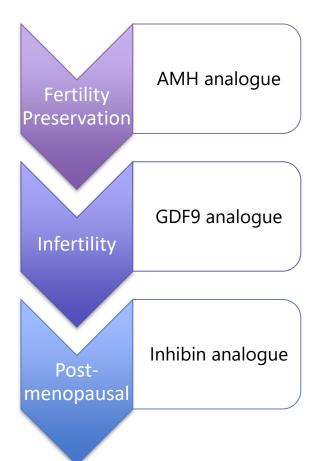
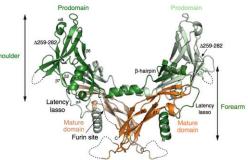


Engineering TGF-β to improve Women's Lifetime Health


Assoc. Prof. Craig Harrison and Dr. Kelly Walton

July 2019


Biomedical Discovery Institute, Monash University

TGF-β Program

- Transforming growth factor β (TGF- β) superfamily proteins are potent, naturally occurring molecules that play a key role in the growth and repair of various tissues
- Our research focuses on developing therapies based on TGF-β superfamily biology to target diseases that affect skeletal muscle and the reproductive system
- Our strategy is two-fold:
 - 1. Engineer TGF- β superfamily proteins to generate potent agonists
 - 2. Modify the prodomains of TGF- β proteins to generate specific antagonists
- Our understanding of TGF-β biology will enable us to continue to build innovative products with life-altering therapeutic potential

The Team

Professor Dan Bernard MCGILL UNIVERSITY

Professor Tom Thompson UNIVERSITY OF CINCINNATI

Prof Dana Gaddy TEXAS A&M

A/Prof Paul Gregorevic UNIVERSITY OF MELBOURNE

A/Prof Craig Harrison Dr Kelly Walton MONASH UNIVERSITY

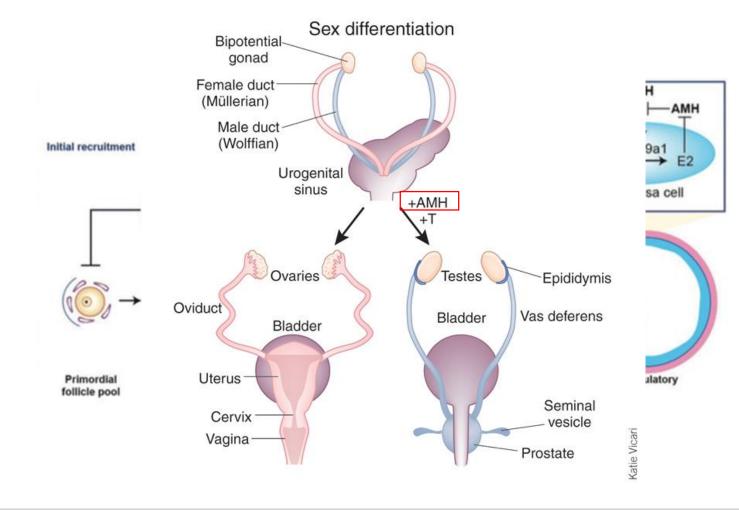

Prof George Lovrecz CSIRO

Prof Rob Gilchrist UNSW

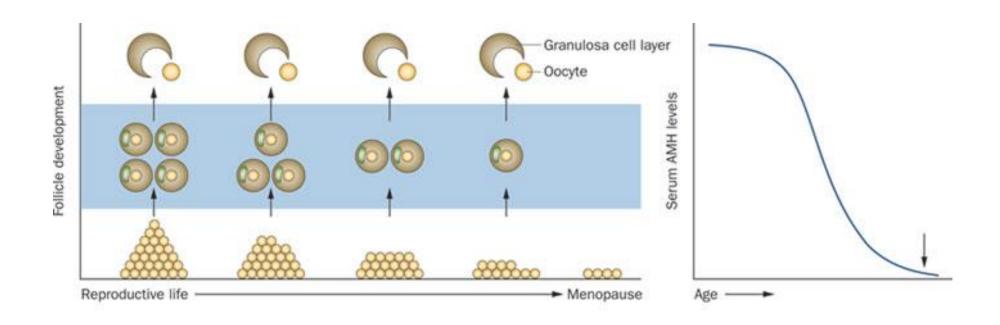
TGF-β proteins involved in female reproduction

