86. Compositions for treatment of neurological & OSD

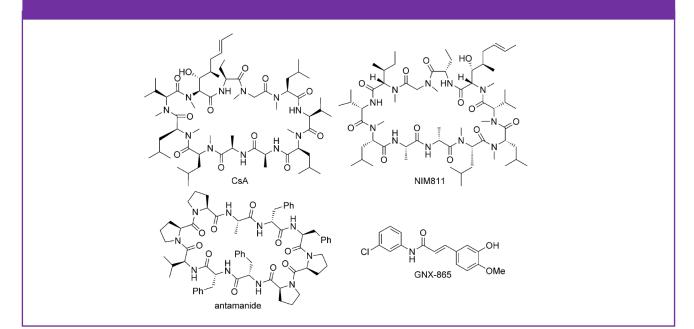
5[™] KDDF GLOBAL C₄D TECH FAIR

(Oregon Health and Science University)

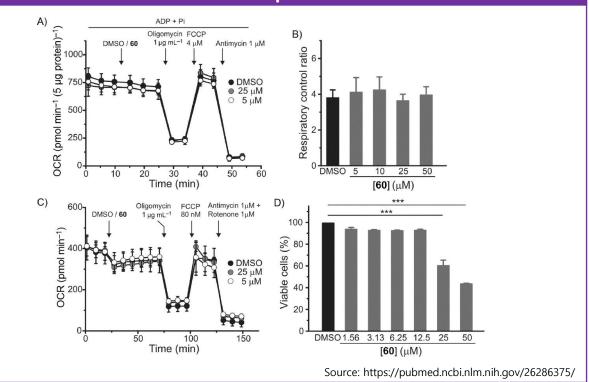
Product Type	Small Molecule
Disease Area	Others
Indication	Neurological and Oxidative Stress Disorders
Current Stage	Lead Optimization
Target	mtPTP
МоА	Small molecules inhibit mtPTP
Brief Description	 The mitochondrial permeability transition pore (mtPTP) plays a key role in a wide variety of human diseases whose common pathology may be based in mitochondrial dysfunction; however, there are few small molecule inhibitors of mtPTP. The leading mtPTP inhibitor CsA also has limitations, including a likely indirectly mechanism of inhibition, an inability to cross the blood brain barrier, and immunosuppressive side effects. The laboratories of Drs. Forte, Bernardi and Cohen have developed and optimized small molecule mtPTP inhibitors. The lead compounds demonstrate the following: Picomolar IC50s for inhibiting the opening of mtPTP Inhibition of mtPTP opening, independent of cyclophilin D, and synergism when combined with CsA. Inhibition of mitochondrial toxicity as demonstrated by measurements of mitochondrial membrane potential, oxygen consumption rates and ATP synthesis. High stability in human serum over the course of several hours. Cardioprotective effects in adult mouse ventricular myocytes, human iPSc-derived cardiomyocytes, and in ex vivo in perfused hearts.
Intellectual Property	US20220289690A1
Publication	 A novel class of cardioprotective small-molecule PTP inhibitor Pharm Research, (2020) Second-Generation Inhibitors of Mitochondrial Permeability Transitio Pore with improved Plasma Stability. Chem MedChem. (2019) Discovery, Synthesis, and Optimization of Diarylisoxazole-3 carboxamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore, Chem MedChem. (2015)
Inventors	Michael Cohen, Michael Forte, Justina SILEIKYTE, Aaron Nilsen, Jorda Devereaux, Paolo BERNARDI

Highlights

- This compounds enabled the construction of a series of picomolar mtPTP inhibitors that also potently increase the calcium retention capacity of the mitochondria.
- The therapeutic potential and in vivo efficacy of one of the most potent analogues, N-(3-chloro-2methylphenyl)-5-(4-fluoro-3-hydroxyphenyl) isoxazole-3-carboxamide (60), was validated in a biologically relevant zebrafish model of collagen VI congenital muscular dystrophies.


86. Compositions for treatment of neurological & OSD

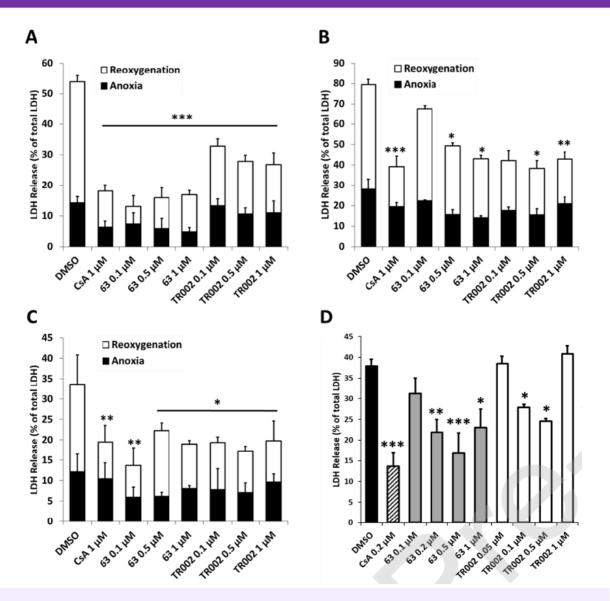
5" KDDF GLOBAL C&D TECH FAIR


(Oregon Health and Science University)

Key Data

Structures of prominent mtPTP inhibitors

Effect of compound 60 on oxygen consumption rate (OCR) and HeLa cell proliferation


86. Compositions for treatment of neurological & OSD

5" KDDF GLOBAL C&D TECH FAIR

(Oregon Health and Science University)

Key Data

Effects of compounds 63 and TR002 on cardiomyocytes viability

Cell death measured by LDH release from **A**) isolated NRVMs, **B**) isolated AMVMs and **C**) hiPSc-CMs treated for 30 minutes with different concentrations of either 63 or TR002 or with 1 μ M CsA. *p < 0.05, **p < 0.01, *** p < 0.001 vs DMSO Reoxygenation. **D**) Cell death measured by LDH release in *ex vivo* hearts perfused in a Langendorff model of I/R, with or without 63, TR002 or CsA. *p < 0.05, **p < 0.01, ***p < 0.001 vs DMSO. For *in vitro* experiments (**A**, **B**, **C**), approximately 3/4 wells were analyzed per condition in each experiment and all the experiments were performed at least three times using three different animal preparations or cell differentiations. For *ex vivo* experiments (**D**), n = 5 to 13. Data are expressed as mean ± SEM