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Background

Oral SERDsS

B-SERD Pharmacology

BETI Pharmacology

Approximately 70% of breast cancer patients have estrogen receptor
positive (ER+) tumors; and despite the success of endocrine therapy, 50%
will progress to metastatic disease with resistance to tamoxifen (TAM) and
aromatase inhibitors (Als). Fulvestrant (FUL), a selective estrogen receptor
degrader (SERD) able to ablate ER, was introduced to clinical practice in
2002 for advanced ER+ metastatic breast cancer. In August 2017, FUL was
added to first-line therapy after demonstrating superiority to first-line Al
therapy. Acquisition of FUL resistance In first-line setting (and In
combination with CDK4/61, i.e palbociclib) has arisen in many patients,
which may be associated with the poor pharmacokinetics of FUL leading to
sub-maximal dosing. Moreover, neither FUL, nor oral SERDs in current
clinical trials address brain metastases. We have previously developed a
novel family of oral SERDs, exemplified by G1T48 (ESMO Poster 340P).

ODbjectives

1. To design and develop brain-bioavailable oral SERDs (B-SERDS) to treat
metastatic ER+ breast cancer, addressing brain metastases that
significantly degrade patient prognosis.

2. To explore epigenetic modulation in cancer by designing and developing
novel bromodomain and extra-terminal inhibitors (BETI) that can effectively
iInhibit growth of TAM, FUL, and palbociclib (Palbo) resistant breast cancer.

3. To explore BETI in combination with SERDs and B-SERDs in endocrine
resistant breast cancer to enhance efficacy, or prevent/delay resistance.

SERD/BETI Hypothesis
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Co-targeting of ERa and transcriptional regulator (BET) has potential to:
1) increase efficacy in TAM/AI resistance setting; and 2) overcome

acquired resistance to SERDs in ER+ breast cancer.
(Left figure adapted from cryo-EM structure published in Molecular Cell 57, 1047-1058)
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Selective estrogen receptor modulator Selective estrogen receptor downregulator
ER degradation ICgy = 0.07 nM
ER binding Ki = 0.57 nM
Growth inhibition of breast cancer cells:
Treatment resistant ICsp = 0.3 nM
Tamoxifen sensitive ICsq < 0.1 nM

B-SERD Optimization
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YF3-122 (50 mg/kg p.o.) pharmacokinetic parameters
Oral bioavailability (F) 22%
T1/2(h) 4.48
Cmax Ratio (Brain/Plasma) 1.54
Cmax (ng/ml) 413
AUCast Ratio (Brain/Plasma) 1.26
AUCHf h*ng/mL 2292
Tmax (h) 1.0

BETI Optimization

YF2-23 (30 mg/kg p.o.) pharmacokinetic parameters
Oral bioavailability (F) 49%
T1/2(h) 2.9
hERG inhibition IC55 (M) 29
Cmax (ng/ml) 3090
Cl_obs (ml/min/kg) 25.5
Vss_obs (L/kg) 1.49
CYP inhibition 3A4 (10 pM); 2C8 (6 pM)
PPB 97.98%

| m / Co-crystal structure of YF2-23 with BRD4-BD1

shows that the “warhead”, pyridinone, forms
bidentate H-bonds with  ASN140. The
sulfonamide in YF-2-23 forms two hydrogen
bonds with ASP88 and lysine 91 and two
additional water-mediated hydrogen bond with
lysine 91. The pyridine-indole ring system
occupies the WPF shelf.
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Summary of B-SERD in vitro activity. 2D growth inhibition (A, B). Data normalized to vehicle (1.0) and
no cells (0.0) shown as mean + SEM. (C) ER level following treatment for 24 hr by In-Cell-Western. Data
corrected to vehicle (1) and 1 pM 2 shown as mean + SEM.(D) ERa degradation after 24 h treatment of
MCF7:WS8 cells with drugs (10 nM) measured by western blot and inhibited by proteasomal inhibitor MG-
132 (1 uM) normalized to vehicle (1.0).
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Conclusions

1. B-SERDs were developed with good oral and brain bioavailability,
evolved from the scaffold of G1T48. B-SERDs matched the efficacy and
potency of FUL in cell cultures and xenografts resistant to TAM and In
ESR1 mutant cell lines. Side chain architecture led to SERD, SERM, and
SERM/SERDs (the latter manifested lower efficacy in MCF7:5C cells). All
SERMSs, B-SERDs were ineffective in the MCF7:CFR cell line.

2. An orally bioavailable, selective BETI was Identifled with greater
antiproliferative potency in MCF7:.CFR cells than six BETi in clinical trials.
On-target toxicity was not seen in xenograft studies, possibly due to PK
properties. YF2-23 was differentiated from JQ1 In potency and
transcriptional signature. Potent growth inhibition of MCF7:CPR cells and
synergistic actions with B-SERDs in MCF7:5C cells were observed.

3. The antiproliferative actions of BETI are not limited to breast cancer cells,
extending to pancreatic and other cell lines. Xenograft models are unlikely
to recapitulate the iImmunomodulatory effects of BETI on tumor growth.

Future Directions

1. Testing of B-SERDs in ER+ breast cancer brain metastasis model using
I.C.v. or intracarotid delivery of labeled MCF7:PKCa cells.

2. Comparison of B-SERD vs SERD In transcriptional complex dynamics
and effect of added BET!I.

3. Dose-ranging of B-SERD and BETI in multiple treatment-resistant ER+
breast cancer cell lines and in xenograft models.

4. Exploration of BETI beyond antiproliferative actions.
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