miR-494 inhibitor, for the treatment of retinal disease

Asset Overview

Product Type	Gene therapy
Indication	Retinal disease
Current Stage	Lead optimization
Target(MoA)	miR-494-3p
Brief Description	Epiretinal membranes (ERMs) are conditions where a very thin layer of scar tissue forms on the surface of the retina in an area that is responsible for our sharpest vision. A team of Stanford researchers have developed a non-surgical therapeutic strategy for treating or preventing epiretinal membranes or other eye diseases by inhibiting microRNA (miRNA). MicroRNAs are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. The inventors have validated miR-494-3p as the only miRNA expressed at significantly greater levels in ERM tissue compared to controls.
Organization	Stanford University

Differentiation

□ miR-494-3p as a target that can be used for the treatment of epiretinal membranes (ERMs)

- Traditionally, epiretinal membranes (ERMs) or other eye diseases has been corrected through surgery with no noninvasive alternative
- Treating or preventing ERMs with a targeted therapeutic agent administered through an eye drop or intravitreal injection instead of surgery could lower the costs and the risk to patients
- This technology identifies miR-494-3p as a target that can be used for that non-invasive treatment to counteract the cellular transformation associated with ERM pathophysiology
- Pilot data shows miR-494-3p is selectively expressed in epiretinal membranes and that inhibiting
 this miRNA potentially offers an easier, safer and less expensive option for preventing, treating or
 reversing this type of ophthalmologic condition

☐ Easy and non-invasive ERM treatment

- Compared with current ERM treatment (surgery), an miRNA inhibitor is likely to be administered via eye drops, resulting in:
 - 1. lower cost
 - 2. lower risk for patients (surgery poses risk of cataract and rhegmatogenous retinal detachment)
- The inventors have begun additional studies on the effects of a locked nucleic acid inhibitor of miR-494

miR-494 inhibitor, for the treatment of retinal disease

Key Data

miR-494 inhibitor, for the treatment of retinal disease

► Intellectual Property

Patent No.	PCT-US2019-024090
Application Date	2019.03.26
Status	Application Pending
Country	

Contact Information

Contact Person	Denise Lew
Email	denise.lew@stanford.edu
URL	http://techfinder.stanford.edu/technologies/S17-482_retinal-disease-treatment-with