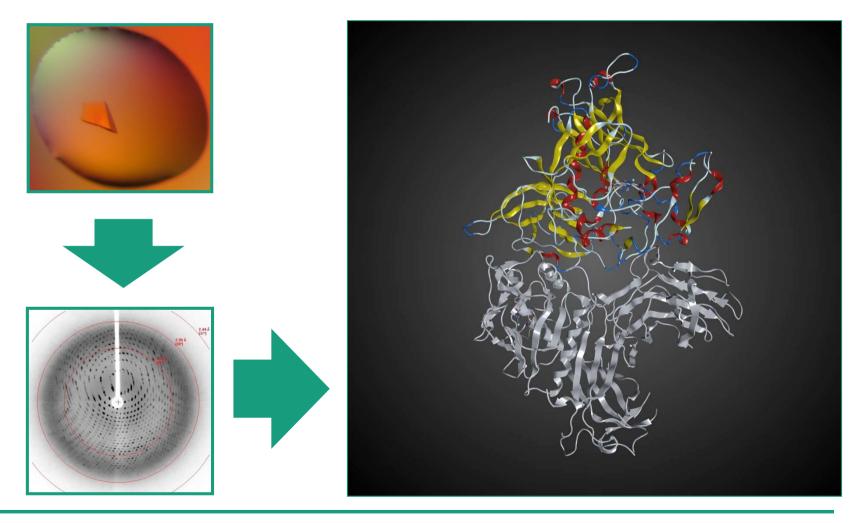
In vivo pharmacology

- Establishing and phenotyping of animal models for pharmacological drug testing
- ADME screening in vivo

Methods

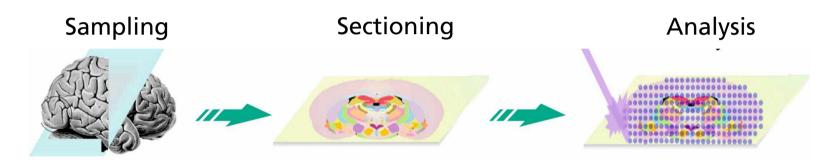
- Mammalian cell culture (S2)
- Primary cell culture
- Organotypic slice cultures
- Cell-biological analyses (FACS, RT-PCR, WB)
- Development and phenotyping of transgenic animal models
- Animal pharmacology, stereotactic CNS injections
- Immunocytochemistry and histochemistry

Technologies

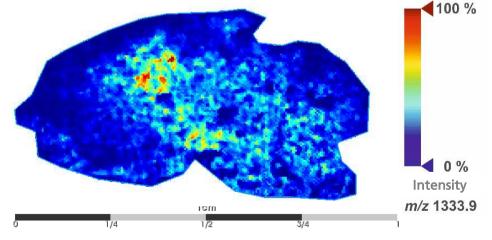

Cell culture

- > 100 permanent cell lines and primary cells
- In vitro-assays for substance characterization
- S2 laboratory

Animal facility


- Microsurgery and macrosurgery
- Comprehensive phenotyping of animal models, incl. a wide range of cognitive tests (Y maze, water maze, contextual fear conditioning, open field, rota rod, tail suspension etc.)

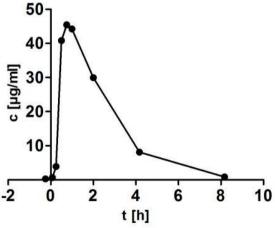
Selected Methods and Models - I Structure-Based Design for Small Molecules and Biologics



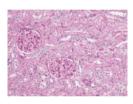
Selected Methods and Models - II MALDI-Imaging

Investigations on regional distribution of molecules in tissue sections

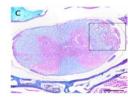
- Localisation of basic myelin protein in Alzheimer's mouse brain
 - 10 μm Sections
 - 50 μm lateral resulution
 - 17.800 mass spectras
 - Mass m/z 800-5000
 - 7,5 h for analysis


