243 Covalent Activators Of K2p Channe

Asset Overview

Product Type	Small molecule
Indication	Cardiovascular diseases
Current Stage	Lead Identification /optimization
Target(MoA)	Covalent Activators Of K2p Channels
Brief Description	The newly identified chemical probes consist of an aromatic region that specifically binds to a novel allosteric pocket unique to the TREK1 potassium ion channel, as well as an electrophilic moiety that binds to the channel. Treating cells expressing wild-type K2P or mutant channels with the appropriate electrophile results in 2-5-fold activation of the channel over baseline activity.
Organization	University of California, San Francisco

Differentiation

□ Role of TREK-1 in Health and Disease

- TREK-1 is the most studied background K2P channel
- In the nervous system, TREK-1 is involved in many physiological and pathological processes such as depression, neuroprotection, pain, and anesthesia
- Despite recent advances poor pharmacological profiles of K2P channels limit mechanistic and biological studies
- □ First Covalent Activators Of K2p Channels
- Researchers at UCSF have identified a novel allosteric pocket unique to the TREK subfamily of potassium ion channels
- Developed a series of covalent small-molecule modulators that specifically target TREK1
- All members of the series increase TREK1 activity over channel baseline, and their covalence has been confirmed with x-ray crystallography and/or washout studies
- □ Value Proposition
- UCSF products ML335 and ML402 bind and activate a cryptic binding pocket within the C-type gate selectivity filter of TREK-1 channel
- It activate also TREK-2 with no significant effect on TRAAK channels

243 Covalent Activators Of K2p Channel

Key Data

a, b, Exemplar current traces for K2P2.1 (black) with 20 μ M ML335 (purple) (a) and K2P4.1 (black) with 50 μ M ML335 (orange) (b). c, ML335 dose-response curves for K2P2.1 (black), EC50 = 14.3 ± 2.7 μ M (n \geq 5); K2P2.1(K271Q) (blue filled circles); K2P4.1 (orange); and K2P4.1(Q258K) (green), EC50 = 16.2 ± 3.0 μ M (n \geq 4); and K2P2.1–ML335a (black open triangles). d, e, Exemplar current traces for K2P2.1 (black) with 20 μ M ML402 (purple) (d) and K2P4.1 (black) with 50 μ M ML335 (orange) (e). f, ML402 dose-response curves for K2P2.1 (black), EC50 = 13.7 ± 7.0 μ M (n \geq 3); K2P2.1(K271Q) (blue); K2P2.1 (blue); K2P4.1 (orange); and K2P4.1(Q258K) (green), EC50 = 13.6 ± 1.5 μ M (n \geq 3).

243 Covalent Activators Of K2p Channe

TREK activation model

Grey lines indicate mobile P1 (tan) and M4 (blue). C-type activators (orange) stabilize the selectivity filter and channel 'leak mode'. Potassium ions are purple. Gap in arrows indicates current flow intensity. Membrane is grey.

(SF1) are sticks.

243 Covalent Activators Of K2p Channels

Intellectual Property

Patent No.	US 9862684 B2
Application Date	2015.07.31
Status	Registered
Country	US, EP, JP

Contact Information

Contact Person	Priya Ramu
Email	priya.ramu@ucsf.edu
URL	https://techtransfer.universityofcalifornia.edu/NCD/30178.html