Project 1:

Engineering Anti-Müllerian Hormone for Fertility Preservation in Oncology Patients

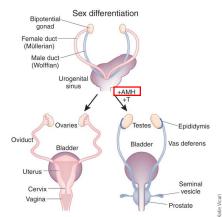

Therapeutic Opportunity

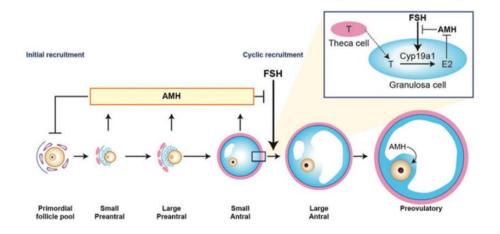
- In 2018, there were 18.1 million new cases of cancer diagnosed globally, with around 1.8 million cases occurring in people <45 years of age
- Infertility or premature ovarian failure has been reported in 40-80% of female cancer survivors, which severely impacts their quality of life and can lead to prolonged psychological stress
- Existing treatments are all interventional with many limitations, including oocyte and embryo banking, and ovarian transplantation
- There is no existing proven non-interventional drug available to protect against the loss of fertility in cancer patients
 - The only other is administration of Gonadotropin agonist before or after chemotherapy, which is largely unproven and remains controversial


Anti-Müllerian Hormone

Male sex determination

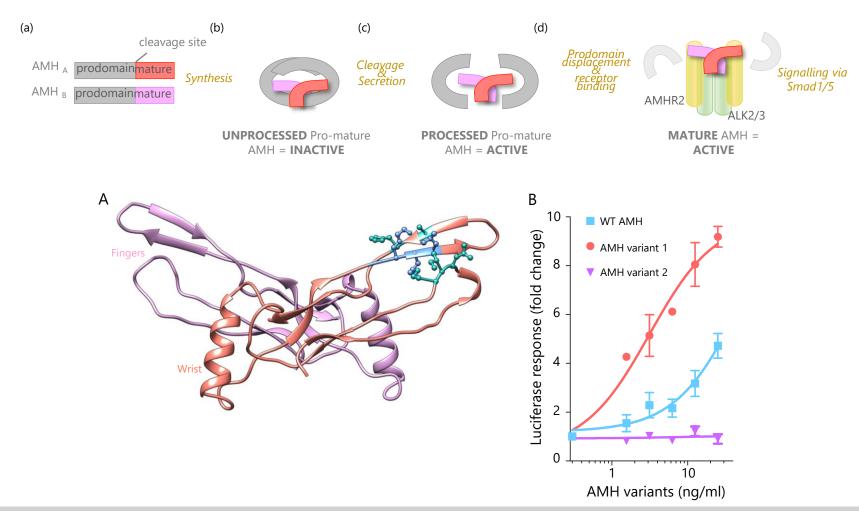
AMH is the best measure of ovarian reserve




AMH serum levels decrease with age and are negligible by menopause

Potential therapeutic applications of AMH in reproductive medicine

- Studies have shown the potential of AMH to inhibit the growth of gynaecological tumours
- AMH acts as a reversible contraceptive in mice
- AMH can protect the ovarian reserve during chemotherapy



References:

- 1. M. Kano et al. (2017)
- 2. D. Pepin et al. (2018)
- 3. R. R. Wong et al. (2014)
- 4. V. A. Kushnir *et al.* (2017)
- 5. J. H. Kim *et al.* (2014)
- 6. D. Pepin et al. (2015)

Project status

Next steps for development

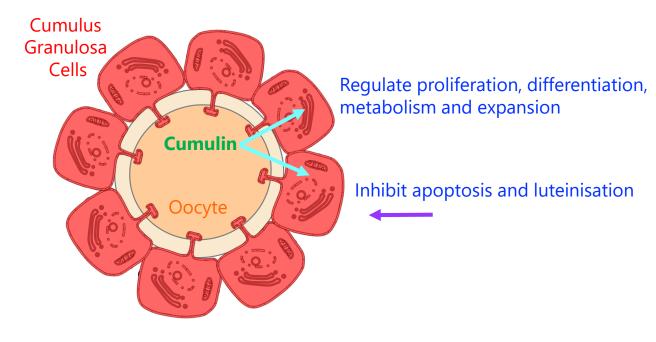
- Lead series optimisation and PoC studies
 - Complete lead optimisation of AMH analogues
 - Efficacy studies to evaluate fertility preservation during cancer treatment (in vivo studies)
 - Profiling studies limited physicochemical, metabolic stability, exposure, fraction bound/unbound plasma, immunogenicity and non-GLP PK studies
 - Early preclinical studies
- Manufacturing
 - Optimisation of stability and manufacturability for the lead AMH analogue

