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The heterogeneity in head and neck squamous cell carcinoma (HNSCC) has made

reliable stratification extremely challenging. Behavioral risk factors such as smoking

and alcohol consumption contribute to this heterogeneity. To help elucidate potential

mechanisms of progression in HNSCC, we focused on elucidating patterns of

gene interactions associated with tumor progression. We performed de-novo gene

co-expression network inference utilizing 229 patient samples from The Cancer Genome

Atlas (TCGA) previously annotated by Bornstein et al. (2016). Differential network

analysis allowed us to contrast progressor and non-progressor cohorts. Beyond

standard differential expression (DE) analysis, this approach evaluates changes in gene

expression variance (differential variability DV) and changes in covariance, which we

denote as differential wiring (DW). The set of affected genes was overlaid onto the

co-expression network, identifying 12 modules significantly enriched in DE, DV, and/or

DW genes. Additionally, we identified modules correlated with behavioral measures such

as alcohol consumption and smoking status. In the module enriched for differentially

wired genes, we identified network hubs including IL10RA, DOK2, APBB1IP, UBASH3A,

SASH3, CELF2, TRAF3IP3, GIMAP6, MYO1F, NCKAP1L,WAS, FERMT3, SLA, SELPLG,

TNFRSF1B, WIPF1, AMICA1, PTPN22; the network centrality and progression specificity

of these genes suggest a potential role in tumor evolution mechanisms related to

inflammation and microenvironment. The identification of this network-based gene

signature could be further developed to guide progression stratification, highlighting how

network approaches may help improve clinical research end points and ultimately aid in

clinical utility.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the most
prevalent of the mucosal head and neck cancers and represents a
significant health burden in the United States with approximately
40,000 new cases and almost 8,000 deaths per year. HNSCC
can arise from multiple locations, including the oral cavity,
oropharynx, hypopharynx, larynx, or nasopharynx (Marur and
Forastiere, 2016). Furthermore, due to its non-specific presenting
symptoms, patients often go undiagnosed until the cancer
has progressed beyond local involvement leading to poorer
treatment outcomes. Despite current treatments, many HNSCCs
will become progressive which is associated with a 40–50% 5-
year survival rate (Bonner et al., 2010). There are many well-
known risk factors for the development of HNSCC, including
smoking or chewing tobacco products, alcohol consumption,
and infection with human papilloma virus (HPV). Thus, reliable
stratification of patients with HNSCC given the current tumor-
node-metastasis (TNM) staging system can be quite challenging
with both social and biological factors at play (Cancer Staging—
National Cancer Institute1; Patel and Shah, 2005). The ability
to better predict tumor progression would be of great benefit
in this patient population, allowing for the proper stratification
of treatment, leading to less treatment-related morbidity in
lower risk tumors as well as an increased probability of
treatment success in higher risk tumors. Understanding tumor
progression mechanisms is a critical step toward achieving
better clinical outcomes. To this end, here we identify features
predictive of tumor progression based on gene expression
data.

To extract gene co-expression patterns that are predictive of
tumor progression, we leverage the availability of transcriptional
data coupled with clinical and behavioral measures of
progression previously annotated by Bornstein et al. (2016). In
their study, sample annotation with respect to progressor and
non-progressor status was performed through the review and
curation of The Cancer Genome Atlas (TCGA) follow-up clinical
data. We hypothesize that there exist alterations in the co-
expression network structure that may differentiate progressors
from non-progressors. By utilizing network measures such as
connectivity (pairwise gene expression correlate measures) and
hubness (quantity and strength of correlation measures of a
gene to all other genes), we will be able to rank the affected
genes and prioritize putative predictors. These features may
further aid research studies in the context of both underlying
tumor progression biology and/or identifying therapeutic
targets.

In order to identify mechanistically informative progressor
features, we leveraged expression data to define pairwise
gene relations across multiple samples as a weighted network
correlation structure (Zhang and Horvath, 2005; Wu and
Stein, 2012). This network model is complementary to classical
approaches such as differential expression and allows for the
discovery of synergies that wouldn’t otherwise be evident when

1Cancer Staging—National Cancer Institute. Available online at: https://www.
cancer.gov/about-cancer/diagnosis-staging/staging (Accessed August 4, 2017).

assessing only single gene differences. Given the complexities of
tumor progression and the different dynamics observed between
clinical tumor subtypes (Sparano and Paik, 2008; Hanahan and
Weinberg, 2011), it is likely that the transcriptional profiles
will differ between the patient group that experiences rapid
tumor progression versus the group with a less aggressive
disease profile. Importantly, the genetic aberrations that
drive the progressor phenotype may lie in the regulatory
networks between genes rather than in abnormal expression
of specific gene products. Thus, network analysis is well-
suited to evaluate this overall hypothesis, and in particular
to detect alterations in transcriptional coordination/co-
expression that are dispersed among large sets of genes and
might be undetectable at the individual gene level. Similarly,
relationships between transcriptional profiles and clinical
and demographic variables, such as alcohol and tobacco use,
could also be possibly better detected and interpreted in a
network context. Finally, network measurements can also
provide an alternative procedure for prioritizing and/or ranking
candidates, based on their relative network importance or
connectivity.

