Asset Overview

Product Type	Antibody
Indication	Oncology
Current Stage	Proof of Concept
Target(MoA)	Antibodies containing modified IgG2 domains which elicit agonist or antagonistic properties.
Brief Description	 Monoclonal antibodies (mAbs) that stimulate anticancer immune responses are proving increasingly effective in cancer treatment, with growing evidence that such responses can be harnessed to provide durable eradication of tumours. This versatile and patented technology provides the exciting opportunity to engineer clinical reagents with defined, tuneable therapeutic activity regardless of FcyR expression levels in the local microenvironment. Through a combination of in vitro and in vivo approaches, it has been shown that the human IgG2 hinge and CH1 domains impart FcyR-independent agonistic activity to immunostimulatory mAbs that bind to - CD40 and that this might also apply to other specificities. Activity is provided by a structurally constrained isoform of hIgG2 due to its unique arrangement of disulfide bonds which confers distinct agonistic (or super agonistic) properties to the mAb.
Organization	CRUK

Differentiation

□ Unmet needs: Influence of immunoglobulin isotype on therapeutic antibody function

- It was unclear to the optimal isotope which should be used in agonistic mAbs or fusion proteins which are to be used for human therapy.
- There is little understanding as to how antibody isotype may affect the therapeutic properties of therapeutic antibody, i.e., the agonistic or antagonistic properties thereof.
- This technology addresses this need and provides improved agonistic (as well as antagonistic) antibodies and further provides means for the synthesis thereof.

□ Advantages

• The observation that IgG2 constant regions also conferred FcyR-independent activity on another anti-hCD40 mAb, SGN40 and also possibly other receptors (data not shown), suggests this may be a general property of this restricted conformation.

Key Data

Agonistic Activity Depends on Both the Human IgG2 Hinge and CH1 Domains (*in vitro*)

The Hinge and CH1 domains confer activity to ChiLob7/4 h2. Schematics of ChiLob 7/4 h1 (top left, in yellow) and ChiLob 7/4 h2 (top right, in blue) and hybrids (second row) where the CH1 (i, CH1 1/2 and ii, CH1 2/1) or CH1 and hinge regions (iii, CH1Hge 1/2 and iv, CH1Hge2/1) of h1 and h2 were swapped. Third row: **CD23 expression on human B cells in the absence or presence of FcyRIIB expressing crosslinking cells**. Bottom: hCD40 Tg FcyRIIB WT or KO **B cell proliferation** in response to the chimeric mAb (mean and range of duplicates).

Only when both CH1 and the hinge of h1 were replaced with that of h2 (CH1Hge 2/1, iv) robust human B cell activation and proliferation of both FcyRIIB WT and KO hCD40 Tg B cells was observed

Key Data

Agonistic Activity Depends on Both the Human IgG2 Hinge and CH1 Domains (*in vivo*)

ChiLob 7/4 CH1Hge 2/1 (iv) produced significant increases in OVA-specific CD8+ T cell expansion, whereas ChiLob 7/4 CH1Hge 1/2 (iii) was inactive

OT I CD8+ T cell responses in hCD40 Tg mice treated with the indicated mAb. ****p < 0.0001

GLOBAL C&D PROJECT

OT I CD8+ T cells have a transgenic T cell receptor designed to recognize ovalbumin residues 257-264 (OVA) and they are used to study the response of CD8+ T cells to antigen (OVA-specific response).

Key Data

Human IgG2 Activity Is Dependent upon Its Disulfide Bond Configuration and Mutagenesis Produces a Range of IgG2 Agonistic Activities

hCD40 Tg FcyRIIB KO mice immunised with OVA peptide plus 100 µg of chemically 'locked' h2A or h2B forms of ChiLob 7/4 hlgG2.

- Differences in ChiLob 7/4 h2A and ChiLob 7/4 h2B activity *in vivo*, where h2B caused significantly greater expansion of OVA-specific CD8+ T cells (Figure A) and production of OVA-specific IgG (Figure B) when compared to h2A
- Data have demonstrated that ChiLob 7/4 h2 could be manipulated in vitro and in vivo to achieve a range of agonistic activities.

IgG2 is unique among human IgG in its ability to <u>"shuffle" disulfide bonds in its CH1 and hinge regions</u> resulting in a range of isoforms. The molecule is believed to be synthesized in its "h2A" form, which then gradually converts in the blood through a series of intermediates to its "h2B" form

Intellectual Property

Patent No.	PCT/IB2015/052166
Application Date	
Status	Registered
Country	US, EP, JP, CN, GB, CA, AU

Contact Information

Contact Person	Matthew Burney Philip Masterson Tara Gipp
Email	matthew.burney@cancer.org.uk philip.masterson@cancer.org.uk tara.gipp@cancer.org.uk
URL	http://commercial.cancerresearchuk.org/sites/default/files/MP_Enhanching% 20Ab%20March%202018.pdf