Intellectual Property

- IP owned by Monash
 - Patentable subject matter identified around novel composition of AMH analogues will be filed following further optimisation of analogues
- Our IP is distinctly different from IP held by Provulis LLC, a Boston-based preclinical stage biotech
 - Provulis's lead candidate PV100 (preclinical) is a human recombinant protein analogue of AMH
 - Their patent covers alteration of AMH to increase the protein yield by modification in the cleavage site of AMH, and incorporation of a non-AMH leader sequence
- Our first-generation AMH analogue has already demonstrated 5-10 fold potency over PV100

Project 2:

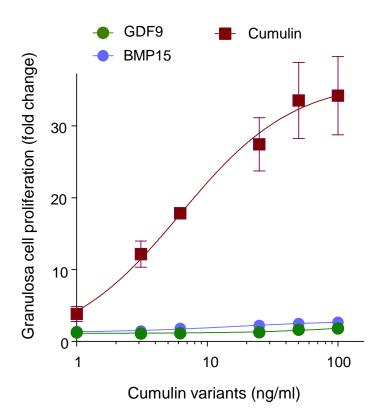
Therapeutic Potential of TGF- β proteins for use in Assisted Reproductive Technology


Therapeutic Opportunity

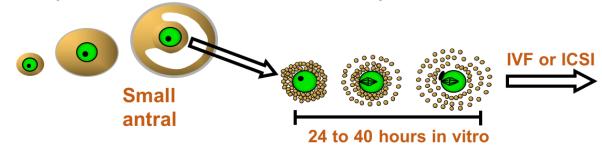
- Around 12-25% of women find themselves experiencing issues of infertility unable to become pregnant after a year of trying to conceive
- The global IVF market size is expected to reach USD 32.6 billion by 2026, with CAGR of 10.2%
- Current gold standard in fertility treatment is in vitro fertilisation (IVF)
 - Hormones are given to stimulate the ovulatory process, and the mature eggs are harvested and then fertilized in the lab
 - Embryo is then implanted back into the body
- In vitro maturation (IVM) is an alternative method of fertilisation, where immature eggs are retrieved from the body, and matured in a lab setting
 - Limited use in clinic due to low success rates

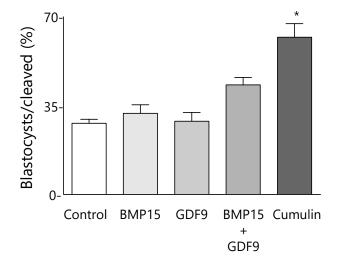
Cumulin – regulation of granulosa cell function

- Found to potently stimulate granulosa cell signalling and function, and promotes oocyte quality
- Currently being investigated in the clinic to improve success rates in IVM
 - Oocyte quality is the key obstacle in widespread clinical implementation of IVM
- Cumulin is a heterodimer comprising of GDF9 and BMP15
 - Activity appears to be dependent upon the activation of the GDF9-Smad2/3 axis



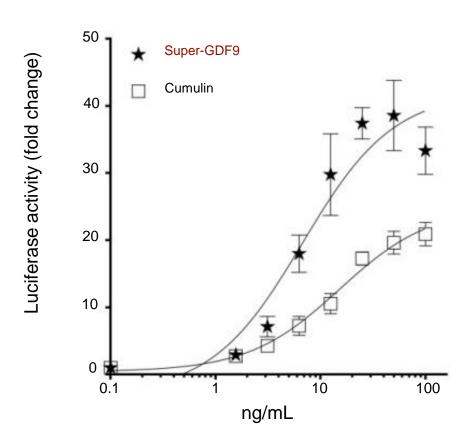
Improve oocyte quality, and subsequent embryo development and foetal viability


Cumulin


Granulosa cell proliferation

In Vitro Maturation (IVM)

(No or minimal ovarian stimulation)