When analyzing transcriptomic data between two
populations, there are a variety of methods that can be
utilized based on the particular hypothesis being ed. Here, we
employ three measures: differential expression (DE), differential
variability (DV) and differential wiring (DW) in order to
identify significant aberrations that define the progressor
population. In differential expression analysis (a non-network
based approach), the gene expression data over multiple patient
samples is used to identify genes with statistically significant
differences in transcriptional status between two populations
(progressor vs. non-progressor). In contrast, differential
variability analysis seeks to identify genes with significant
changes in variance of expression between two populations.
This analysis method has been shown to identify biologically
relevant genetic aberrations which can be overlooked when
performing differential expression analysis alone (Ho et al.,
2008). Finally, differential wiring analysis detects changes in
pairwise expression correlations between genes by integrating
them over all genes in the network, and selects genes and hubs
enriched for these changed correlation patterns. It is important to
note that such changes often affect genes that do not necessarily
exhibit differential expression or variability alone (Hudson
et al., 2009; Iancu et al., 2013). An example of differentially
wiring (DW) between two populations is illustrated in
Figure 1.

MATERIALS AND METHODS

Patient Clinical Demographics
Our study utilizes HNSCC data from TCGA
previously annotated by Bornstein et al. (2016) (progressors
and non-progressors). The data include 229 patient samples
with 68 (30%) progressors and 161 (70%) non-progressors.
The median last encounter days of progressor patients were
considerably lower than non-progressor patients (606 vs. 4856
days). HPV status was missing in 165 (72%) patients, negative
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FIGURE 1 | After defining disease progression based on clinical outcomes, using this annotation in aggregate with expression data and network analysis we can then

utilize the unit of measure differential wiring (DW) to guide patient stratification. This measure detects changes in the collective transcriptional profiles of groups of

genes between patient populations. These genes do not necessarily exhibit differential expression or variability. DW allows for identifying a correlation change of a

gene with all other genes between two patient populations. In this example, the network edges indicate gene expression correlation measures. The size of each gene

node indicates overall connectivity strength. In this example, striking differences in the co-expression networks are seen between HNSCC progressors and

non-progressor for a particular gene (IL10RA).

in 48 (20%), and positive in 16 (6%) (p16 or ISH). One hundred
thirty-one (57%) of the tumors occurred in the oral cavity,
with 59 (25%) occurring in the larynx, and 39 (17%) in the
oropharynx. The mean age in the cohort was 62 years with
138 (60%) complete documented cases of self-reported tobacco
pack years smoked and 97 (42%) alcohol drinks consumed per
day. Remaining patients reported to be lifelong non-smokers
and/or non-drinkers of alcohol or had no clinical documentation
available on these two clinical features. Progressor patients had
a median of 45 pack years and four alcohol drinks per day.
Non-progressor patients reported slightly lower smoking and
alcohol consumption estimates, with median of 40 pack years
smoked and three alcoholic drinks per day.

TCGA Transcriptional Data
RNA-seq data (Level 3; Illumina HiSeq, 2000) from solid tumor
tissue was retrieved from TCGA. All data alignment was mapped
to genome build hg19. To capture meaningful pairwise correlate
measures, we utilize normalized counts per gene as defined
in Li and Dewey (2011). The normalized gene counts were
then transformed via a variance stabilizing log transformation
log2 (x+ 1), based on WGCNA best practices (WGCNA
package2: Frequently Asked Questions). This transformation

2WGCNA package: Frequently Asked Questions Available online at: https://labs.
genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html
(Accessed December 20, 2016).

reduces the dependence of variance on the mean and facilitates
downstream network and correlational analyses. Finally, the
olfactory genes were removed from the pre-processed zero/low
variance gene counts (WGCNA goodSampleGenes function).
The former have been noted to introduce noise in TCGA data
across cancer types due to their locations in the chromosome
(Lawrence et al., 2013) and removed from multiple previous
studies (Wang et al., 2014; Araya et al., 2016).

We examined the data for extreme outliers by visualizing
the samples’ gene expression values as boxplot distributions and
computing the inter-array correlation (IAC). The IAC is defined
as the average Pearson correlation of a sample to all other
samples. These procedures detected no extreme outliers as all
IAC had values > 0.65 (Figure S2).

Co-expression Networks Construction
Following the WGCNA framework (Langfelder and Horvath,
2008), we constructed an adjacency network matrix by (1)
computing the biweight mid-correlation between all gene pairs,
(2) taking the absolute value of the resulting correlations for
construction of an unsigned network (aggregating both up and
down gene regulation), and then (3) raising this value to a power
β chosen such that the network approaches a scale-free structure
(exponential distribution of node connectivity; Figure S1).