Selected Methods and Models - III Animal Pharmacology

- Rat PK model (Catheterized SD rats)
- Combined with LC-MS/MS or LC-UV/VIS detection of small molecules


Selected Methods and Models - IV Animal models IZI-MWT

Pharmacokinetics (PK) model (rat)


Alzheimer's disease mouse models (mouse)

Kidney models (mouse, rat)

In-stent restenosis model (rabbit)

Multiple Sclerosis model (mouse)

Reference Project (Industry)

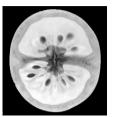
- Preclinial development of RORγt-modulators for autoimmune diseases
 - Synthesis of lead candidate and back-ups
 - Route scouting for upscaling
 - Non-GLP and GLP analytics
 - Generation of target proteins
 - Compound characterization in vitro
 - Compound pharmacology in vivo
 - Scouting for and management of preclinical development
 - Compound characterization (chemistry)
 - Toxicology
 - Metabolism
 - Efficacy
 - Pharmacology

Animal Facilities and Capabilities

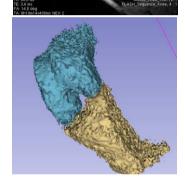
Animal Facilities and Capabilities

- Up to BSL-3 laboratories for immunological assays and animal testing:
 - Completely equipped with isolated ventilated cages for mice and rats
 - 3 different hygiene levels (quaratine, experimental, breeding)
 - GLP certificate for small and large animal facility
 - License for biosafety level 1-3, permission to work with animal epidemic pathogens
 - Surgery facility for large animals
 - Imaging area with NMR, CT, X-ray and bioluminescence

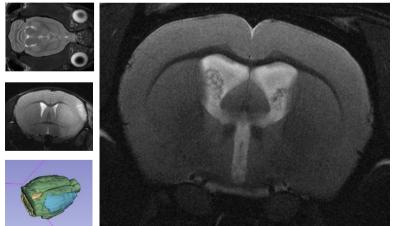
Surgery Facility for Large Animals

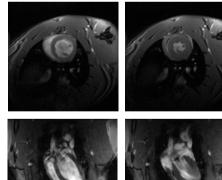

- Operation faciltiy with 2 fully equiped operation rooms including intensive care and C-arm X-Ray
 - Aseptic surgery with inhalation anesthesia and artificial respiration
 - Online measurement of vital parameter (e.g ECG, BP, Temp., SPO2, CO2)
 - Intraoperative measurement of blood gases and metabolism
 - Intraoperative C-arm X-ray with DSA

Imaging Core Unit – Magnetic Resonance Imaging



MRI specifications:


7T (300MHz) with ParaVision 5.1 gradient: B-GA09 high performance shim upgrade gradient strength up to 375 mT/m 4 receiver channels application-specific coils kits advanced physiological monitoring system

