373 Mps1 Kinase Inhibitors As Mitotic Regulator for Cancer Therapy

Asset Overvie	W		
Product Type	Small Molecule		
Indication	Oncology		
Current Stage	Lead identification / optimization		
Target(MoA)	Inhibitors of Mps1 Kinase as Mitotic Regulators		
Brief Description	 Mps1 is overexpressed in both solid and hematological tumors and genetic or chemical inhibition suppresses tumor growth. Novel small molecule Mps1 inhibitors have been patented. The lead compounds 1 and 13 inhibit Mps1 kinase enzymatic activity with IC50 values from 0.356 uM to 0.809 uM, and inhibited Mps1-associated cellular functions such as centrosome duplication and the spindle checkpoint in triple negative breast cancer cells. The most promising analog, compound 13, controls tumor growth without weight loss when given IP daily for 6 weeks in a Cal-51 TNBC xenograft model The lead molecule is orally bioavailable and brain penetrant Preliminary in vitro efficacy in hematologic malignancy 		
Organization	The Ohio State University		

Differentiation

□ Mps1 (monopolar spindle 1 or TTK1) as a therapeutic target

- Mps1 is critical for genomic integrity
- Mps1 activity is critical in regulating centrosome duplication and spindle assembly checkpoint
- Highly aneuploid cells are susceptible to targeting by Mps1
- TNBC is highly aneuploid and therefore treatable by Mps1 inhibition

Mps1 pipelines

- CFI-402257 (The Campbell Family Cancer Research Institute): Phase I/II for metastatic HER2negative breast cancer & phase I for castrate refractory prostate cancer, oral administration
- S-81694 (NMS-P153, Les Laboratoires Servier): Phase II for metastatic breast cancer & phase I for solid tumor, oral administration, studied in in vitro and in vivo models in TNBC, highly selective, MPS1 $IC_{50} = 3nM$, impressive tumor growth inhibition associated with tumor regression in efficacy studies. proliferation data performed on a large panel of cell lines (>100)
- BAY-1217389 (Bayer): Phase I for advanced solid tumors including TNBC (combination w/paclitaxel), oral administration, moderate efficacy in monotherapy in tumor xenografts studies and unique MoA when combined with paclitaxel
- BOS-172722 (Boston Pharmaceuticals): Phase I for solid tumors including TNBC (combination w/paclitaxel)
- PF-7006 & PF-3837 (Pfizer): Preclinical for breast cancer, tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition with PD modulation of a downstream biomarker (pHH3-Ser10). In vivo efficacy studies with PF-7006 using an orthotopic xenograft model of basal-a/TNBC breast cancer resulted in only 59% tumor growth inhibition (TGI) at the MTD 25 mg/kg.
- NMS-P715 (NMS Group): Preclinical for GBM, oral administration, oral bioavailability 37% (10 mg/kg), and good PK properties, 53% tumor growth inhibition by 90 mg/kg QDx10 in A2780 ovary carcinoma xenograft model, At this dose, the compound well tolerated and no signs of body weight loss or other overt toxicities. 43% tumor growth inhibition by 100 mg/kg QDx7 in A375 melanoma xenograft model

Key Data

In vitro assay in panel of breast cancer cell lines

IC50 determinations of compounds 1, 7, 9, 13, and known inhibitor, Mps1-IN-1, in panel of breast cancer cell lines.

Centilie			1C50 ± 5EW (µW)	IC50 I ЭЕМ (ДИИ)			
		BASAL subtype	Cpd 1	Cpd 7	Cpd 9	Cpd 13	Mps1-IN-1
CAL-51	TNBC	Basal	0.23 ± 0.04	1.26 ± 0.24	0.30 ± 0.01	0.55 ± 0.10	2.92 ± 1.08
HCC1937	TNBC	Basal	0.73 ± 0.25	0.84 ± 0.15	1.10 ± 0.01	1.02 ± 0.07	>10
BT-20	TNBC	Basal A	0.35 ± 0.38	0.06 ± 0.01	1.71 ± 0.21	0.37 ± 0.20	>10
BT-549	TNBC	Basal B	0.81 ± 0.17	2.19 ± 0.59	1.30 ± 0.01	0.06 ± 0.27	1.73 ± 0.71
MDA-MB-436	TNBC	Basal B	0.90 ± 0.28	5.23 ± 3.94	1.23 ± 1.01	0.66 ± 0.35	>10
MDA-MB-468	TNBC	Basal B	0.19 ± 0.07	1.57 ± 0.29	0.32 ± 0.04	0.35 ± 0.22	1.85 ± 0.51
Hs578T	TNBC	Basal B	>10	>10	>10	>10	>10
MDA-MB-231	TNBC	Basal B	>10	0.40 ± 0.05	>10	>10	>10
CAMA-1		Luminal	0.36 ± 0.02	0.84 ± 0.71	0.65 ± 0.13	0.60 ± 0.47	>10
Sk-Br-3		Luminal	>10	0.75 ± 0.22	0.47 ± 0.01	0.40 ± 0.38	>10
AU565		Luminal	>10	>10	>10	0.95 ± 0.15	>10
T47D		Luminal	>10	0.33 ± 0.18	>10	>10	>10
MDA-MB-453		Luminal A	0.82 ± 0.10	>10	>10	0.35 ± 0.06	>10
MCF-7		Luminal A	0.44 ± 0.21	0.35 ± 0.01	0.30 ± 0.09	>10	>10
BT-474		Luminal B	>10	0.47 ± 0.23	0.29 ± 0.04	0.05 ± 0.01	>10

373 Mps1 Kinase Inhibitors As Mitotic Regulator for Cancer Therapy

Lead molecule controls tumor growth in a TNBC xenograft model

Lead molecule is orally available and brain penetrant

	Plasma IV	Plasma PO	Brain IV	Brain PO
Dose (mg/kg)	10	50		
HL_Lambda_z (min)	61.1	387	60.7	264
Tmax (min)	5.00	60.0	5.00	60.0
Cmax (nM)	7900	4776	*1662	*1338
AUCINF_pred(hr*nmol/L)	7733	22700	*1817	*4450
AUClast (hr*nmol/L)	7700	13250	*1340	*3133
Vz_pred (L/kg)	4.50	28.4		
Cl_pred (L/min/kg)	0.0510	0.0510		

*Brain concentrations expressed in molar units; assumes 1mg brain tissue = 1uL volume

IV (10 mg/kg) and PO (50 mg/kg), 3 ICR mice per time point Brain harvested and compound exposure determined at each time point Oral Bioavailability = 58.7% (based on AUCinf-pred)

373 Mps1 Kinase Inhibitors As Mitotic Regulator for Cancer Therapy

Intellectual Property

Patent No.	US 2019-0106422 A1	
Application Date	2015.11.05	
Status	Application Pending	
Country	US	

Contact Information

Contact Person	Khountham, Soun
Email	Soun.Khountham@osumc.edu
URL	https://innovate.osu.edu/available_technologies/37724/Pyrrolopyrimidine- Derivatives-as-Mps1TTK-Kinase-Inhibitors-for-Cancer-Therapy