

US 20210246199A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2021/0246199 A1

ANGELINI et al.

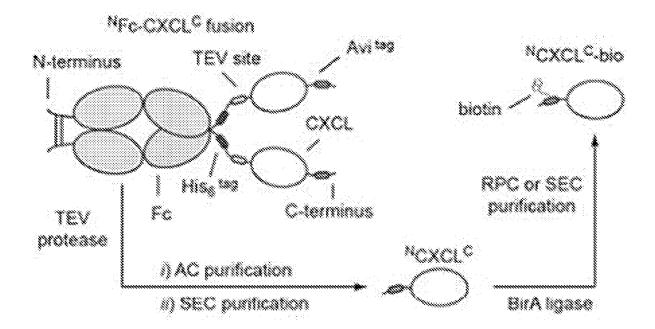
(54) MULTIPLE SPECIFICITY BINDERS OF CXC CHEMOKINES AND USES THEREOF

- (71) Applicants: Massachusetts Institute of Technology, Cambridge, MA (US); The General Hospital Corporation, Boston, MA (US)
- (72) Inventors: Alessandro ANGELINI, Lavagno (Verona) (IT); Karl Dane WITTRUP, Boston, MA (US); Andrew David LUSTER, Wellesley, MA (US)
- 16/638,992 (21) Appl. No.:
- (22) PCT Filed: Aug. 17, 2018
- (86) PCT No.: PCT/US2018/046894 § 371 (c)(1),
 - (2) Date: Feb. 13, 2020

Related U.S. Application Data

(60) Provisional application No. 62/546,814, filed on Aug. 17, 2017.

Aug. 12, 2021 (43) **Pub. Date:**


Publication Classification

- (51) Int. Cl. C07K 16/24 (2006.01)C07K 14/765 (2006.01)A61P 19/02 (2006.01)
- (52) U.S. Cl. C07K 16/24 (2013.01); C07K 14/765 CPC (2013.01); A61P 19/02 (2018.01); C07K 2317/31 (2013.01); A61K 2039/505 (2013.01); C07K 2319/30 (2013.01); C07K 2317/33 (2013.01); C07K 2317/92 (2013.01); C07K 2317/622 (2013.01)

ABSTRACT (57)

The present disclosure provides for fusion proteins comprising multispecific variable regions that bind more than one ELR+ CXC chemokine. The disclosure also provides methods of treating or preventing a condition associated with an abnormal immune response.

Specification includes a Sequence Listing.