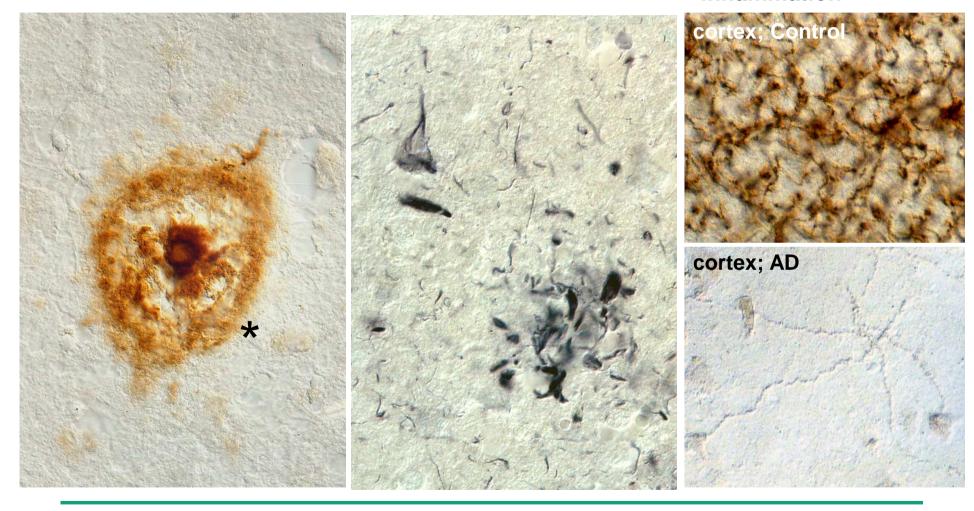

tomatoe

3D mouse knee model

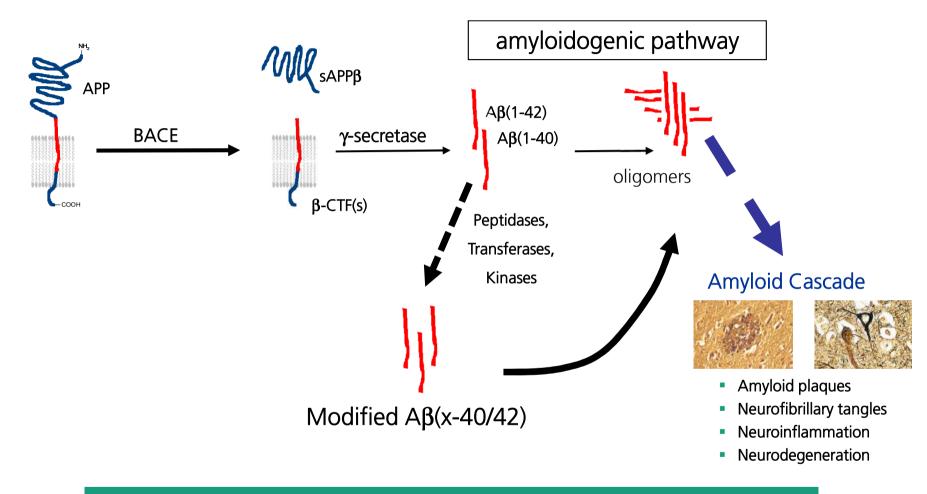
rat (right) and mouse brain (left) anatomy + stroke

heart function in a rat

2D mouse knee


New approaches for AD treatment

Hallmarks of Alzheimer Pathology

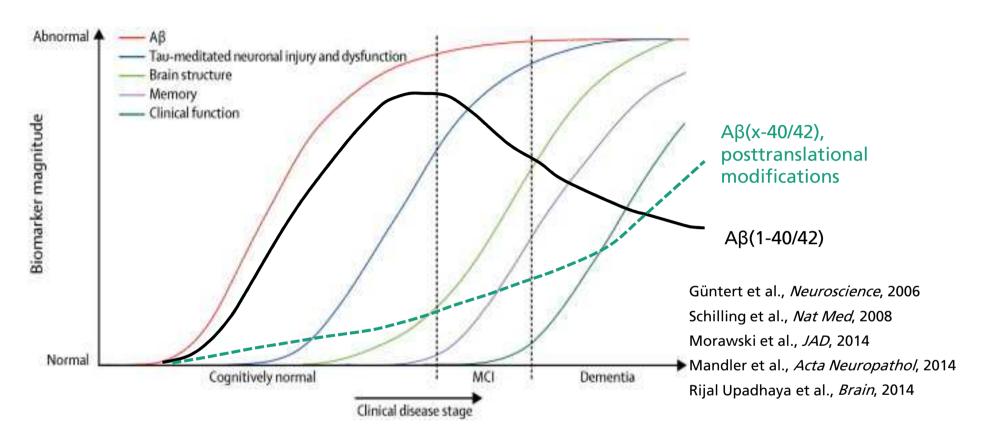

 β -amyloid plaques

neurofibrillary tangles

cholinergic degeneration inflammation

Processing of Amyloid Precursor Protein (APP)

