

Targeting plasmacytoid dendritic cells as treatment for systemic lupus erythematosus

Walter and Eliza Hall Institute of Medical Research

Melbourne, Australia

Systemic lupus erythematosus (SLE)

- Chronic autoimmune disease of the connective tissue.
 - Lupus nephritis, inflammation of the kidney, is a major contributor to morbidity and mortality among SLE patients
- SLE affects 20-40 people out of every 100,000
 - Most prevalent in non-Caucasians and in women, incidence is highest between 15–44 years.
 - Currently no cure with treatments predominantly aimed at easing symptoms.
 - Mainstay therapeutic options delivered by off-label therapies with undesirable safety profiles

Bhattacharya, 2011; Borchers et al., 2012; O'Neill and Cervera, 2010; Danchenko et al., 2006 https://ghr.nlm.nih.gov/condition/systemic-lupus-erythematosus (accessed 24/09/2018)

Plasmacytoid dendritic cells – a potential SLE treatment

- Plasmacytoid DCs (pDCs) are over-activated in SLE patients and play an important role in disease pathogenesis
 - Drive disease through over-production of interferons (IFN)
- Mature pDCs and IFN- α are already targets for immunotherapy
 - e.g. CSL362 anti-IL-3R α mAb and Anifrolumab, Astra Zeneca's anti-IFN- α mAb
- Can pDCs be targeted at the developmental stage?

Plasmacytoid dendritic cells – a potential SLE treatment

- Researchers at WEHI have developed an in vitro system to generate mouse DCs
 - Produces large numbers of DCs (60-100 million from one mouse) expressing appropriate cell surface markers

Naik, Proietto, et al. 2005 Naik et al. 2010

pDC inhibitor program at WEHI

WEHI researchers have identified a novel inhibitor that effectively depletes human pDCs

pDC inhibitor program at WEHI

Research in <u>mice</u> showed that the inhibitor, and backup compounds, **block pDC development** (but not survival) and **ameliorate IFN production**

pDC inhibitor program at WEHI

Currently:

- 1. Undertaking medicinal chemistry studies to identify SAR and mode of action
- 2. Refining the compound (stability) to allow for *in vivo* validation in genetic and human xenograft models of SLE

Dr Shalin Naik, PhD

- Immunologist
- Research group studies how immune cells develop from hematopoietic stem cells

Associate Professor Guillaume Lessene, PhD

- Medicinal chemist
- Research group focuses on cellular pathways controlling cell death

What we want/partnering opportunities

We are seeking a co-development partner to:

- 1. Identify the target of the inhibitor
 - Cross-linking immunoprecipitation (CLIP): variant with UV cleavable linker available, assay requires further optimisation
 - Cellular Thermal Shift Assay (CETSA)
- 2. Develop a lead candidate which would allow testing of in vivo efficacy and safety
 - Preclinical validation pathways using genetic and human xenograft models of SLE established at WEHI
 - Real time 4D 2-photon confocal microscopy available for in vivo efficacy studies

Goal: Positioning the technology for pre-clinical toxicity program and IND filing.

Walter and Eliza Hall Institute of Medical Research

Business Development Office 1G Royal Parade Parkville, Victoria 3052 Australia

www.wehi.edu.au/businessdevelopment

Clare Morgan, PhD
Business Development Manager
cmorgan@wehi.edu.au

Anne-Laure Puaux, PhD
Head of Commercialisation
puaux.a@wehi.edu.au