Ohio State Drug Development Institute (DDI) Portfolio Project

Mps1 Kinase Inhibitors as Mitotic Regulators for Cancer Therapy

Current Investigators: Harold Fisk, PhD Don Benson, MD PhD Bethany Mundy-Bosse, PhD John Byrd, MD Matthew Summers, PhD Monica Venere, PhD

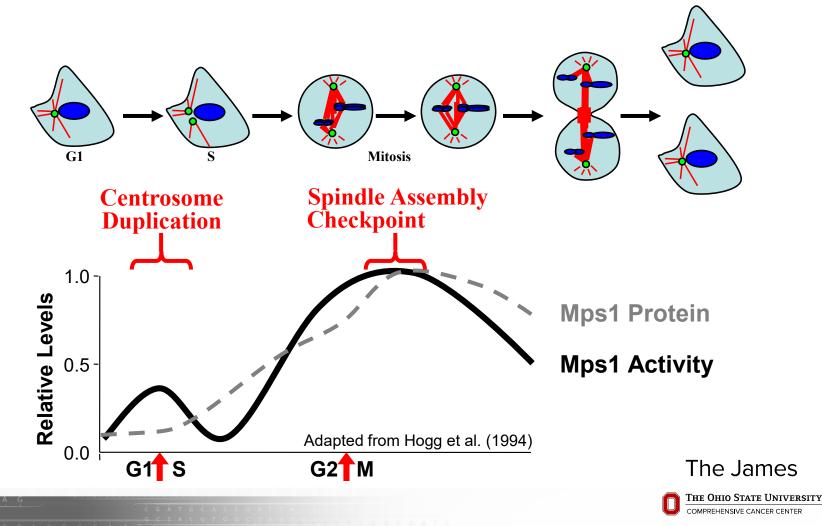
DDI Lead: Jerry Hilinski, PhD

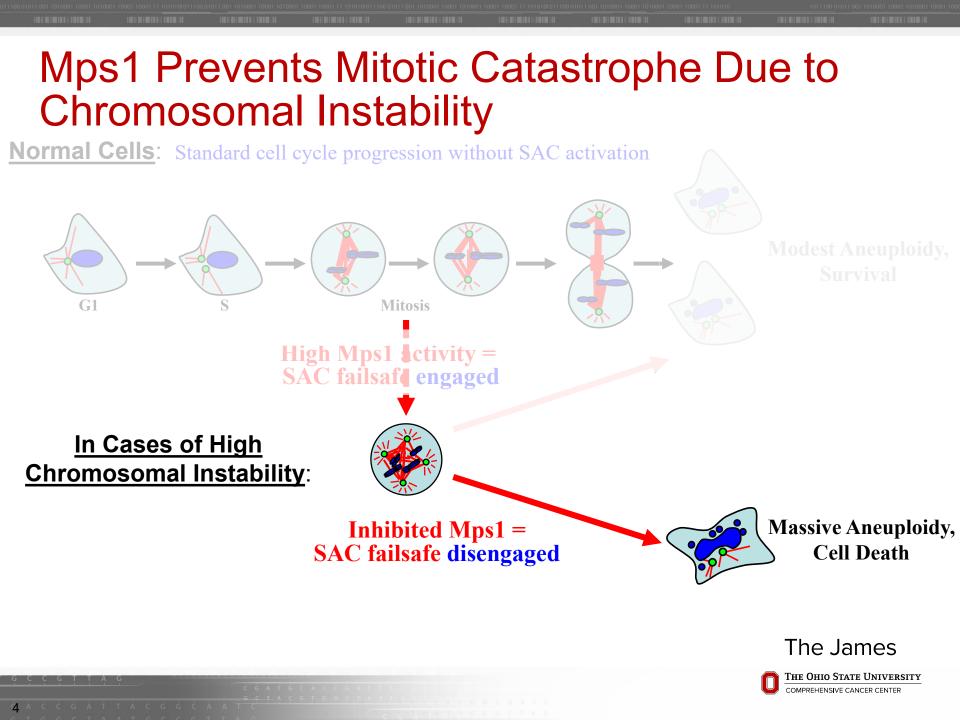
Korea Drug Development Fund - October, 2019