~80% of Aβ in AD is N-terminally truncated and modified


A**β**: The right target, addressed in the wrong way

- Mutations in APP predispose for familial AD
- ApoE4 genotype: strongest risk factor associated with Aβ transport
- Other risk factors (e.g. CD33) associated with Aβ phagocytosis
- Tau mutations not associated with AD

The "Amyloid Cascade": Correct model for Disease initiation, but addressed in the wrong way by pharmaceutics

Search for the right target addressed in the right way

AD: About Loaded Gun and Trigger

Accumulation of N-terminally truncated and modified Aβ correlates with disease progression

Scheme modified from Villemagne et al., Lancet Neurol, 2013

The Fraunhofer isoAsp-Aβ Antibody: Unique Characteristics

- Modified (aged) Aβ only prominent in brain, therefore
 - No capture of antibody in periphery
 - \blacksquare No increase of A β concentration in plasma upon treatment
- Lower epitope density of particularly modified species
 - Better distribution of the antibody within the brain tissue
 - Lower reactivity within CAA*, thus lower risk of ARIAs**

The Fraunhofer antibody to target modified A\(\beta\): lower dosing, low risk of side effects, high efficacy

IsoAspartate (iD) formation – a molecular switch

- at Asp or Asn residues (at Asn ~2-3 times faster)
- within peptides and proteins
- spontaneous reaction
- reaction velocity dependent on primary and secondary structure
- Aβ Tottori mutation (D7N) link to familial AD
- isoAsp produces "kink" in peptide chain and may introduce charge

Isoaspartate

(IsoAsp)

Isoapartate-modified A\(\beta\): Effective anchor for antibody-mediated clearance?

Aspartate


(Asp)

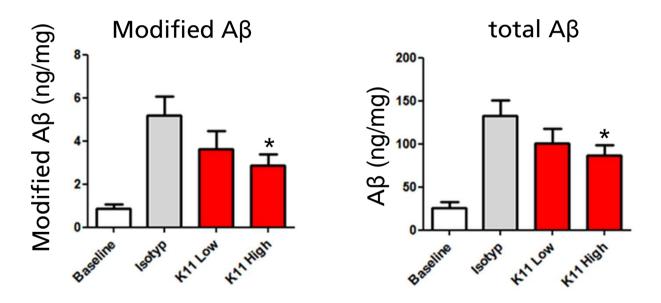
IsoAsp7 antibody affinity and specificity (SPR)

#clone	isoAsp7(L) Aβ	Αβ1-18	selectivity factor
K29	136 nM	9009 nM	~70
K23	5 nM	378 nM	~80
K16	55 nM	3990 nM	~70
K11	6 nM	2700 nM	~400

K11 seleceted for further characterization

Antibody K11: Human AD Brain

New antibody: Reactivity with deposits in AD brain, no tissue cross-reactivity in control brain observed


Treatment of 5xFAD tg Mice

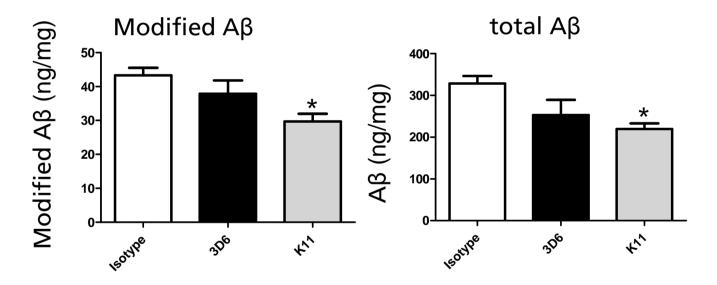
Antibody: Antibody A, IgG2a

Mice: Female, 26 mice in treatment, 6 mice for baseline control

Duration: 12 weeks, start at 3 mo of age

Route: I.p. injection weekly (~100 μl; 150 and 500μg; 500μg isotype control)