Given that biological mechanisms of network components
are best captured by the most connected genes, we restricted
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the size of the network to genes that were in the top 50% with
regards to connectivity. This also reduces the overall network
size and decreases the computational load while preserving
scale-free topology. The resulting networks contained 10,024
genes. The adjacency matrices were further transformed to
a topological overlap measure (TOM) similarity matrix. This
procedure integrates information not only from the direct
correlation between two gene expression patterns, but also
from the correlation patterns of their network neighbors (Li
and Horvath, 2007). The combination of the biweight mid-
correlation coupled with the use of the topological overlap matrix
transformation has been shown to outperform other measures
in the discovery of biologically significant co-expression modules
(Song et al., 2012).

We clustered the TOM based adjacency matrices utilizing
average linkage and the WGCNA dynamicTreeCut function.
Identified clusters (denoted as modules) are uniquely annotated
based on their size by arbitrarily chosen colors. To preclude the
emergence of highly similar modules, we further refined this
procedure by examining the correlations between the module
eigengenes (ME; 1st principal component). Additionally, module
size was restricted to 30 genes as a lower bound to preserve any
downstream statistical test assumption of normality.

Following identical procedures, separate networks were
constructed utilizing the progressor and non-progressor samples.
Each network’s correlate weights were raised to the soft threshold
powers of β = 5 and β = 6 for progressor and non-progressor
conditions respectively (Figure S3).

Once we determined that modules were highly preserved
across networks (see module preservation across networks),
a consensus network was constructed utilizing the minimum
adjacency values of the two networks, ensuring that high
consensus co-expression values reflect high co-expression in both
networks.

Consensus modules were detected utilizing the WGCNA
blockwise Consensus Modules function, with the “max block
size” parameter set to 10,024 to account for analysis of all genes
in one block. This function takes a list of datasets as input, which
in our case were the progressor and non-progressor samples. We
utilized a dendrogram cut height of 0.995. Visualization of the
resulting dendrograms and module color assignment is provided
in Figures S4, S5.

Module Preservation Across Networks
As networks and modules were initially constructed
independently in the two datasets, module overlap across
networks was evaluated utilizing the WGCNA module
Preservation function (Langfelder et al., 2011). This function
computes module quality and preservation values. Module
quality evaluates whether modules, as detected by the clustering
procedure in the progressor network, significantly differ
from random groups of genes in the same network. Module
preservation evaluates whether modules detected in progressor
network are different from random group of genes in the
non-progressor network. In both cases, statistical significance
is evaluated by bootsrapping (N = 200 permutations), which
involves selecting random groups of genes of the same size

as the module being evaluated. The average co-expression
values of random groups of genes are then compared with the
co-expression values for genes in the module and the results are
returned as Z scores with associated p-values.

Consensus Module Membership and
Clinical Feature Relationship
For each gene, we computemeasures of network connectivity and
gene significance. Gene connectivity is a measure of relative gene
importance within a network and/or module and is quantified
utilizing two measures. Intramodular connectivity is denoted as
kWithin and for a gene j is computed with the formula kIMi =∑

i 6= jaij where Mi denotes module i and aij denotes the
adjacency between gene j and all other genes in module Mi.
A distinct and complementary measure of gene connectivity is
quantified by the correlation between the gene expression profile
and the module eigengene; this quantity is denoted as kME =

cor (xi,ME). In many cases a linear relationship is expected
between kME and KWithin; this relationship was observed in our
data (Figure S7).

Relationships between gene expression values and clinical
features are denoted as gene significance (GS) and are quantified
by the magnitude of the Pearson correlation coefficient GSi =

|cor (xi, Fclinical trait)|. In the present study we considered two
clinical traits: tobacco use quantified as pack years, and alcohol
use quantified as drinks per day. In addition to individual genes,
gene modules can also be related to clinical traits; in this case the
correlation is computed between the module eigengene and the
clinical trait.

Differential Network Analysis
Although the consensus network contains consensus modules
from both conditions, there may still be statistically significant
differences between the two conditions’ modules, detectable
at the single gene level. Ultimately, these genes may retain
informative progressor differences (Fuller et al., 2007; Iancu
et al., 2013). We utilize the structure and module assignment
of the consensus network to provide a system level context
to the changes in the transcriptional profile between the two
conditions.