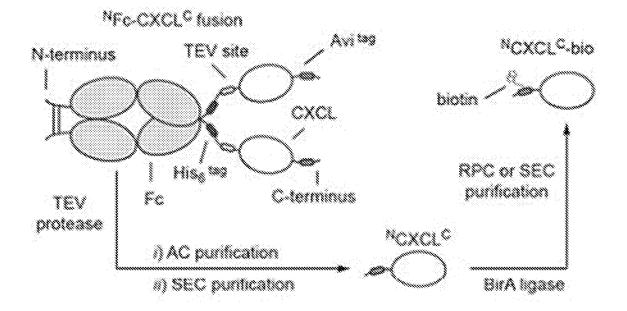


FIG. 1

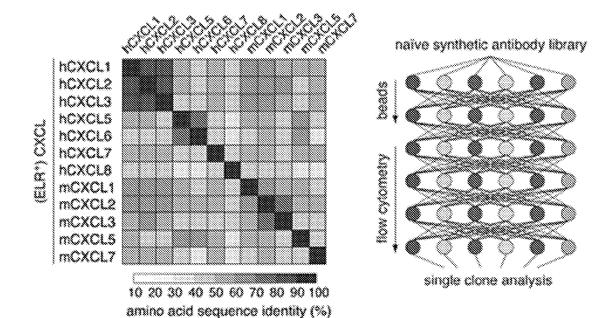
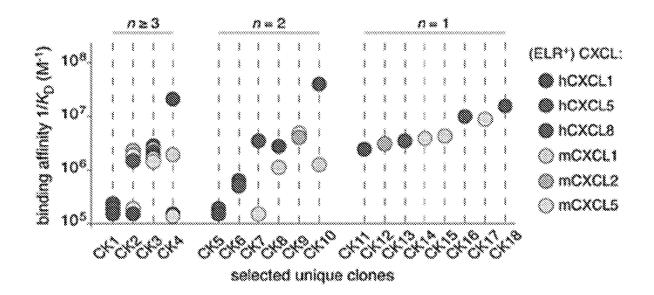
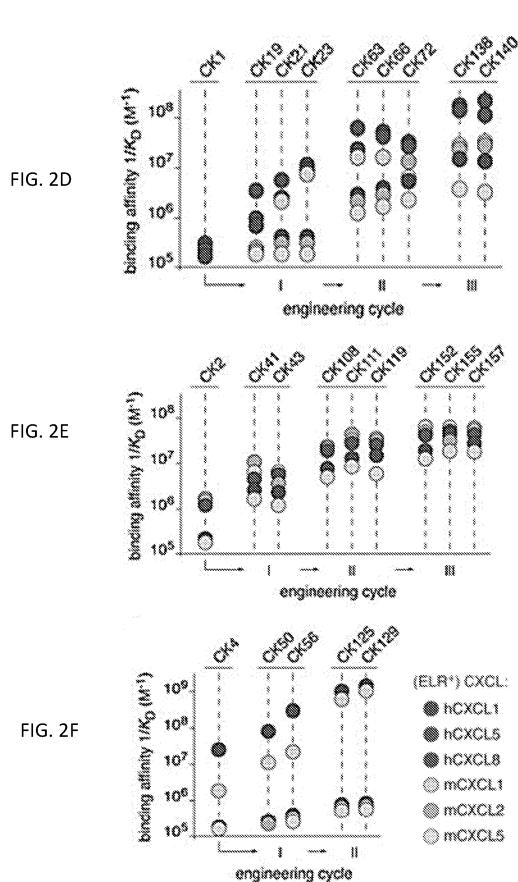




FIG. 2A

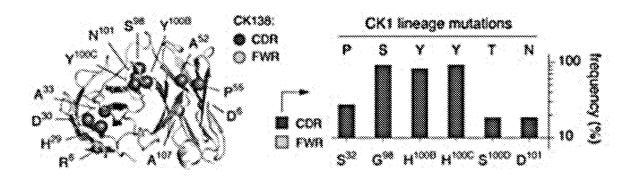


FIG. 2G

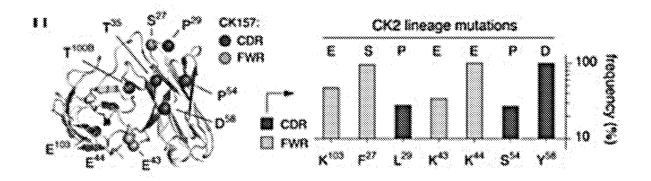


FIG. 2H

FIG. 3A

FIG. 3B

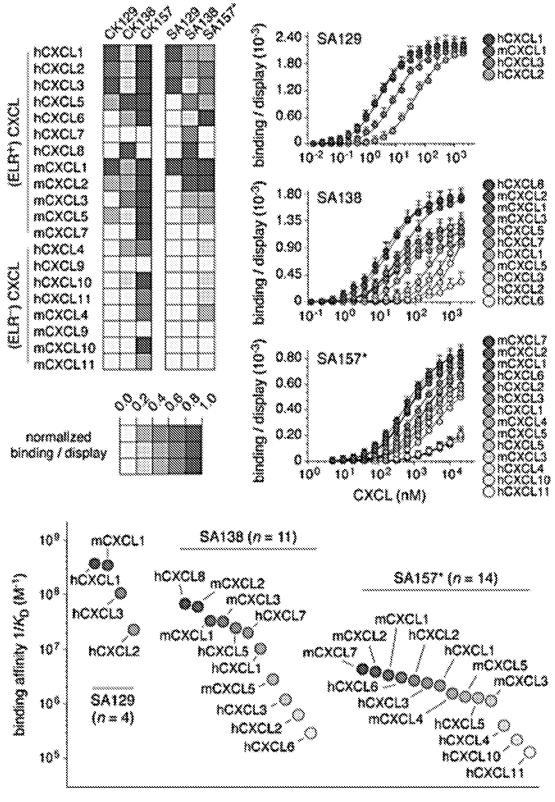
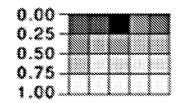



