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Purpose of review

MicroRNAs (miRNAs) have emerged as highly evolutionarily conserved moieties that have very selective
gene-regulatory functions. miRNAs are being researched for their use as potential biomarkers for
diagnostics, routine prognostics as well as selective therapeutics in cancer, infectious diseases, autoimmune
disorders and transplantation. This review summarizes how immune regulation by miRNAs affects the
outcome of transplantation.

Recent findings

Many miRNAs have been identified as selective markers for specific disease states and transplant
conditions in the past two decades. In this review, we will discuss the recent advances and some seminal
discoveries in miRNA research and their role as immune regulators in transplantation. Lastly, we will
highlight the ongoing clinical trials for miRNA-based therapeutics for clinical applications and present our
opinion on the future of miRNA-based diagnostics and therapeutics.

Summary

miRNA-based diagnosis is a fast-moving field with new miRNA signatures being identified each day.
Recent advances have also been successful at taking a few of these miRNAs to clinical trials for therapeutic
interventions.
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INTRODUCTION

miRNAs were discovered about two decades ago, in
the Caenorhabditis elegans developmental pathway,
as small temporal noncoding RNAs, which could
bind to 30 UTR of a coding messenger RNA and
modulate its translation [1,2]. They were initially
believed to be present exclusively in C. elegans.
Findings in the early 2000s identified miRNAs
present in other systems including human cells
[3–5]. Since then, about 1881 human miRNAs have
been deposited into miRBase v21.
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BIOGENESIS AND MECHANISM OF
ACTION

miRNAs are endogenously expressed as short non-
coding RNAs with regulatory functions in a myriad
of gene pathways. miRNAs, which are synthesized in
a highly regulated manner, bind to complementary
target protein-encoding mRNAs in a RNA-depend-
ent gene silencing process leading to translational
repression or mRNA degradation (RNA interference
or RNAi) [6]. The location of miRNAs is mostly
ht © 2015 Wolters Kluwe
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intergenic generally within introns of coding or
noncoding genes and sometimes within exons of
noncoding genes [7]. miRNAs are transcriptionally
regulated in a ‘protein coding-like manner,’ with
Oct4, Sox2, Nanog and Tcf3 being important tran-
scriptional regulators [8] (Fig. 1 [9–18]). Many fun-
damental biological processes are regulated by
miRNAs including cell differentiation, proliferation,
maturation and cellular homeostasis; indeed, miR-
NAs regulate about 60% of the human genome
[19–25]. Expression of miRNAs is altered in many
disease conditions. miRNAs are interesting and
important moieties because they can alter entire
gene pathways rather than a single gene [26].
r Health, Inc. All rights reserved.
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KEY POINTS

� miRNAs have emerged as important small noncoding
RNAs with immunomodulatory functions that regulate
gene expression at posttranscriptional level.

� miRNAs regulate many important genes and pathways
in both the innate and adaptive immune systems.

� Many miRNAs have been identified as potential
biomarkers for graft function in both solid organ
transplantation and hematopoietic stem cell
transplantation for diagnosis and prognosis of
patient outcomes.

� Synthetic RNA mimics and antagomirs used to
modulate endogenous miRNA can be the next frontier
in RNA-based clinical strategies for therapeutics.