At the individual gene level, we quantify three distinct and
complementary changes in transcription: differentially expressed
(DE), differentially variable (DV), and differentially wired (DW)
genes. To detect DE genes, we used the eBayes function from
the “limma” R package (limma3; Ritchie et al., 2015). For DV
genes, we compared the variance of samples utilizing the var.test
function in the “stats” R package (R: F Test to Compare Two
Variances4). Differential wiring between two genes was evaluated
by examining the difference in pairwise correlation between the
progressor and non-progressor groups; this approach is adapted
from previous approaches of quantifying network rewiring in
both genomic (Gill et al., 2010) and neural imaging studies

3limma Bioconductor. Available online at: http://bioconductor.org/packages/
limma/ (Accessed September 2, 2017).
4R: F Test to Compare Two Variances Available online at: https://stat.ethz.ch/R-
manual/R-devel/library/stats/html/var.test.html (Accessed September 2, 2017).
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(Hosseini et al., 2012). We utilized the r.test function in the
“psych” R package. For each gene, we recorded the number of
significantly changed edges (r.test p < 0.01). Next, we evaluated
whether the number of changed edges is above what can be
expected by chance, given the total number of genes and the total
number of changed edges. We utilized a binomial probability

with the rate r = # changed edges
# edges

, i.e., the number of changed edges

divided by the total number of edges in the network. Under this
model the null hypothesis is that the changed edges are randomly
distributed among all the nodes and the alternative hypothesis
is that some nodes will be enriched in changed edges. In the
binomial distribution each gene has N trials, where N is the
number of genes and also the number of edges for each gene.
The probability of a gene having at least ni changed edges is
p (n > ni) = B (N, r). The set of DW genes was then taken to
be the genes enriched in changed edges at p < 0.01.

We denote as “affected genes” the set of genes that are DE, DV,
or DW. Next, we inquired whether individual modules contain
more of the affected genes than what can be expected by chance
given the size of the affected gene set, size of the network and
the size of the module (Fisher’s exact test). Bonferroni corrections
were done based on the number of modules.

Pathway Enrichment Analysis
Consensus modules’ pathway enrichment analysis was
assessed utilizing ReactomeFIViz, the Reactome Cytoscape
app (ReactomeFIViz—ReactomeWiki5; Wu et al., 2014).
ReactomeFIViz’s basic data entities are known proteins and
their functional interactions. The overall data network model
is designed to capture known functional protein-protein
interactions (PPI). This analysis was applied to the full gene
set of all progressor consensus modules including those
enriched in affected genes. Detailed pathway enrichment
analysis tables (pathway, Binomial p-value, FDR, gene list) along
with co-expression consensus modules gene lists (utilizable
as input to ReactomeFIViz) can be found in Supplementary
Data-2, 3, 4.

Software
The R code for this project is open-source and can be accessed via
https://github.com/teslajoy.

RESULTS

Progressor Network Construction and
Preservation
We constructed a co-expression network based on the progressor
samples, identifying 21 modules ranging in size from 45 to 1,127
genes. Modules were evaluated for both quality (Figure S4) and
preservation in the non-progressor network (Figure 2—see also
Supplementary Data-1). All progressor modules displayed high
quality measures and also showed high preservation in the non-
progressor weighted network (Figure 2; Supplementary Data-1).

5ReactomeFIViz—ReactomeWiki Available online at: http://wiki.reactome.org/
index.php/ReactomeFIViz (Accessed September 2, 2017).

FIGURE 2 | Progressor network modules are preserved in the non-progressor

network. Figure shows preservation Zsummary statistic (y-axis) as a function of

module size. The dashed blue (low) and green (high) lines are thresholds

highlighting 2 < Z < 10 region corresponding to moderate/high preservation.

Detailed statistics of all modules are listed in the Supplementary Data-1.

Consensus Network Construction
The preservation of the progressor modules in the non-
progressor network indicates that overall network and
module structure is preserved and no progressor-specific
modules have emerged. In light of this finding, we combined
the two conditions’ datasets and constructed clustering of
consensus modules. Network adjacency in the consensus
network was based on the minimum adjacency across the two
conditions.

Biological consensus modules between the two conditions
are made of similar gene structure but their interactions
and expressions are variable (Figure 3). Also, since each
consensus module retains different samples, progressors and
non-progressors separately, their module properties are not the
same (e.g., module eigengene).

We identified 18 consensus modules ranging from 71 to
1,389 genes (Figure 3, Table S1). There were 882 unclustered
genes that were assigned to the “gray” pseudo module. All genes
showed high module membership with kME and KIM Pearson
correlations > 0.9 (p < 0.01; Figure S6).

Relating Smoking and Alcohol Exposure to
Consensus Modules
We evaluated the relationship between gene expression and
tobacco/alcohol use both at the level of individual genes
and at the level of gene modules. At the individual genes,
module membership (as measured by kME) showed strong
correlation with gene significance for our clinical risk factors
(see Figures S7–S9). At the module level, we correlated the
module eigengenes to the same “pack years” and “drinks per
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FIGURE 3 | Consensus clustering identifies organized gene expression patterns of both progressor (left) and non-progressor (right) conditions. These clusters are

subnetworks of tightly connected nodes (genes) that we refer to as modules. Here we demonstrate one of the modules color-coded in turquoise, with clear wiring

differences/variability (gene effects) between the two conditions. Nodes are the top 20 genes with high kME measure in progressor condition (45% have high kME in

non-progressor). Wiring width demonstrates correlation magnitude strength. The networks’ wiring weights are correlations greater than 0.6. Size of each genes node

indicates overall connectivity strength.

day” risk factors. We utilized the consensus module assignment,
but eigengenes were constructed separately for the progressor
and non-progressor networks. While the non-progressor module
eigengenes showed only weak correlations with each risk factor,
in the progressor network, seven module eigengenes had a
stronger relationship with alcohol consumption; in contrast only
the cyan module had a strong correlation with tobacco use
(Figure 4).