FIG. 3C

hCXCL1: 975

WT			
A4S			
T5A			
E6A			
L7A			
R8A			
Q10A			
L12A			
Q13A			
T14A			
L15A			
Q16A			
G17A			
118A			
H19A			
K21A	- North State	8 3	11111
N22A			
N22A Q24A			
Q24A			
Q24A S25A			
Q24A S25A N27A			
Q24A S25A N27A K29A			
Q24A S25A N27A K29A S30A			
Q24A S25A N27A K29A S30A G32A			

	Q,	9	g	Ŷ	× 4	×
Q37A						
T38A						
T43A						
K45A						
N46A						
G47A						
R48A						
K49A						
A50S						
N53A						
A55S						
S56A						
158A						
K60A						
K61A						
E64A						
K65A						
M66A						
L67A						
N68A						
S69A						
D70A						
K71A						
S72A						
N73A						

(binding / display) mutants

(binding / display) wild-type

FIG. 4A

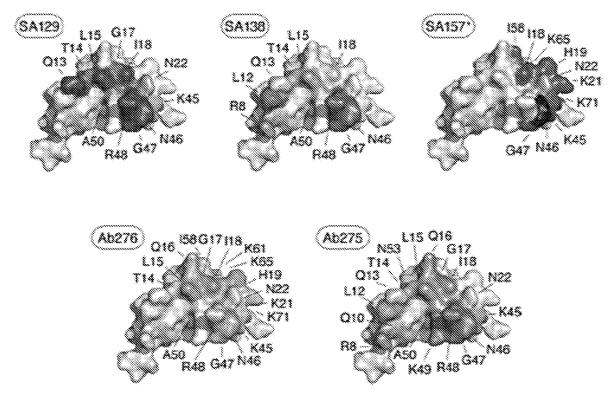
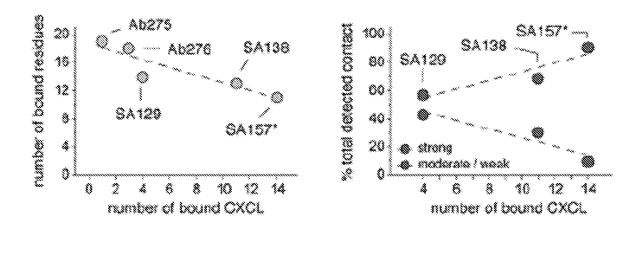
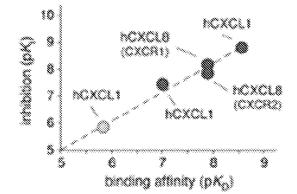


FIG. 4B

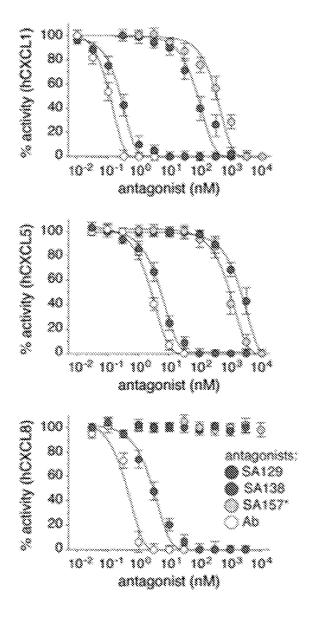

FIG. 4C

FIG. 4D

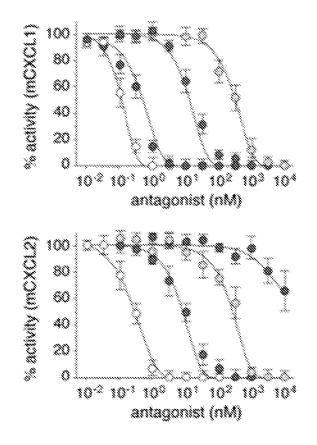


FIG. 5C

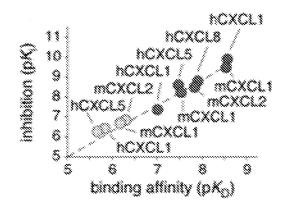
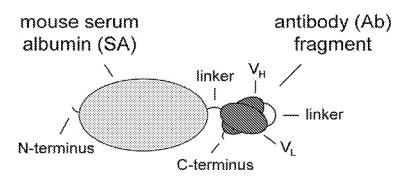



