Asset Overview

Product Type	Tumor mitochondria vaccine for the treatment of cancer
Indication	Oncology
Current Stage	Lead Identification/optimization
Target(MoA)	Dendritic cell–based RENCA mitochondrial lysate vaccine elicited a cytotoxic T cell response in vivo and conferred durable protection against challenge with RENCA cells.
Brief Description	Researchers at the Ohio State University, led by Dr. Chenglong Li, have designed novel, non-peptidomimetic molecules for use as anti-cancer inhibitors of STAT3, a protein involved in gene expression and associated with various cancers. The molecules were developed using Fragment-based Drug Design (FBDD) and tested for half maximal inhibitory concentration (IC50).
Organization	University of Pennsylvania

Differentiation

D Problem

- Progression in cancer immunotherapy has been rapid with a number of products currently available and many others in late stage clinical development
- However, clinical response to immunotherapies is variable and dependent on cancer types as well as specific characteristics or genetic mutations within a patient's individual tumor
- There is a need for tumor-specific therapies with applicability to a range of cancer types
- □ Solution
- The Facciabene lab at the University of Pennsylvania has developed a technology that uses Tumor Associated Mitochondria Antigens (TAMAs) extracted from the tumor as a cancer vaccine
- The technology involves pulsing dendritic cells with TAMAs. In an in vivo model of renal cell carcinoma (RCC) the vaccine elicits a cytotoxic T-cell response and provides long-term protection from tumor progression when used either prophylactically or therapeutically
- The Facciabene lab has established that TAMAs can produce an effective anti-tumor immune response in RCC (Future work will validate the data in human RCC and investigate additional cancer types and combinations with other immunotherapies)

□ Advantages

- Long-term protection from tumor progression demonstrated in RCC
- Potential use in other cancer types with mutations in mitochondrial proteins (e.g. kidney, colorectal, ovarian, breast, bladder, lung, pancreatic)
- Utilization of a dendritic cell platform validated in humans

Key Data

Mitochondria lysate is engulfed by in vitro–derived bmDCs but does not induce maturation

Immature DCs were pulsed with B) mitochondrial preparation (Mito) or whole-tumor lysate (WTL) and then matured with IFN-g and LPS (right panels) or left untreated (left panels). CD11c, CD11b double-positive cells were analyzed for CD40, CD80, CD86, and PD-L1 markers by flow cytometry. (C) Cytokine production (IL-2, IL-5, and MCP1) was measured from supernatants immature DCs cocultured with of mitochondria (DC + mito) or immature unpulsed DCs (DC) (p = not significant between pulsed and unpulsed samples for all cytokines examined, all data pg/ml).

Prophylactic vaccination using DCs loaded with RENCA mitochondria lysate

(A) BALB/c lysate derived from RENCA solid tumors (DC/Solid Tumor mito) resected from 20-dold tumor-bearing mice, from RENCA cells grown in vitro (DC/RENCA mito), or from kidneys (DC/Kidney mito) of healthy mice. Two weeks after the last immunization, animals were injected (s.c.) with 1 3 106 RENCA cells and monitored for tumor growth. Data are mean (n = 10 mice/group for each experiment). p , 0.05, Tumor mito or RENCA mito versus Kidney mito, logrank test. (B) Animals that rejected tumors after the first challenge in (A) were rechallenged with RENCA cells 3 mo later. All of the animals previously immunized with DC/RENCA mito and DC/Solid Tumor mito were protected after a second challenge.

Therapeutic vaccination with DCs loaded with RENCA mitochondria lysate controls tumor progression.

GLOBAL C&D PROJECT

(A) In a therapeutic setting, mice were challenged s.c. with 1 3 106 RENCA cells and were vaccinated 1 wk later with bmDCs pulsed with DC/RENCA mito, DC/Kidney mito, or DCs alone (DC). Data are mean 6 SEM (n = 10 mice/group for each experiment, except DC group [n = 5]). (B) T cells isolated from DC/RENCA mito–vaccinated mice are reactive against RENCA cells. Purified T cells (1 3 105) from DC/RENCA mito–vaccinated mice were cocultured with stimulator RENCA cells or control CT26 cells (10:1 ratio), and IFN-g ELISPOT was performed.

Adoptive transfer demonstrates a T cell–mediated antitumor effect upon vaccination using DCs loaded with RENCA mitochondria

Isolated CD3+, CD4+, and CD8+ T cells and naive CD3+ T cells were injected i.v. into RENCA tumor-bearing mice (challenged 1 wk before the adoptive transfer) that were sublethally irradiated (4–5 Gy) 8 d before adoptive transfer. Data are mean 6 SEM (n = 10 mice/group for each experiment). Adoptively transferred CD3+, CD4+, or CD8+ T cells control tumor progression and result in CD3+ T cell infiltration. p , 0.0001, CD8 and CD3 versus naive CD3; p , 0.001, CD4 versus naive CD3. (B) Serum, injected i.p. into another group of mice, did not control tumor progression (p = not significant).

Intellectual Property

Patent No.	US 2017-0216419 A1
Application Date	2015.07.22
Status	Application Pending
Country	US

Contact Information

Contact Person	Lemon, Neal
Email	nlemon@upenn.edu
URL	http://upenn.technologypublisher.com/technology/19465