Cancer Progression and Differential
Network Analysis
Leveraging network properties at the individual gene level, we
quantified differences in expression, variability, and correlation

(DE, DV, and DW respectively); each measures’ gene list is
available via the Supplementary Data-3.

Not all modules had an equal proportion of affected genes.
We identified 7,055 genes that were differentially expressed,
3,682 genes that were differentially variable, and 34 genes that
were differentially wired. Overall, 12 modules were enriched
in identified affected genes, with 11 having more DE or DV
genes and only the turquoise module having above the expected
DW genes (Table 1). All identified enriched modules’ expression
profiles were evenly distributed and showed no outstanding
noise/batch effect (Figure S10).

We further analyzed connectivity and hubness (potential
driver events) of DW genes in the turquoise module.
From the 34 DW genes, we identified 18 genes (shown in
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FIGURE 4 | Heatmap of Pearson correlations (−1:1 shown by color legend) for alcohol (drinks per day) and tobacco use (pack years) with the co-expression

consensus module progressor eigengenes. The corresponding p-values are in parentheses. The brown, yellow, black, pink, tan, and cyan modules show the highest

positive correlation with drinks per day. The cyan module shows the highest positive correlation with tobacco pack years smoked.

Table 2) that were both hubs (kME > 0.8) and enriched
in changed edges (p < 0.01; Binomial). The visual network
structure and wiring differences of these 18 genes between
HNSCC progressor and non-progressor conditions can be
seen in Figure 5. This result confirms our hypothesis on
the existence of alterations in the co-expression network
structure that differentiate progressor from non-progressor
populations.

Pathway Enrichment Analysis of Enriched
Modules
We performed a pathway enrichment analysis of the modules
enriched in DE/DV/DW affected genes. To capture known
pathways, we included all genes of enriched modules.

Pathway enrichment analysis of the progressor module
enriched in DW genes showed involvement in inflammation,
T cells, B cells, natural killer cells, adhesion, and the Jak-
Stat pathway. This result adds to the evidence in the
Bornstein et al. study (2016) and reemphasizes the potential
importance of cancer associated inflammation pathways

and tumor microenvironment evolutionary mechanisms in
tumors with higher progression rates. We also found the
pathway association between the identified 18 differentially
wired hub genes has not been discovered and remains
unknown.

Modules enriched in DE or DV genes showed involvement in
multiple hallmarks of cancer and tumor mechanism dynamics
such as cell cycle check points, abnormal mitosis, spindle
bipolarity, receptor synapse deregulation and important cellular
pathways such as c-myc, MAPK, Jak-Stat, and P53. There were
also noted associations between the enriched pathways and
diseases such as Alzheimer’s and Parkinson’s. This characterized
information could potentially further our research on tumor
pathway completion studies.

We also assessed the overlap of enriched modules in
pathways with FDR < 0.05. This was to investigate the co-
dependency or overlap of biological mechanisms despite the
measure of affected genes (Table 3). We found 149 pathways
that overlapped between modules and 16 pathways that
involved DV or DW enriched modules. The affected genes
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TABLE 1 | Summary of identified consensus modules enriched in affected genes

via differential network analysis between progressor and non-progressor

conditions.

DW DV DE

Turquoise (14) Black (242) Black (513)

Purple (212) Blue (1298)

Pink (236) Cyan (148)

Light cyan (71) Tan (215)

Salmon (95) Gray60 (71)

Yellow (658)

Light green (69)

The number of affected genes found in each module is noted in parentheses.

were identified to be unique to each associated pathway,
but overlapping between pathways. Notably, pathways
associated with DW measure show high involvement
of inflammation and tumor microenvironment evolution
mechanisms.

DISCUSSION

Previously annotated and curated TCGA HNSCC data
(Bornstein et al., 2016) provides the opportunity to study
samples from both progressors and non-progressors from a
network perspective. Weighted networks analysis can provide
a holistic view on disease dynamics, but also enables us
to reduce the complexity into organized and measurable
relations. We were able to reduce the expression data from
over 10,000 genes to 18 mechanistic modules. Within these
modules we further focused on gene hubs with high correlation
with alcohol/tobacco use, or with changing network profiles.
Finally, through pathway enrichment analysis, we provide
a context for the activity of these genes and relate them to
biologically relevant pathways through the human protein
Interactome.