FIG. 5D

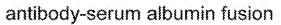


FIG. 6

FIG. 7C

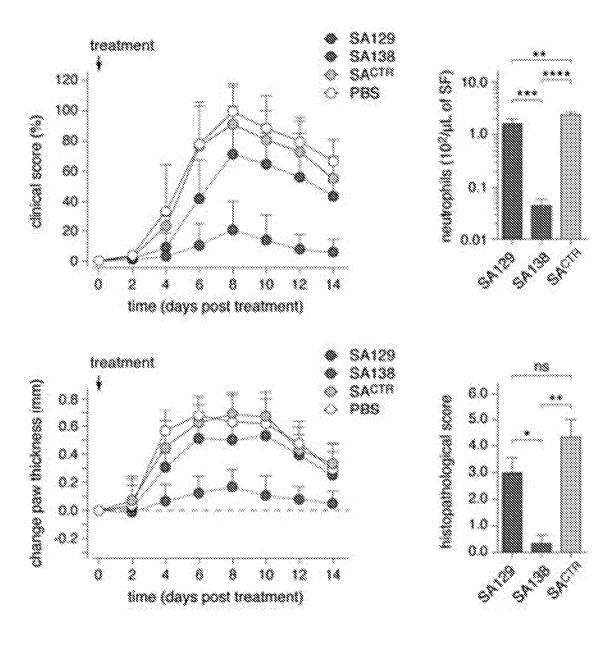


FIG. 7D

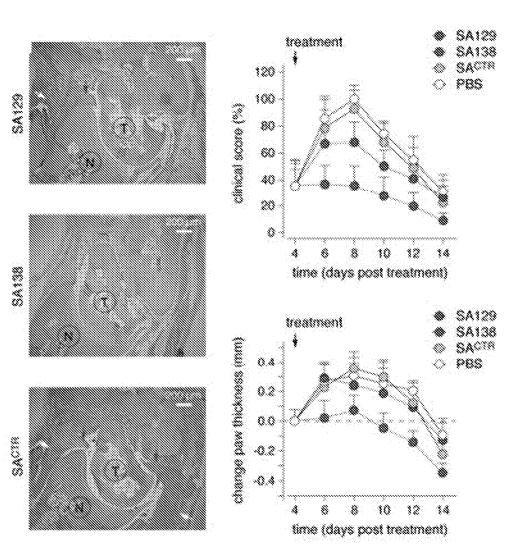


FIG. 7G

MULTIPLE SPECIFICITY BINDERS OF CXC CHEMOKINES AND USES THEREOF

RELATED INFORMATION PARAGRAPH

[0001] This application claims the benefit of the priority date of U.S. Provisional Application No. 62/546,814, filed on Aug. 17, 2017, the content of which is hereby incorporated by reference in its entirety.

BACKGROUND

[0002] Chronic inflammatory diseases usually involve multiple ligands that act synergistically through promiscuous and diverse receptors (Cho, J. H & Feldman, M., *Nat Med.* 21, 730-738 (2015)). This complexity is well exemplified by the ELR+ CXC chemokine system, a large family of secreted proteins that play a prominent role in the development and progression of numerous inflammatory diseases, including rheumatoid arthritis (RA) (Cho, J. H & Feldman, M., *Nat Med.* 21, 730-738 (2015); Charo, I. F. & Ransohoff, R. M. *N. Engl. J. Med.* 354, 610-621 (2006); Viola, A. & Luster, A. D. *Annu. Rev. Pharmacol. Toxicol.* 48, 171-197 (2008)).