Mechanisms of rejection
MICRORNAS IN B CELL DEVELOPMENT
AND FUNCTION

miRNAs are essential for B cell development as shown
in studies by Koralov et al. Mice with B cell-specific
deletion of the endoribonuclease Dicer fail to have
pro-B stage to pre-B transition [27]. Removal of Dicer
 Copyright © 2015 Wolters Kluwer 
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FIGURE 1. Schematic for microRNA (miRNA) biogenesis and fu
miRNA), which are processed in the nucleus into 70-nucleotide pr
consisting of the RNase II enzyme Drosha and its co-factor DiGeo
5 Ran-GTP complex transports the pre-miRNAs to the cytoplasm, w
protein complex. Dicer cleaves the pre-miRNAs to generate a ma
miRNA ‘guide’ strand binds with Ago protein and forms miRISC (
complex) [12]. miRISC binds the target mRNA at the complement
miRNA–mRNA at the seed sequence determines the target repres
mostly leading to mRNA target degradation [15]. Recently, miRN
RNAs (lncRNAs), antisense RNAs and competing endogenous RN
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in antigen-activated B cells results in significantly
decreased antibody responses and prevents the for-
mation of both germinal center B cells, and long-
lived plasma cell memory B cells [28]. Overexpression
of the miR-17�92 cluster (including miR-17, miR-
19a, miR-19b, miR-20a, and miR-92) in transgenic
mice leads to lymphoproliferative and autoimmune
phenotypes because of reduced phosphatase and
tensin homolog (PTEN) and bcl-2 interacting protein
(BIM) expression [29]. The expression of c-Myb
(important in B1 cell development) is controlled by
miR-150 [30,31]. Constitutive expression of miR-34a
targets the expression of Foxp1, leading to arrest of
the pro-B to pre-B cell transition [31]. Another
miRNA, miR146a, controls the expression of Irak1
and Traf6 in splenic B cells and has been implicated in
B1 cell development [32,33]. miR-221 plays a role in
the retention of the early B lineage cells in bone
marrow [34]. miR-155 playsan important role in both
germinal center B cells and B cell memory responses
[35,36] and regulates a transcription factor PU.1.
Overexpression of PU.1 in B cells leads to reduced
numbers of IgG1-switched cells and thus to
reduced generation of high-affinity antibodies
Health, Inc. All rights reserved.
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miRNAs regulate immunity in transplantation Kaul and Krams
against T cell-dependent antigen [37]. miR-155 also
regulates the Aid (activation-induced cytidine
deaminase) gene, thus regulating class-switch recom-
bination and somatic hypermutation [38,39]. Immu-
noglobulin class-switching recombination is also
regulated by miR-181b and miR-210 [40,41

&

].
MICRORNAS IN T CELL DEVELOPMENT
AND FUNCTION

T cell development and function are similarly
regulated by miRNAs. Profiling studies have shown
that miRNAs are differentially expressed in function-
ally naı̈ve, effector or memory CD8þ T cell popu-
lations [42]. Conditional Dicer deletion in the mouse
T cell lineage results in a significant decrease in
mature CD8þ T cells and some reduction in CD4þ

T cells. These CD4þ T cells were predisposed to the
Th1 lineage because of a deficiency in repression of
interferon (IFN)-g and also had diminished prolifer-
ation and increased apoptosis [43]. T cell differen-
tiation has been shown to be regulated by miRNAs.
The loss of miR-155 enhances Th2 development but
isnegatively correlated toTh1 orTh17 differentiation
[35,44]. Th17 differentiation is regulated by miR-326
[45]. miR-142-3p has been shown to be involved in
regulation of T lymphocytes by controlling leukocyte
activation [46]. Another class of T cells, T follicular
helper (Tfh) cells is also modulated by miRNAs. The
plasticity of Tfh cells is regulated by miR-10a which
directly inhibits the expression of Bcl-6, an important
transcription factor for Tfh differentiation [47,48].
Conversely, the miR-17�92 cluster induces Tfh
differentiation by suppressing the expression of
RORa and PHLPP2 (phosphatases that inhibit indu-
cible T-cell co-stimulator (ICOS)-mediated phospha-
tidylinositol kinases (PIK)-signaling pathways)
[49

&

,50]. High-level expression of the miR-17�92
cluster in lymphocytes leads to lymphoproliferative
disease and autoimmunity because of increased
CD4þ and elevated interleukin-10 and IFN-g levels.
These activated CD4þ T cells were CD28-costimula-
tion-independent for proliferation and survival.
The miR-17�92 cluster, when overexpressed, nega-
tively regulates BIM and PTEN in mice, proteins
important in maintenance of central and peripheral
tolerance [29]. miR-181 regulates T cell receptor
(TCR) responses to peptide antigens, with decreased
expression in immature T cells leading to decrease in
sensitivity and altered positive and negative selec-
tion. Multiple cytoplasmic phosphatases such as
SHP2 that regulate TCR signaling are also controlled
by miR-181 [51]. Recently, the miR-23a cluster has
been shown to significantly reduce IFN-g secretion
and cytotoxic activity of antigen-specific CD8þ