Super-GDF9 for assisted reproductive technology

Our Research

- Targeted modification of GDF9 in cumulin produced a series of analogues – Super-GDF9
- Super-GDF9 is more potent than cumulin and GDF9
- The team is in the process of exploring further modifications and conducting PoC studies in vivo, with human oocyte maturation studies conducted together with collaborators in Belgium

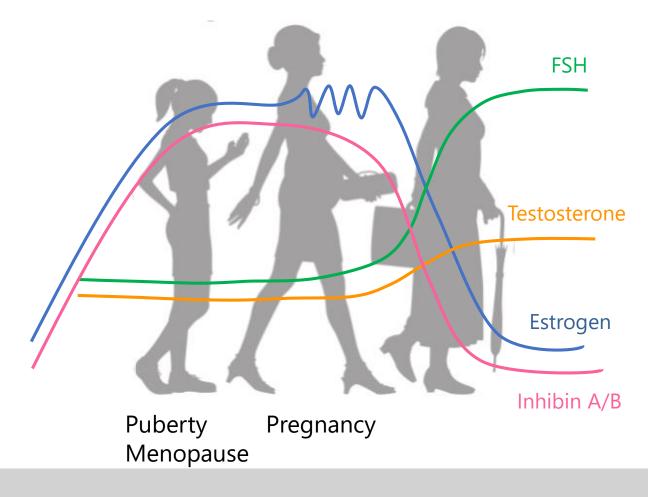
Intellectual Property

- IP owned by Monash
- PCT/Au2019/000054 filed on the 9th of May, 2019 "Agent and method for enhancing fertility"
- Patent for use of cumulin in assisted reproductive fertility owned by University of Adelaide – will not impact FTO, as our analogues are notably different from cumulin

Project 3:

The body has a brake: inhibin curbs fat accumulation

Therapeutic Opportunity

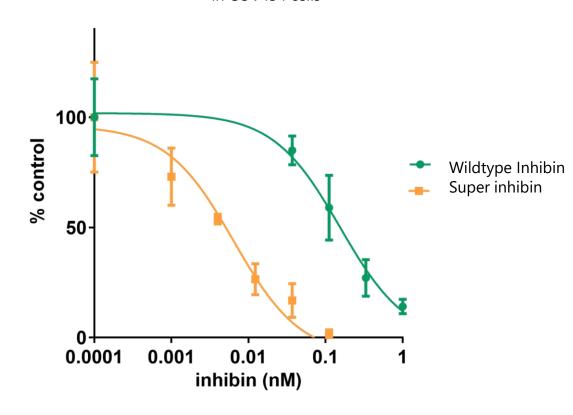

- During the menopausal transition, women experience accelerated loss of bone and muscle, as well as increases in body fat, due to loss of ovarian hormones
- This predisposes aged women to developing obesity and associated co-morbidities, such as diabetes and cardiovascular disease, and increases frailty, and can overall greatly reduce quality of life
- Postmenopausal symptoms are "managed"
 - Steroidal hormonal replacement therapy (HRT) is the current leading treatment for postmenopausal complications, but long-term usage is fraught with complications, including increased risk of cancers and heart disease
- Inhibin is a member of the TGFβ superfamily which is lost during menopause

Changes in weight and body composition during perimenopause

Perimenopause 115 Body composition and weight variables (as % of baseline) 110 Proportion fat mass 105 Body weight Lean mass 100 **Proportion lean mass** 95 10 Number of years before (-) or after (+) the final menstrual period (time 0)

Hormones influencing perimenopausal adiposity

Novel inhibin analogues for treatment of perimenopausal symptoms


Our Research

- Significantly improved production of inhibin without activin contamination
- Potent inhibin analogues with increased receptor affinity
- PoC studies with lead inhibin analogues in our inhibin-knockout mouse model
- Optimisation of inhibin analogues and lead selection

Intellectual Property

- Undisclosed and IP for novel analogs will be filed following further optimisation
- Hudson Institute owns background IP PCT/AU2016/051156 "Inhibin analogs" (priority date 26th Nov 2015)
 - For the composition, method of production of recombinant inhibin analogs, and their use in therapy of certain diseases
 - National filing in Europe, Australia and United States
 - Craig and Kelly are the inventors on the patent

Inhibin suppression of activin-mediated luciferase activity in COV434 cells