[0003] Despite their clinical and commercial success, monoclonal antibodies often fail to reduce the level of small antigens in circulation. For example, while small chemokines (~8-10 kDa) are rapidly eliminated through renal filtration (t_{1/2}<10 min) (Van Zee, K. J. et al. J Immunol 148, 1746-1752 (1992)), strategies targeting single or multiple chemokines using large monoclonal antibodies (150 kDa) that are long-lived in circulation ($t_{1/2}$ ~2 weeks) extends the systemic lifetimes of chemokines, thus increasing circulating chemokine levels. This buffering effect has been experimentally observed with numerous antibodies targeting small antigens (Mihara, M., Koishihara, Y., Fukui, H., Yasukawa, K. & Ohsugi, Y, Immunology 74, 55-59 (1991); Finkelman, F. D. et al. J Immunol 151, 1235-1244 (1993); May, L. T. et al. J Immunol 151, 3225-3236 (1993); Jayson, G. C. et al. Eur J Cancer 41, 555-563 (2005); Mostbock, S. Curr Pharm Des 15, 809-825 (2009); Letourneau, S. et al. Proceedings of the National Academy of Sciences of the United States of America 107, 2171-2176 (2010); O'Hear, C. & Foote, J. Eur J Haematol 84, 252-258 (2010)), including chemokines (Haringman, J. J. et al Arthritis and rheumatism 54, 2387-2392 (2006)), and is consistent with the affinity, binding kinetics and pharmacokinetic profiles of the circulating antibody-small antigen complexes in the absence of efficient clearance (O'Hear, C. E. & Foote, J. Proceedings of the National Academy of Sciences of the United States of America 102, 40-44 (2005)). Furthermore, functional full length antibodies that are able to recruit additional immune system cells via FcyR receptors are not ideal for the treatment of inflammatory diseases that exploit autoantibodies.

[0004] As chronic inflammatory diseases are complex and involve multiple ligands and receptors acting in concert, therapies targeting a single pathological molecule are often insufficient to achieve the desired clinical outcome. Accordingly, therapeutics that bind multiple targets are needed.

SUMMARY OF THE DISCLOSURE

[0005] The present disclosure is based on the discovery of engineered crossreactive therapeutic proteins that bind mul-

tiple homologus and orthologus targets, and are capable of preventing and reversing inflammation in an autoimmune model.

[0006] Accordingly, in some aspects the disclosure provides fusion proteins comprising a multispecific variable region operably coupled to a polymer, wherein the multispecific variable region binds to at least four ELR+ CXC chemokines. In some aspects, the fusion protein comprises a multispecific variable region that binds human or murine ELR+ CXC chemokines. In other aspects, the fusion protein comprises a multispecific variable region that binds human and murine ELR+ CXC chemokines. In some aspects, the disclosure provides a fusion protein comprising a multispecific variable region that binds at least four ELR+ CXC chemokines selected from the group consisting of: human CXCL1 (Groα), human CXCL2 (Groβ), human CXCL3 (Groy), human CXCL5 (ENA-78), human CXCL6 (GCP-2), human CXCL7 (NAP-2), human CXCL8 (IL-8), murine CXCL1 (KC), murine CXCL2 (MIP-2), murine CXCL3 (DCIP-1), murine CXCL5 (LIX), and murine CXCL7 (NAP-2). In some aspects, the at least four ELR+ CXC chemokines are hCXCL1, hCXCL2, hCXCL3 and mCXCL1.

[0007] In some aspects, the disclosure provides a fusion protein comprising a multispecific variable region that binds at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, or at least twelve ELR+ CXC chemokines selected from the group consisting of: human CXCL1 (Groa), human CXCL2 (Groß), human CXCL3 (Groy), human CXCL5 (ENA-78), human CXCL6 (GCP-2), human CXCL7 (NAP-2), human CXCL8 (IL-8), murine CXCL1 (KC), murine CXCL2 (MIP-2), murine CXCL3 (DCIP-1), murine CXCL5 (LIX), and murine CXCL7 (NAP-2). In some aspects, the at least six chemokines are human CXCL1, human CXCL5, human CXCL8, murine CXCL1, murine CXCL2 and murine CXCL5. In other aspects, the at least eleven chemokines are human CXCL8, murine CXCL2, murine CXCL1, murine CXCL3, human CXCL7, human CXCL5, human CXCL1, murine CXCL5, human CXCL3, human CXCL2, and human CXCL6

[0008] In any of the foregoing aspects, the multispecific variable region is operably coupled to a polymer via a linker. In some aspects, the linker is a Gly-Ser linker.

