

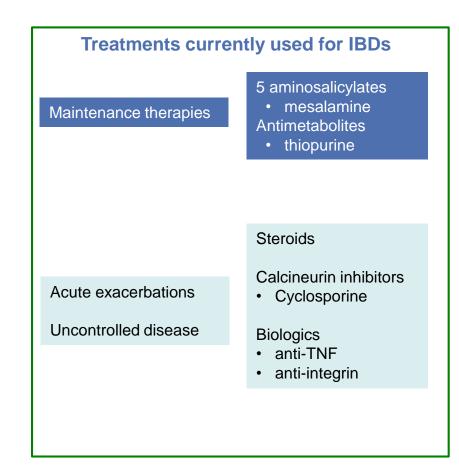
Intercepting inflammation with RIPK2 inhibitors

Walter and Eliza Hall Institute of Medical Research

Melbourne, Australia

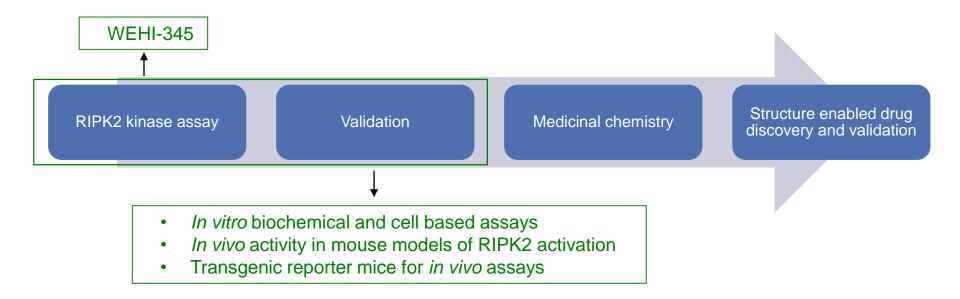
RIPK2 serine threonine kinase is a key driver of inflammation

- NOD2 receptors are intracellular sensors of a range of stimuli
 - peptidoglycan from bacteria
 - ssRNA viruses
 - intracellular bacteria
- RIPK2 is an essential mediator of the response to bacterial peptidoglycan
- RIPK2 signaling drives expression of proinflammatory cytokines and type I interferon


RIPK2 and inflammatory bowel disease

- Crohn's disease and ulcerative colitis are highly prevalent gastrointestinal autoimmune disorders
 - Over 3 million cases worldwide
 - Chronic disease often with relapsing remitting course
 - Life threatening in patients with fulminant disease
- Hyperactivation of NOD2:RIPK2 receptors is a key driver of IBD
 - RIPK2 inhibitors have shown efficacy in preclinical models of inflammatory bowel disease
 - we have identified WEHI-345 as a novel RIPK2 inhibitor (46nM IC_{50})
 - treat active inflammatory episodes and maintain remission

RIPK2 inhibition: a novel anti inflammatory approach


- Directly inhibits the key signaling cascade in IBDs
 - Interrupting this signal at the source is likely to be more efficacious than downstream processes
- Large Pharma are developing RIPK2 inhibitors
 - Published molecules are potent and specific but have liabilities
- We have established
 - Structure enable drug discovery program
 - Enzymatic assays for RIPK2 and related kinases
 - Novel *in vitro* cell based and *in vivo* assay systems for target validation studies

RIPK2 inhibitor program at WEHI

- WEHI-345 is a potent and specific RIPK2 inhibitor
 - Acceptable *in vivo* pharmacokinetics and supportive efficacy data in mouse models of sepsis and diabetes
- Represents an excellent molecule for lead optimization studies
 - structure enabled medicinal chemistry
 - In vivo validation studies

What are we after?

- We are seeking a co-development partner to support lead optimization of our series of RIPK2 inhibitors
 - 1. Medicinal chemistry
 - 2. Structural biology
 - 3. In vitro biochemical and cellular assays of RIPK2 activity
 - 4. In vivo validation of RIPK2 inhibition in SAMP1/YitFc mouse model of ileitis
 - 5. Position the technology for pre-clinical toxicity program and IND filing
- Ultimate goal is to develop clinical candidate as well as back-up compounds with appropriate potency, safety and pharmacokinetic profiles for the treatment of inflammatory bowel diseases

Walter and Eliza Hall Institute of Medical Research

Business Development Office 1G Royal Parade Parkville, Victoria 3052 Australia

www.wehi.edu.au/businessdevelopment

David Segal PhD Technology Development Manager segal@wehi.edu.au

Anne-Laure Puaux, PhD Head of Commercialisation puaux.a@wehi.edu.au

© Walter and Eliza Hall Institute of Medical Research, Non-confidential