T cells [52
&

].
 Copyright © 2015 Wolters Kluwe
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miRNAs also control Treg cell generation,
stability and function. Dicer knockout mice
develop fatal autoimmunity [53]. T cells lacking
Dicer are unstable and do not express several
Treg-associated genes such as Foxp3, CTLA-4, neu-
rophilin-1 and glucocorticoid-induced tumor
necrosis factor receptor [54]. It has been shown
that Foxp3, the canonical Treg transcription
factor, binds to the promoter of miR-155 gene,
bic. miR-155 and miR-146a also influence Treg
homeostasis and its suppressor activity by
modulating SOCS1 and Stat1, respectively [55,56].
Recent reports show that miRNA-containing exo-
somes released by Tregs transfer miR-Let-7d to Th1
cells suppressing Th1 cell proliferation and IFN-g
secretion (both in vitro and in vivo) [57

&&

]. Tregs are
one of the most important regulatory cells in the
immune system that play a major role in mainten-
ance of peripheral tolerance to self-antigens
and thus have an important role in transplant
rejection.
MICRORNAS IN INNATE IMMUNITY:
MONOCYTES, MACROPHAGES,
DENDRITIC CELLS, NK AND NKT

miRNAs have been shown to regulate components of
the innate immune system including dendritic cells,
macrophages, natural killer (NK) cells and natural
killer T (NKT) cells. For example, the miR-17�92
cluster regulates monocyte differentiation by target-
ing Runx1 [58]. Differential expression of miRNAs
has important functions in the transformation of
monocytes into immature and mature dendritic cells
at specific stagesofdifferentiation [59,60].Themicro-
RNAs miR-7-5p, miR-20a and miR-106a also modu-
late monocytic differentiation [58]. miR-21 increases
in expression in monocytes and macrophages during
inflammation and influences interleukin-12p35
expression [61]. In virus-infected macrophages,
inflammation is suppressed by miR-146a that targets
IRAK2 and modulates RIG-I-dependent type 1 inter-
feron production [62]. Dendritic cell maturation is
regulated by a number of miRNAs, directly or
indirectly. For example, both miR-221 and miR-155
regulate dendritic cell apoptosis and miR-155
regulates interleukin-12p70 production by targeting
suppressor of cytokine signaling 1 (SOCS-1) [49

&

].
Furthermore, miR-511 and miR-99b have been
shown to play a role in dendritic cell maturation
by targeting TLR signaling and SMAD7, respectively
[60]. TLRs have also been shown to induce miRNA-
155, miRNA-146a and miRNA-21 [63–65]. In mouse
macrophages, TLRs induce miR-155, which in turn
represses negative regulators of TLR signaling such as
SHIP1 and SOCS1 [66,67]. miR-155 also regulates
r Health, Inc. All rights reserved.
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Mechanisms of rejection
dendritic cell maturation by targeting an important
protein PU.1 involved in the expression of dendritic
cell-specific intercellular adhesion molecules [68].
Similarly, miR-146 is also induced by the TLR4 ligand
lipopolysaccharide (LPS), TLR2 ligand Pm3CSK4
(synthetic triacylated lipoprotein) and TLR5 ligand
flagellin [63]. Interestingly, TLR4 expression has been
shown to be upregulated in animal models of
intestine transplantation and also implicated in
allograft rejection [69].

Dicer-deficient mice show a defect in iNKT cell
development and function [70]. miRNA-150 has
been shown to play a role in the maturation of iNKT
cells in the thymus and periphery. Further, miR-150
knockout mice show significantly increased IFN-g
production and upregulation of the miR-150 target
c-myb, which is a major transcription factor that
primes immature thymocytes into the iNKT lineage
[71]. Targeted deletion of miR-150 leads to a defect
in the generation of mature NK cells and a gain-of-
function transgene promotes an increase of mature
NK cells, which are also more responsive to acti-
vation. On the contrary, however, miR-150 over-
expression leads to a significant reduction of iNKT
cells in the thymus and peripheral lymphoid organs
[72]. Recent studies show that miR-181-deficient
mice have severe defects in NKT cell maturation
in the thymus and periphery. miR-181 has also been
shown to modulate the phosphatase PTEN expres-
sion to control PI3K signaling, an important
stimulus for anabolic metabolism in immune cells
[73