[0009] In some aspects, the disclosure provides a fusion comprising a multispecific variable region operably coupled to a polymer, wherein the multispecific variable region is a scFv. In some aspects, the scFv is operably coupled to the C-terminus of the polymer. In some aspects, the scFv is operably coupled to the N-terminus of the polymer. In some aspects, the scFv is a linker. In some aspects, the linker is a Gly-Ser linker.

[0010] In some aspects, the disclosure provides a fusion protein comprising a multispecific variable region described herein operably coupled to a polymer, wherein the polymer is a serum albumin moiety. In some aspects, the serum albumin moiety is mouse serum albumin. In other aspects, the serum albumin moiety is human serum albumin. In other aspects, the disclosure provides a fusion protein comprising a multispecific variable region operably coupled to a polymer, wherein the polymer is an Fc domain.

[0011] In any of the foregoing aspects, the disclosure provides a fusion protein wherein the multispecific variable region comprises a heavy chain variable region and a light

chain variable region, wherein the heavy chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 1, 11 or 21.

[0012] In any of the foregoing aspects, the disclosure provides a fusion protein wherein the multispecific variable region comprises a heavy chain variable region and a light chain variable region, wherein the light chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 2, 12 or 22.

[0013] In any of the foregoing aspects, the disclosure provides a fusion protein wherein the multispecific variable region comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 1, 11 or 21, and wherein the light chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 2, 12 or 22.

[0014] In other aspects, the disclosure provides a fusion protein comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+ CXC chemokines, and wherein the multispecific variable region comprises a heavy chain variable region and a light chain variable region comprising the amino acid sequences set forth in:

[0015] (a) SEQ ID NOs: 1 and 2, respectively;

[0016] (b) SEQ ID NOs: 11 and 12, respectively; or

[0017] (c) SEQ ID NOs: 21 and 22, respectively.

[0018] In another aspect, the disclosure provides a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+ CXC chemokines, and wherein the multispecific variable region comprises a heavy chain variable region and light chain variable region comprising amino acid sequences having 90% identity to the amino acid sequences set forth in:

[0019] (a) SEQ ID NOs: 1 and 2, respectively;

[0020] (b) SEQ ID NOs: 11 and 12, respectively; or

[0021] (c) SEQ ID NOs: 21 and 22, respectively.

[0022] In some aspects, the disclosure provides a fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+ CXC chemokines, and wherein the multispecific variable region comprises heavy and light chain CDRs selected from the group consisting of:

[0023] (a) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 5, 6 and 7, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 8, 9 and 10, respectively;

[0024] (b) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 15, 16 and 17, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 18, 19 and 20, respectively; and **[0025]** (c) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 25, 26 and 27, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 28, 29 and 30, respectively.

[0026] In another aspect, the disclosure provides a fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+ CXC chemokines, and wherein the multispecific variable region comprises heavy and light chain variable regions, wherein

the heavy chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 11 and 21; and wherein the light chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 12 and 22.

[0027] In another aspect, the disclosure provides a fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+ CXC chemokines, and wherein the multispecific variable region comprises heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 5, 6 and 7, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 8, 9 and 10, respectively. In another aspect, the disclosure provides a fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least human CXCL8, murine CXCL2, murine CXCL1, murine CXCL3, human CXCL7, human CXCL5, human CXCL1, murine CXCL5, human CXCL3, human CXCL2, and human CXCL6, and wherein the multispecific variable region comprises heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 5, 6 and 7, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 8, 9 and 10, respectively.

[0028] In yet another aspect, the disclosure provides a fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+ CXC chemokines, and wherein the multispecific variable region comprises heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 25, 26 and 27, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 28, 29 and 30, respectively. In yet another aspect, the disclosure provides a fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least murine CXCL1, human CXCL1, human CXCL3, and human CXCL2, and wherein the multispecific variable region comprises heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 25, 26 and 27, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 28, 29 and 30, respectively.