Among the modules enriched in DE/DV/DW genes we
identified aberrations in molecular pathways important
for cell cycle check points, mitosis and spindle bipolarity,
macrophage activity, immune response and T cells, interferon
gamma signaling pathway, as well as c-myc, MAPK, Jak-
Stat, and P53 pathways (see Supplementary Materials for
a complete list of affected pathways). More specifically,
pathway enrichment analysis of the module enriched in DW
genes highlighted involvement of inflammation and tumor
microenvironment evolution mechanisms. These results are
an important extension to previous finding of Bornstein et al.
(2016). We identified IL10RA, DOK2, APBB1IP, UBASH3A,
SASH3, CELF2, TRAF3IP3, GIMAP6, MYO1F, NCKAP1L,
WAS, FERMT3, SLA, SELPLG, TNFRSF1B, WIPF1, AMICA1,
PTPN22 as differentially wired hub genes (putative network
driver genes). This putative signature represents an early step
toward developing stratification techniques based on tumor

TABLE 2 | Summary measure of 18 genes identified as differentially wired hub

genes in the turquoise module [kME > 0.8 and enriched in changed edges

(p < 0.01; Binomial)].

DW Genes kME Changed edge enrichment p-value

UBASH3A 0.9378 2.4596e-04

SASH3 0.9325 1.8283e-06

APBB1IP 0.9278 2.4596e-04

CELF2 0.9205 1.7880e-40

IL10RA 0.9054 2.4596e-04

TRAF3IP3 0.9005 1.8283e-06

GIMAP6 0.8985 1.5076e-18

MYO1F 0.8969 2.4596e-04

NCKAP1L 0.8965 2.4596e-04

WAS 0.8943 2.4596e-04

FERMT3 0.8919 2.4596e-04

SLA 0.8846 2.4596e-04

SELPLG 0.8813 2.4596e-04

TNFRSF1B 0.8745 1.0199e-08

WIPF1 0.8677 1.8283e-06

DOK2 0.8419 2.3464e-43

AMICA1 0.8368 8.6198e-35

PTPN22 0.8226 2.4596e-04

The genes are sorted by the magnitude of kME.

genomics that could potentially identify patients with a high
likelihood of tumor progression early on. Interestingly, it has
been shown that gene expression networks show characteristic
changes in correlation during transition from normal to a
disease state (Censi et al., 2011) as well as during normal
cellular differentiation (Mojtahedi et al., 2016). Given these
measurable changes in network properties and the ability
of differential wiring analysis to provide a global descriptor
for the network, it is feasible that—with more samples—a
gene expression network threshold could be defined for the
progressor phenotype. Utilized as a surveillance tool, this
could provide clinicians with an early warning for patients
at risk of developing progressive disease. Furthermore, if
the progressor-specific molecular pathways that we have
identified are validated in cell and animal models, our
findings could aid in the development of targeted therapy
for HNSCC.

We also assessed the overlap of significantly enriched modules
in pathways (Table 3). We found 149 pathways that overlapped
between modules and 16 that overlapped modules specifically
enriched in DV/DW genes. The affected genes were identified
to be unique to each associated pathway, but overlapping
between pathways. Given the clinical phenotype of interest,
progression, pathways associated with DW measure show high
involvement of inflammation and tumor microenvironment
evolution mechanisms. The identification of Ras signaling
as a pathway that overlaps with multiple modules enriched
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FIGURE 5 | Network structure of 18 DW hub genes showed striking expression connectivity measure differences between HNSCC progressor (left) and

non-progressor (right) conditions. These genes were identified as differentially wired hub nodes in the turquoise module [kME > 0.8 and enriched in changed edges

(p < 0.01; Binomial)]. Visually, wiring width demonstrates correlation magnitude strength. Weights are correlations > 0.6 to capture mid/low strength connectivity in

the non-progressor condition. The size of each gene’s node indicates overall connectivity strength.

in DV/DW genes serves as a validation of this type of
network analysis in tumor genomics. This well-known cellular
signaling pathway is involved in critical functions such as cell
growth, migration, adhesion, cell survival, and cell differentiation
(Rajalingam et al., 2007; Fernández-Medarde and Santos, 2011).
Aberrations in the Ras pathway are some of the most frequent
findings in human cancers and have been previously described
in some HNSCC samples (Hoa et al., 2002; Rothenberg and
Ellisen, 2012). Interestingly, in colorectal cancer, the EGFR
antibody, cetuximab, showed benefit in clinical trials, but the
benefits did not hold for patients with Ras mutations. Thus,
the development of targeted agents for the Ras pathway is
an active area of research (Bahrami et al., 2017; Simanshu
et al., 2017). Also of interest is the identification of the VEGF
signaling pathway. This family of growth factors is involved
in angiogenesis and its members have been shown to be
involved in a variety of human malignancies (Olsson et al.,
2006; Stacker and Achen, 2013). Furthermore, previous studies
have linked VEGF signaling to HNSCC (Tong et al., 2008;
Lucas et al., 2010). As therapeutic options are currently limited
in HNSCC, our finding adds strength to the evidence that
VEGF signaling may be a potentially targetable pathway in
HNSCC.