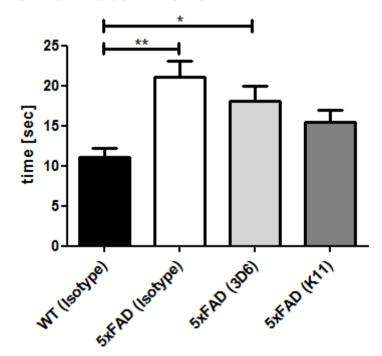
Treatment of transgenic mice - reduction of modified and total $A\beta \to Targeting$ a minor Species (4%) mediates significant therapeutic effects

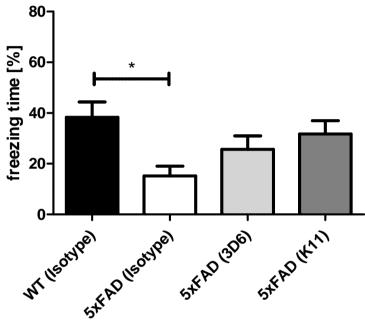

2nd POC Study in Transgenic Mice

Antibody: isoAsp-Antibody (K11), IgG2a; 3D6, IgG2a; Isotype control

Mice: Female, 45 animals in 3 treatment groups

Duration: 3 -11 months of age


Route: Injection (*i.p.*) weekly (~100 μl; 300μg; 300μg isotype control)


IsoAsp-antibody K11- more pronounced reduction of Aß compared to 3D6 (murine version of bapineuzumab)

Behavioral assessment

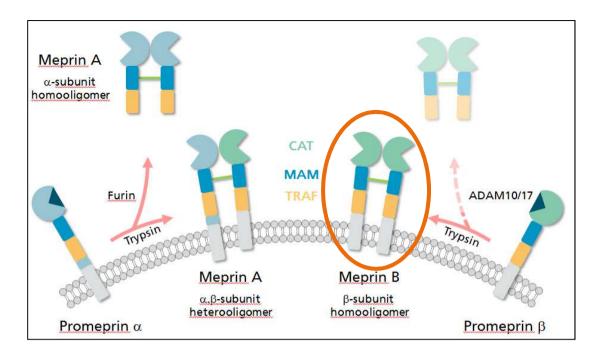
Morris Water Maze

Fear Conditioning

Mean ±SEM, ANOVA followed by Bonferroni post-hoc analysis

IsoAsp-antibody K11- treatment results in a significant improvement compared to isotype control in several cognitive tests

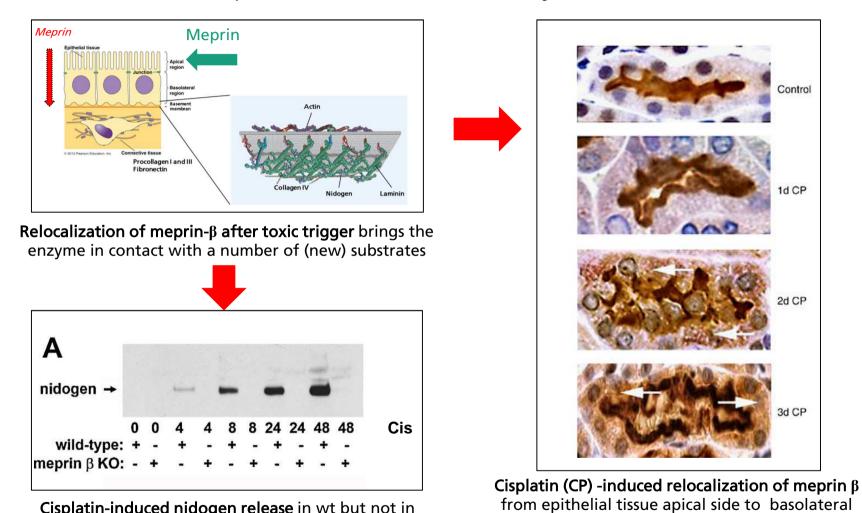
Project Status and Future Directions Current topics