&&

]. Overexpression of miR-155, in bone marrow
and thymus, has been correlated with iNKT cell
developmental defects in the thymus. iNKT cells
overexpressing miR-155 exhibit defects in cytokine
production by targeting Inducible T cell kinase (Itk)
[74].
 Copyright © 2015 Wolters Kluwer 

Table 1. Summary of microRNAs and their impact on immune sy

miRNA Transplant Target/function

miR-181a Bone marrow Increased expression in HS

miR-155 Cardiac allograft Target GSK3b/T cell prolife

miR-181a Cardiac allograft Increased expression in hep

miR-146a Liver Regulates TGF-b mediated

miR-144 Lung TGF-b signaling pathway/r
bronchiolitis obliterans sy

miR-29 Renal TGF-b/Smad3/renal fibros

miR-21 Renal Smad3 upregulation/renal

miR-192 Renal Induced by TGF-b, increase
E-box repressors Zeb1/2

miR-142-3p Renal Increased expression in B c

GSK, glycogen synthase kinase; pDC, plasmacytoid dendritic cells; HSC, hematopo
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ROLE OF MICRORNAS AS IMMUNE
MODULATORS IN TRANSPLANTATION
Based on the importance of miRNAs in regulating
immune functions, recent studies suggest that some
miRNAs are critical in promoting outcomes after
both solid organ and hematopoietic stem cell trans-
plantation [75–78].

Genome-wide analysis of miRNA–mRNA inter-
actions has identified a unique expression pattern of
miRNAs and mRNAs following the allostimulation
of T cells in an allogenic bone marrow transplan-
tation model. It has been shown that miR-155
regulates T cell proliferation in cardiac allograft
rejection by targeting glycogen synthase kinase
3 b [79].

Increased expression of miR-142-3p was
reported specifically in the B cells of transplant
recipients that are ‘operational tolerant’ of their
grafts suggesting a role for B cells and miR-142-3p
in tolerance [80].

Hepatic plasmacytoid dendritic cells (pDC)
have been associated with promoting tolerance in
several models and recent studies demonstrate that
miR-181a, which is highly expressed in hepatic
plasmacytoid dendritic cells, may have a critical role
in the ‘tolerogenic’ capacity of liver pDC. Whereas
miR-181a pDC significantly prolonged allograft
survival, pDC from miR-181a�/� mice abrogated
the graft prolongation suggesting miR-181a plays
a critical role in the ‘tolerogenic’ capacity of liver
pDC [81].

Thus, miRNAs have been shown to critically
modulate the immune system components
vis-à-vis transplantation [79–87]. A summary of
recent studies of miRNA-mediated immune modu-
lation in transplantation is described in Table 1
[79–87].
Health, Inc. All rights reserved.
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Table 2. miRNAs (host or viral) implicated in posttransplant complications because of viral infections

Transplant Virus miRNA Effect References

PTLD EBV miR-194 Targets interleukin-10 and modulates apoptosis
of EBVþ B cell lymphoma lines

[88]

Liver HCV miR-194, miR-21 Regulate HCV receptor expression [90]

Liver HCV miR-146a, miR-19a, miR-20a,
and miR-let7e, miR-19a and miR-20a

Regulate genes which control fibrogenic
and angiogenic pathways

[91]

Liver HCV miR-449a Regulate expression of YKL40, NOTCH signaling pathway [92]

Liver HCV 9-microRNA signature (miR-155, miR-34a,
miR-222, miR-23b, miR-361, miR-455,
miR-30b, miR-30c and miR-27b)

Biomarkers to identify early post-liver transplantation
patients at high risk of severe HCV recurrence
during long-term follow-up

[93&]

Renal BK bkv-miR-B1-5p Diagnosis of active viral replication [94]

EBV, Epstein–Barr virus; HCV, hepatitis C virus; miRNA, microRNA; PTLD, posttransplant lymphoproliferative disorder; TGF, transforming growth factor.
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MICRORNAS IN VIRUS-MEDIATED
POSTTRANSPLANT INFECTIONS