[0029] In another aspect, the disclosure provides a fusion protein comprising an amino acid sequence selected from the group consisting of SEQ ID Nos: 95-105 and 160-170. **[0030]** In another aspect, the disclosure provides a fusion protein comprising an amino acid sequence having at least 90% identity to an amino acid sequence selected from the group consisting of SEQ ID Nos: 95-105 and 160-170.

[0031] In any of the foregoing aspects, the fusion protein inhibits binding of ELR+ CXC chemokines to their cognate CXCR1 and CXCR2.

[0032] In another aspect, the disclosure provides an isolated monoclonal antibody, or binding fragment thereof, that binds to at least four ELR+ CXC chemokines. In some aspects, the isolated monoclonal antibody, or binding fragment thereof, binds human or murine ELR+ CXC chemokines. In some aspects, the isolated monoclonal antibody, or binding fragment thereof, binds human and murine ELR+ CXC chemokines. In some aspects, the disclosure provides an isolated monoclonal antibody, or binding fragment thereof, that binds to at least four ELR+ CXC chemokines.

selected from the group consisting of: human CXCL1 (Gro α), human CXCL2 (Gro β), human CXCL3 (Gro γ), human CXCL5 (ENA-78), human CXCL6 (GCP-2), human CXCL7 (NAP-2), human CXCL8 (IL-8), murine CXCL1 (KC), murine CXCL2 (MIP-2), murine CXCL3 (DCIP-1), murine CXCL5 (LIX), and murine CXCL7 (NAP-2). In some aspects, the at least four ELR+ CXC chemokines are hCXCL1, hCXCL2, hCXCL3 and mCXCL1

[0033] In some aspects, the disclosure provides an isolated monoclonal antibody, or binding fragment thereof that binds at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, or at least twelve ELR+ CXC chemokines selected from the group consisting of: human CXCL1 (Groa), human CXCL2 (Groß), human CXCL3 (Groy), human CXCL5 (ENA-78), human CXCL6 (GCP-2), human CXCL7 (NAP-2), human CXCL8 (IL-8), murine CXCL1 (KC), murine CXCL2 (MIP-2), murine CXCL3 (DCIP-1), murine CXCL5 (LIX), and murine CXCL7 (NAP-2). In some aspects, the at least six chemokines are human CXCL1, human CXCL5, human CXCL8, murine CXCL1, murine CXCL2 and murine CXCL5. In other aspects, the at least eleven chemokines are human CXCL8, murine CXCL2, murine CXCL1, murine CXCL3, human CXCL7, human CXCL5, human CXCL1, murine CXCL5, human CXCL3, human CXCL2, and human CXCL6.

[0034] In any of the foregoing aspects, the binding fragment thereof is a single chain variable fragment (scFv).

[0035] In any of the foregoing aspects, the antibody or binding fragment thereof comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 1, 11 or 21.

[0036] In any of the foregoing aspects, the antibody or binding fragment thereof, comprises a heavy chain variable region and a light chain variable region, wherein the light chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 2, 12 or 22.

[0037] In any of the foregoing aspects, the antibody or binding fragment thereof, comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 1, 11 or 21, and wherein the light chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 2, 12 or 22.

[0038] In another aspect, the disclosure provides an isolated monoclonal antibody, or binding fragment thereof, that binds to at least four ELR+ CXC chemokines, comprising a heavy chain variable region and light chain variable region comprising the amino acid sequences set forth in:

[0039] (a) SEQ ID NOs: 1 and 2, respectively;

[0040] (b) SEQ ID NOs: 11 and 12, respectively; or

[0041] (c) SEQ ID NOs: 21 and 22, respectively.

[0042] In other aspects, the disclosure provides an isolated monoclonal antibody, or binding fragment thereof, that binds at least four ELR+ CXC chemokines, comprising a heavy chain variable region and light chain variable region comprising amino acid sequences having 90% identity to the amino acid sequences set forth in:

[0043] (a) SEQ ID NOs: 1 and 2, respectively;

[0044] (b) SEQ ID NOs: 11 and 12, respectively; or

[0045] (c) SEQ ID NOs: 21 and 22, respectively.