OHIO STATE'S DRUG DEVELOPMENT INSTITUTE (DDI)

Accelerating Innovative Research to Speed Cures to Cancer Patients

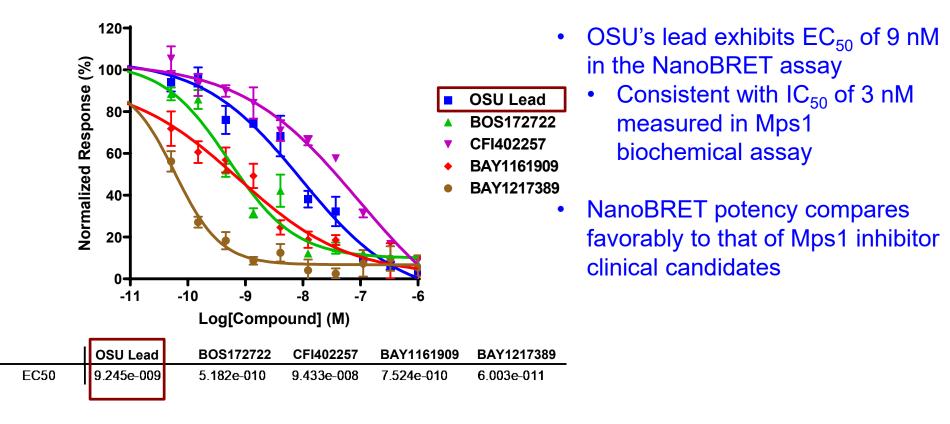
The DDI Advantage


- A pipeline of innovative, early-stage therapeutics
- Independently validated technologies
- Rigorous project milestone management by industry scientists
- A network of industry experts to vet projects
- Focus on external partnership and out-licensing

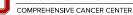


Mps1 is Critical for Genomic Integrity

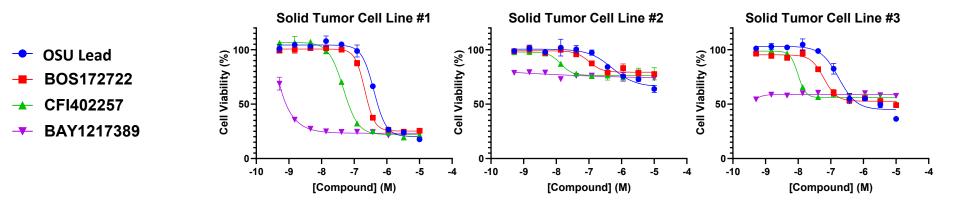
- Mps1 regulates centrosome duplication and the spindle assembly checkpoint
- Mps1 prevents anaphase in the absence of proper chromosome segregation


Current Project Status

- Lead Compound Overview
 - Acceptable in vitro ADME, orally bioavailable in mice
 - Activity profiled against >600 human kinases to understand selectivity and potential polypharmacology; biologically relevant secondary targets have been identified and are under investigation
 - In vitro comparison to known clinical candidates and evaluation in multiple cancer types are underway
 - In vivo studies in multiple indications are being planned to evaluate therapeutic index, mechanism of action, and potential for novel combination strategies
- Intellectual Property
 - US Patent Application 15/524,606, Priority Date: 6 Nov 2014
 - Medicinal chemistry campaign to provide optimized analogs with potential for new IP is underway



Lead Compound Exhibits 9 nM EC₅₀ in NanoBRET In-Cell Target Engagement Assay


NanoBRET quantifies the relative inhibition of binding of Mps1 to a tracer molecule

Assay performed by Reaction Biology Corp.