- IP protection (composition of matter, use for therapeutic and diagnostic approaches)
- Ongoing treatment in rodent models introduction of CDC mutation (no complement activation)

USPs over other monoclonal antibodies (e.g. aducanumab, bapineuzumab)

- characterized profile in animal model(s)
- much higher specificity for "disease-specific" amyloid
- no mobilization of amyloid peptides to plasma
- Lower epitope density lower incidence of ARIA expected

Selective Meprininhibitors for the treatment of fibrosis


Meprin β program Target enzyme

- Extracellular zinc-dependent metalloendoproteinase, member of the astacin family
- Highly expressed in kidney*/bowel ephithelial cells as well as in skin, lung, intestinal leukocytes and some cancer cells
- Two isoforms (type 1 membrane protein meprin β , secretory meprin α)
- Substrates include bioactive peptides and proteins of ECM

Meprin β program

Rationale for meprin inhibition in kidney diseases/AKI

mep-β KO mice# * C. Herzog et al, Kidney International (2007); # C. Herzog et al., Toxicology Letters (2015)

Cisplatin-induced nidogen release in wt but not in

membrane*

Meprin β program

Target indication acute kidney injury (AKI)

PRESS RELEASE

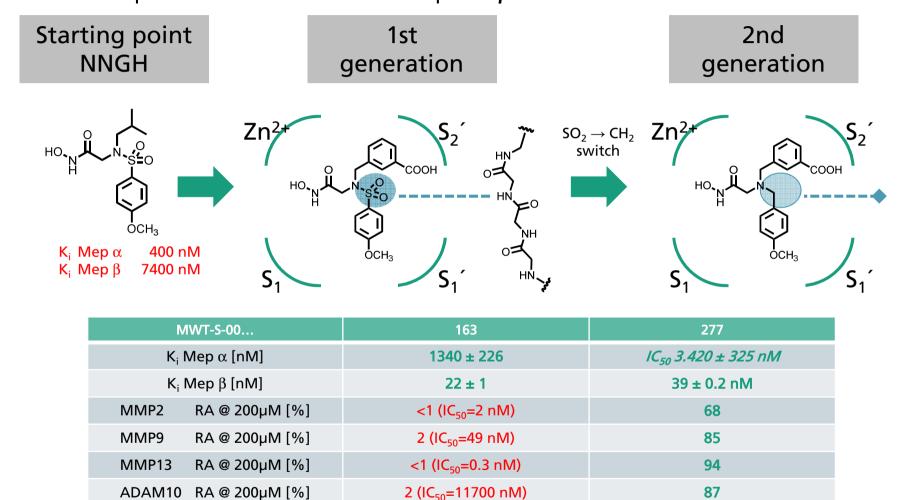
June 27, 2018

The hidden epidemic: Worldwide, over 850 million people suffer from kidney diseases

- Fast kidney function decline caused by ischemic, toxic or septic triggers (doubles sepsis mortality)
 - \blacksquare \rightarrow Up to 30% of patients¹ require chronic dialysis after initial AKI
- Only supporting therapies available (volume substitution, kidney support by dialysis, cardiovascular stabilization, diuretics etc.)
 - → Urgent medical need for new therapy approaches addressing the tissuedegrading AKI effects
- Meprin KO mice are less susceptable to AKI² and meprin inhibitors were able to reduce kidney injury in vivo to some extent³
- Therapeutic kidney protection to block development of chronic nephropathies and fibrotic kidney disease (long term consequence of chronic kidney diseases)
- Prophylactic treatment to enlarge the therapeutic window for nephrotoxic drugs (chemotherapy, antibiotics etc.)