The current focus of therapeutic advancement in cancer
calls for a precision/personalized approach based on detectable
molecular abnormalities of a patient’s tumor that can then be
exploited in a targeted manner. However, many questions still
remain open as to what the best methods of molecular analysis

are, who is likely to benefit, and why. Our results suggest
that a stratification procedure could benefit from inclusion
of transcriptional hub genes related to disease progression.
Additionally, DW measure assessment over temporal data
could potentially be informative regarding targeted therapy
failure or drug outcome predictions between subpopulations
which has not been clinically evaluated (e.g., currently we
have only assessed EGFR and cetuximab). If this measure
is captured longitudinally, it has the potential to reveal
novel discoveries on disease state and tumor evolution
mechanisms.

Beyond progression status, we also evaluated gene expression
correlations with alcohol and tobacco use. Although data
annotation of alcohol consumption per day was less complete
than pack years, we found stronger associations of alcohol habits
with co-expression consensus modules (Figure 4; Figure S9). We
hypothesize that this is potentially due to patients’ stronger recall
on the quantity they drink per day vs. packs of cigarettes they
smoke through a year. This finding underlies the importance of
advancing the quality of measured clinical data for improving
research results.

Overall we have shown that the use of de-novo weighted
network inference in the context of biological pathways provides
new insights for both mechanistic and prognostically relevant
information in HNSCC. Follow-up studies can incorporate other
clinical phenotypes such as measurements derived from tumor
imaging and could ultimately lead to a greater understanding of
these tumors.
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TABLE 3 | Summary of pathway enrichment analysis showing pathways (FDR < 0.05) that overlapped between modules and are enriched in genes showing DV/DW.

Pathway Modules Measure FDR Genes

Chemokine signaling

pathway(K)

Turquoise,

salmon

DW, DV 0, 0.002 GNG2, PIK3CG, NCF1, GNGT2, LYN, WAS, CCL25, CCL22, CCL21, ARRB1, CX3CL1, CCL5,

DOCK2, VAV1, CXCL13, XCL2, RAF1, JAK2, JAK3, ADCY6, CCR8, CCR7, CCR6, CCR5,

CCR4, CX3CR1, CCR2, XCR1, CXCL9, STAT3, ITK, CXCR3, PLCB3, CXCR4, CXCR6, PLCB2,

PRKCB, RASGRP2, PIK3R5, PIK3R1, BCAR1, CXCR5, PIK3R3, GNG7, CCL19

Platelet activation(K) Turquoise,

pink

DW, DV 5e-04, 0.038 BTK, ACTG1, PIK3CG, PPP1CA, LYN, APBB1IP, P2RY12, MYL12B, P2RX1, LCP2, ADCY6,

PLA2G4C, ITPR1, GP5, PLCB3, PLCB2, RASGRP1, RASGRP2, PIK3R5, PIK3R1, MAPK3,

GNAI3, GNAI1, PLA2G4F, PLA2G4E, PLA2G4D

B cell receptor signaling

pathway(K)

Turquoise,

salmon

DW, DV 6e-04, 0 BTK, PIK3CG, NFKBIE, RAC3, LYN, CARD11, VAV1, INPP5D, NFATC2, RAF1, PTPN6, PRKCB,

PIK3R5, PIK3R1, CD22, PIK3R3, CR2, CD19, CD79B, CD79A

BCR signaling pathway(N) Turquoise,

salmon

DW, DV 8.00E-04,

8.00E-04

BTK, LYN, CARD11, RASA1, INPP5D, RAF1, MAP4K1, PTPN6, MAP3K1, POU2F2, PIK3R1,

PTPRC, SH3BP5, CD22, CD19, CD79B, CD79A

Fc gamma R-mediated

phagocytosis(K)

Turquoise,

pink

DW, DV 0.0018, 0.038 PIK3CG, NCF1, SPHK2, LYN, WAS, DOCK2, VAV1, LAT, PIP5K1B, INPP5D, RAF1, PRKCB,

PIK3R5, PIK3R1, PTPRC, PLD2, MAPK3, PLA2G4F, PLA2G4E, PLA2G4D

GPCR downstream

signaling(R)

turquoise,

light cyan

DW, DV 0.011, 0.0438 GNG2, PIK3CG, SSTR3, GAST, RGS1, NMUR1, ARHGEF4, ARHGEF6, GPR65, CCL25, CCL21,

P2RY12, P2RY13, P2RY10, P2RY14, PDE3B, PDE4D, GPR55, FGD2, DRD1, CYSLTR1,

ADORA2A, CCL5, ADRA2A, FGD3, VAV1, CXCL13, XCL2, CSF2RB, RHOB, CSF2RA, GPR18,

JAK2, JAK3, ADCY6, S1PR4, GPR132, CCR8, CCR7, CCR6, CCR5, CCR4, CCR2, ABR,

CCKAR, OXER1, XCR1, CXCL9, NMB, ITPR1, VIPR2, PTHLH, IL3RA, INSL3, CXCR3,

ARHGAP4, PLCB3, CXCR4, CXCR6, PLCB2, RAMP3, GHRL, RASGRP1, RASGRP2, IL2RG,

PIK3R5, PIK3R1, IL2RB, GNA14, TACR1, HTR2B, MCF2L

Oxytocin signaling

pathway(K)