Complications, including viral infections, are an
unfortunate consequence of transplantation, gener-
ally as a result of immunosuppressive drugs that
target T cells. Host cells produce miRNAs in response
to viral infections, which have a regulatory role on
the immune components elicited during infection.
Viruses can modulate the gene expression of host
immune machinery. A recent study found that
Epstein–Barr virus (EBV) suppresses the host
miRNA-194 in EBVþ B cell lymphoma lines from
patients with posttransplant lymphoproliferative
disorder. Suppression of miR-194 resulted in upre-
gulation of its target interleukin 10 and modulation
of apoptosis [88].

Latent membrane protein 1 (LMP1) has been
shown to activate the Akt pathway and upregulate
Mcl-1 through miR-155, thereby inducing cell sur-
vival signals, whereas inhibition of miR-155 resulted
in a significant decrease in the survival of EBVþ cells
when treated with Rituximab [89].

Viruses also employ miRNAs that can modulate
both host and viral gene expression. The importance
of the role of miRNAs in virus-induced transplan-
tation complications has recently become apparent
(see summary in Table 2), although the mechanisms
remain unknown [88,90–92,93

&

,94].
MICRORNAS AS BIOMARKERS

It has been shown that miRNAs are highly stable in
human blood and in paraffin-embedded tissues
suggesting that miRNAs could be good markers
for identifying disease conditions [95,96]. Circulat-
ing miRNAs detectable in serum, plasma, urine and
other body fluids remain stable, mostly in lipid and
lipoprotein complexes like exosomes and microve-
sicles [97–100]. Early studies examined hundreds of
samples and demonstrated that miRNA profiles
 Copyright © 2015 Wolters Kluwe
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could distinguish the developmental origin of a
tumor [101]. In transplantation, urinary miR-210
has been suggested as a biomarker of acute rejection
in renal transplants [102]. Other studies indicated
an association of miR-142-5p and chronic antibody-
mediated rejection [103

&

]. However, only a handful
of these potential miRNA-based biomarkers have
been translated to commercially available diagnos-
tics. One such example is a panel of 64 miRNA
biomarkers (miRview-mets2) to identify the origin
of metastatic cancers by Rosetta Genomics, (Israel)
[104].
MICRORNAS AS THERAPEUTICS

miRNAs are very promising therapeutic moieties
because they can target and fine-tune entire gene
pathways, in contrast to the selective protein-based
inhibitors that have only single-target functionality.
To date, however, only one miRNA drug has reached
clinical trials. SPC3649, an antagomir of miR-122
developed by Santaris Pharma, (Denmark) for
chronic hepatitis C is currently in Phase II clinical
trials [105

&&

]. In spite of miRNAs being very stable
molecules, the main deterrent in making them
effective therapeutics is creating complex delivery
vehicles for them. Several chemical modifications
such as Lock–nucleic acid (LNA) have been designed
to make miRNA delivery more stable [106,107].
CONCLUSION

In the two decades since miRNAs were discovered,
there has been substantial research focused on
miRNA-based gene regulatory mechanisms. How-
ever, the specific roles that each miRNA has in the
regulation of the immune system are still being
discovered. Newly identified roles of miRNAs in
transplantation and their potential use as bio-
markers for predicting graft function and as
r Health, Inc. All rights reserved.
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Mechanisms of rejection
therapeutics for gene and pathway-specific regula-
tion for induction of allograft tolerance have
sparked a robust interest in miRNA-based clinical
strategies. However, there still are a number of
limitations regarding technical methodology for
studying miRNAs, and the elucidation and follow-
up of clinical outcomes of miR-based research.
Nonetheless, we foresee a big effort toward
miRNA-based diagnostics and therapeutics in the
near future, mainly driven by the need for more
specific treatment and diagnostic modalities for a
number of disease conditions including posttrans-
plant complications, immune malignancies, infec-
tious diseases and autoimmune disorders. Greater
collaboration between academic and industry
research is required to reach our ambitious goals
for translating miRNA research to the clinic.
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