Lead Molecule Inhibits *In Vitro* Proliferation of Multiple Human Tumor Cell Lines

- Human solid tumor cell lines were treated with Mps1 inhibitor for 72 hours and relative cell number determined using the CellTiter Glo assay (Promega)
- Similar shape and dynamic range of response suggest OSU lead compound shows ontarget mechanism of action

Lead Exhibits Favorable In Vitro ADME Results

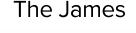
Aqueous Solubility: Reasonable Sol.

PBS (pH 7.4) ~25 μM SGF (pH 1.2) ~ 50 μM SIF (pH 6.0) ~ 25 μM FeSSIF (pH 5.0) ~ 5 μM FaSSIF (pH 6.5) ~ 10 μM

Plasma Protein Binding:

Human = 98.8% Monkey = 99.1% Dog = 99.3% Rat = 99.0% Mouse = 99.2%

Microsomal Stability: Stable in human liver microsomes $T_{1/2} = 164 \text{ min}$ Human: $CL_{int} = 0.457 L/hr/kg$ $T_{1/2} = 23.3 \text{ min}$ $CL_{int} = 4.81 L/hr/kg$ Monkey: $CL_{int} = 1.18 L/hr/kg$ $T_{1/2} = 79.0 \text{ min}$ Dog: $T_{1/2} = 8.76 \text{ min}$ $CL_{int} = 19.2 L/hr/kg$ Rat: $T_{1/2} = 6.71 \text{ min}$ $CL_{int} = 48.8 L/hr/kg$ Mouse:


<u>CYP Inhibition:</u> (IC ₅₀)	No significar	nt issues	
1A2: > 50 μM	2B6: > 25 μN	N	2C8: 13.5 μM
2C9: 13.4 μM	2C19: 13.8 µ	ιM	2D6: >25 μM
3A4 (Midazolam): 1	6.2 μM	3A4 (Testo	osterone): 9.54 μM

<u>Caco-2</u>:

 P_{app} (A to B) = 6.94 x 10⁻⁶ cm/s P_{app} (B to A) = 2.05 x 10⁻⁶ cm/s Efflux Ratio = 0.32 Not likely to be efflux substrate

hERG (FASTPatch®): IC₅₀ ~ 7 μM

Assays performed by Charles River Laboratories, Inc.

Lead is Orally Bioavailable and Brain Penetrant in Mice

- IV (10 mg/kg) and PO (50 mg/kg), n=3 ICR mice per time point
- Brain and plasma levels analyzed
- Oral Bioavailability = 58.7% (based on AUC inf_pred)

	Plasma IV	Brain IV	Plasma PO	Brain PO	
Dose (mg/kg)	10		50		6 h PO half-life
T _{1/2} z (min)	61.1	60.7	387	264	
T _{max} (min)	5	5	60	60	
C _{max} (nM)	7900	1662*	4776	1338*	
AUC inf_pred (nM·hr)	7733	1817*	22700	4450*	
AUC last (nM·hr)	7700	1340*	13250	3133*	
Vz pred (L/kg)	4.5		28.4		
CL pred (L/min/kg)	0.051		0.051		max and AUC are
* Brain concentration ass	imes 1mg brai	n tissup – 1ı	ul volume		the micromolar

* Brain concentration assumes 1mg brain tissue = 1µL volume

ange

Data generated by the OSUCCC Pharmacoanalytic Shared Resource

Summary and Next Steps

10

- Lead compound is an orally bioavailable, brain penetrant, single-digit nanomolar inhibitor of Mps1 with acceptable in vitro ADME properties
- Lead optimization is ongoing to provide optimized molecules with potential for new composition of matter patent coverage
- Lead compound will be evaluated in multiple xenograft studies over the coming months
- Ongoing experiments are evaluating mechanism of action, novel combination strategies, and the potential for tuning of beneficial polypharmacology

The James

THE OHIO STATE UNIVERSITY