Turquoise,

purple, pink

DW, DV 0.0159, 0,

0.0024

ACTG1, PIK3CG, PPP1CA, KCNJ2, CACNA2D4, CACNA1F, NFATC2, RAF1, ADCY6, CAMK4,

PLA2G4C, ITPR1, PLCB3, PLCB2, PRKCB, PPP1R12B, PIK3R5, PIK3R1, MEF2C, ADCY2,

MYLK3, MYLK2, RYR1, CACNB1, CACNA1S, PRKAG3, CACNG6, CACNG1, CAMK2B,

PRKAA2, CAMK2A, PRKAB1, MAPK3, GNAI3, GNAI1, ELK1, CDKN1A, PLA2G4F, PLA2G4E,

PLA2G4D, CALM1

Ras signaling pathway(K) Turquoise,

pink

DW, DV 0.0183,

0.0206

GNG2, PIK3CG, RAC3, ZAP70, GNGT2, RASA1, RASSF5, RGL1, MET, LAT, RRAS2, RAF1,

EFNA3, PLA2G4C, FOXO4, STK4, RASAL3, FASLG, PRKCB, RASGRP1, RASGRP2, PIK3R5,

PIK3R1, GAB1, PLD2, MAPK3, PLA2G2F, ELK1, PLA2G4F, PLA2G4E, PLA2G4D, CALM1

Gastrin-CREB signaling

pathway via PKC and

MAPK(R)

Turquoise,

pink, light

cyan

DW, DV 0.026,

0.0129,

0.0127

GNG2, GAST, NMUR1, GPR65, P2RY10, CYSLTR1, XCL2, RAF1, JAK2, GPR132, CCKAR,

XCR1, NMB, ITPR1, PLCB3, PLCB2, GHRL, RASGRP1, RASGRP2, PIK3R1, GNA15, LTB4R,

LPAR5, MAPK3, BDKRB1, BDKRB2, LTB4R2, GNRHR, ANXA1, GNA14, TACR1, HTR2B

Neurotransmitter Receptor

Binding And Downstream

Transmission In The

Post-synaptic Cell(R)

Turquoise,

purple

DW, DV 0.0295,

0.0049

GNG2, KCNJ2, GNGT2, GRIK5, RAF1, ADCY6, CHRNA7, CHRNA6, CAMK4, KCNJ10, AKAP5,

PLCB3, PLCB2, PRKCB, MDM2, ADCY2, CHRNA1, ACTN2, CHRND, CHRNG, CAMK2B,

CAMK2A

VEGF signaling pathway(K) Turquoise,

pink

DW, DV 0.0334,

0.0451

PIK3CG, RAC3, SPHK2, NFATC2, RAF1, PLA2G4C, PRKCB, PIK3R5, PIK3R1, MAPK3,

PLA2G4F, PLA2G4E, PLA2G4D

Gastric acid secretion(K) Turquoise,

purple

DW, DV 0.0354,

2e-04

GAST, KCNJ2, ADCY6, KCNJ10, ATP1A3, ATP1A4, ITPR1, PLCB3, PLCB2, PRKCB, ADCY2,

ATP1B4, MYLK3, MYLK2, CAMK2B, CAMK2A, ATP1A2

Central carbon metabolism

in cancer(K)

turquoise,

pink

DW, DV 0.0494,

0.0176

PIK3CG, TP53, SLC7A5, SLC2A1, MET, FLT3, RAF1, PIK3R5, PIK3R1, PGAM1, PGAM4,

HIF1A, MAPK3, HK2

Calcium signaling

pathway(K)

purple,

pink, light

cyan

DV 0, 0.0451,

5e-04

SLC8A3, ADCY2, TNNC2, TNNC1, ATP2B2, MYLK3, MYLK2, RYR1, CACNA1S, ATP2A1,

PHKG1, CAMK2B, CAMK2A, PLN, GNA15, ITPKA, BDKRB1, BDKRB2, PPIF, LTB4R2, CALM1,

GNA14, TACR1, HTR2B, CACNA1D

Glutamatergic synapse(K) pink,

salmon

DV 0.0024,

0.0437

PLD2, MAPK3, GNAI3, GNAI1, HOMER1, HOMER2, PLA2G4F, PLA2G4E, PLA2G4D, HOMER3,

GNG7, GRM7

Serotonergic synapse(K) pink, light

cyan

DV 0.0122,

0.0438

MAPK3, GNAI3, GNAI1, PLA2G4F, PLA2G4E, PLA2G4D, ALOX12B, HTR2B, CACNA1D

In order to highlight findings from the network analysis, DE modules have been excluded. Genes of the associated pathway are unique within each pathway, but overlap between

pathways (Supplementary Data-5).
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