^{2:} Tan et al., 2018; Takayama et al., 2008; Ongeri et al., 2011; Walker et al., 1998

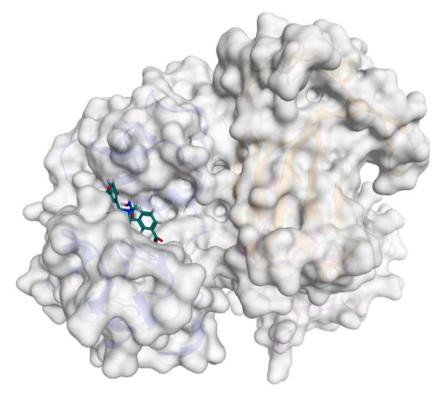
Meprin β program AKI market opportunity


- Annual incidence of AKI in the UK is 577/100.000¹
- Prevalence of chronic kidney diseases worldwide is around 11%²
- Prevention or early treatment at the onset of AKI may substantially reduce dialysis and/or kidney transplantation needs
 - Dialysis
 - Most important therapeutic option: Hemodialysis (costs p.a. 2.1 billion EUR Germany; 42 billion USD USA³)
 - 66% of dialysis indications are interstitial (8%), vascular (23%) and diabetic (35%) nephritis = susceptible for nephro-protective meprin beta inhibitors⁴)
 - Kidney transplantation
 - Germany: Ca. 2.100 transplantations p.a., up to 65.000 EUR per transplantation plus long term follow-up costs up to 20.000 EUR p.a.

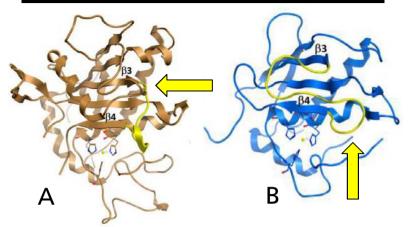
Meprin β program

ADAM17 RA @ 200µM [%]

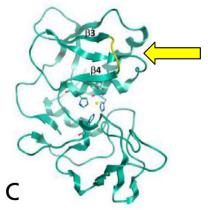
Development of selective meprin β inhibitors


 $<1 (IC_{50}=1240 \text{ nM})$

Indispensable hydroxamic acid Zinc-binding group \rightarrow but sulfonamide group can get modified by replacing the sulfonyl group with a methylene group \rightarrow substantial increase of selectivity


60

Meprin β program Crystal structure



 1^{st} crystal structure of meprin β in complex with inhibitor solved \rightarrow Critical step for substantial increase of meprin selectivity

S-shaped loop adjacent to the active site, bound inhibitors interact with this loop via hydrogen bonds

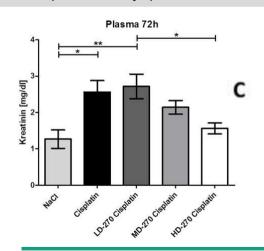
The loop in Meprin β was shown to be much smaller and cannot form such interactions

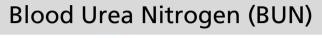
Structural comparison of ADAM17 (pdb code: 2DDF, A), MMP13 (pdb code: 3ZXH, B), and meprin β (pdb code: 4GWN, C), Rambsbeck et al., 2018

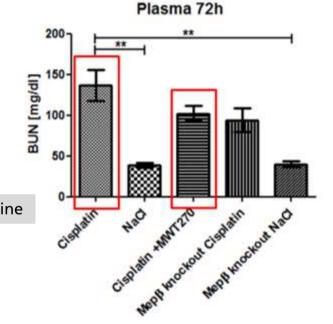
Meprin β program Lead MWT-S00270 – Profiling

Parameter	Value	Parameter	Value
K _i Mep α [nM]	10410 ± 999	F _{abs} p.o. PK, rat, 5 mg/kg	13%
K _i Mep β [nM]	18 ± 3	C _{max} p.o. PK, rat, 5 mg/kg	0,335 mg/l
Sol [μM]	> 200	T _{max} p.o. PK, rat, 5 mg/kg	0,17 h
Viability SY-5Y [%]	97 (@ 100μM)	T½ p.o. PK, rat, 5 mg/kg	5h
Viability Hep-G2 [%]	97 (@ 100μM)	V _D p.o. PK, rat, 5 mg/kg	49,5 ml
MMP2RA @ 200 μM [%]	64	F _{abs} i.p. PK, rat, 10 mg/kg	83,9%
MMP9RA @ 200 μM [%]	74	C _{max} i.p. PK, rat, 10 mg/kg	6,46 mg/ml
MMP13 RA @ 200 μM [%]	78	T _{max} i.p. PK, rat, 10 mg/kg	0,12 h
ADAM10 RA @ 200 μM [%]	93	T _½ i.p. PK, rat, 10 mg/kg	1,98 h
ADAM17 RA @ 200 μM [%]	76	V _D i.v. PK; rat, 3 mg/kg	0,073 L
PPB (mice plasma, 5μM cpd)	82,2%	T _½ i.v. PK; rat, 3 mg/kg	2,5 h
EC50 (cellular assay, APP, EC50	2 μΜ	F _{abs} i.p. PK, mouse, 10 mg/kg	94%
CYP2C9 Inhibition (% RA@25μM)	94%	C _{max} i.p. PK, mouse, 10 mg/kg	29,81 mg/ml
CYP3A4 Inhibition (% RA@25μM)	93%	T _{max} i.p. PK, mouse, 10 mg/kg	0,13 h

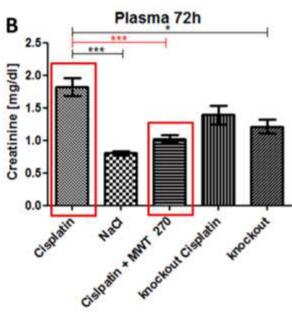
No red flags detected yet


Meprin β program PoP study cisplatin-induced kidney failure

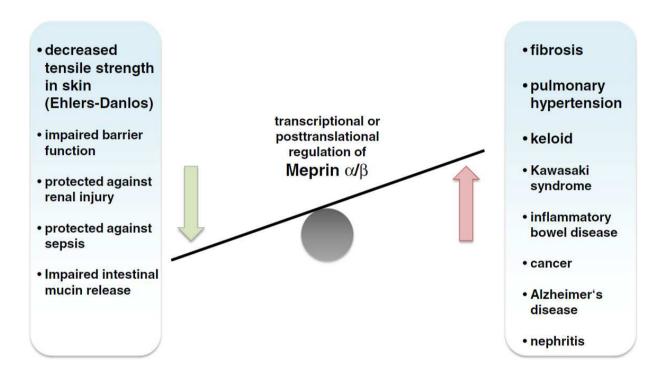

Dosage MWT-270: 50 mg/kg i.p. every 12h, or 10/25/100 mg/kg; first dose 11h before cisplatin treatment


Dosage cisplatin: One dose i.p. 20mg/kg

NaCl: Control group


Dose-response-study, plasma creatinine

Creatinine


MWT-270 reduces BUN/creatinine levels in CP-mice, dose-dependency for serum creatinine levels demonstrated

Meprin β program Summary and Outlook

- There is a good rationale for meprin β playing a significant role in the pathogenesis of kidney diseases, fibrotic disorders, Alzheimer disease, cancer and IBD
- We successfully developed selective meprin β inhibitors and demonstrated PoP in an animal model of acute kidney injury*
- Based on promising in vivo data are we going to continue with the preclinical development of MWT-270 for treatment of AKI and other diseases including fibrosis (i.v. route intended)
- A recently discovered alternative scaffold class with extraordinary potency and enhanced physico-chemical properties is going to be developed for oral application and further indications
- We seek industry partners for further joint development

Meprins and other Astacin Proteases: Attractive Targets for Drug Discovery

Prox et al., Matrix Biology 2015; 44-46, 7-13

Meprin: Endoproteases involved in cytokine activation and procollagen/collagen cleavage

Fraunhofer IZI – development of first selective inhibitors