[0046] In another aspect, the disclosure provides an isolated monoclonal antibody, or binding fragment thereof, that

binds at least four ELR+ CXC chemokines, comprising heavy and light chain CDRs selected from the group consisting of:

[0047] (a) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 5, 6 and 7, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 8, 9 and 10, respectively;

[0048] (b) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 15, 16 and 17, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 18, 19 and 20, respectively; and **[0049]** (c) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 25, 26 and 27, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 28, 29 and 30, respectively.

[0050] In other aspects, the disclosure provides an isolated monoclonal antibody, or binding fragment thereof, that binds at least four ELR+ CXC chemokines, comprising heavy and light chain variable regions, wherein the heavy chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 11 or 21; and wherein the light chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 12 or 22.

[0051] In any of the foregoing aspects, the isolated monoclonal antibody, or binding fragment thereof, inhibits binding of ELR+ CXC chemokines to their cognate CXCR1 and CXCR2.

[0052] In another aspect, the disclosure provides methods of treating an autoimmune disorder in a subject in need thereof, the method comprising administering an effective amount of a fusion protein or isolated monoclonal antibody, or binding fragment thereof, described herein. In some aspects, the autoimmune disorder is rheumatoid arthritis.

[0053] In another aspect, the disclosure provides methods of blocking neutrophil infiltration in a subject with an autoimmune disorder, the method comprising administering an effective amount of a fusion protein or isolated monoclonal antibody, or binding fragment thereof, described herein. In some aspects, neutrophil infiltration of the synovial fluid of arthritic joints is blocked.

[0054] In another aspect, the disclosure provides methods of preventing establishment of an autoimmune disorder in a subject, the method comprising administering an effective amount of a fusion protein or isolated monoclonal antibody, or binding fragment thereof, described herein. In some aspects, the autoimmune disorder is rheumatoid arthritis.

[0055] In another aspect, the disclosure provides methods of reversing inflammatory arthritis in a subject in need thereof, the method comprising administering an effective amount of a fusion protein or isolated monoclonal antibody, or binding fragment thereof, described herein.

[0056] In another aspect, the disclosure provides a fusion protein or isolated monoclonal antibody, or binding fragment thereof, described herein, for use in treating an autoimmune disorder in a subject in need thereof, the method comprising administering an effective amount of. In some aspects, the autoimmune disorder is rheumatoid arthritis.

[0057] In another aspect, the disclosure provides a fusion protein or isolated monoclonal antibody, or binding fragment thereof, described herein, for use in blocking neutrophil infiltration in a subject with an autoimmune disorder. In some aspects, neutrophil infiltration of the synovial fluid of arthritic joints is blocked.

[0058] In another aspect, the disclosure provides a fusion protein or isolated monoclonal antibody, or binding fragment thereof, described herein, for use in preventing establishment of an autoimmune disorder in a subject. In some aspects, the autoimmune disorder is rheumatoid arthritis. **[0059]** In another aspect, the disclosure provides a fusion

protein or isolated monoclonal antibody, or binding fragment thereof, described herein, for use in reversing inflammatory arthritis in a subject in need thereof.

BRIEF DESCRIPTION OF THE FIGURES

[0060] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

[0061] FIG. **1** is a schematic representation of the (i) Fc-ELR+ CXC chemokine fusion protein constructs (Fc-CXCL) and (ii) purification scheme applied to obtain pure, active, and biotinylated ELR+ CXC chemokines (CXCLbio).

[0062] FIG. **2**A is a heat map displaying the sequence identity among multiple human and murine ELR+ CXC chemokines. h=human, m=murine.

[0063] FIG. **2**B is a schematic representation of the iterative selection pathways applied to isolate promiscuous binders from a naïve library of synthetic antibodies displayed on the surface of yeast. Two cycles of magnetic bead screening followed by four cycles of flow cytometry sorting are shown.

[0064] FIG. 2C is a plot showing the binding affinities of eighteen unique yeast-displayed synthetic antibody protein binders (CK) selected from six diverse human and murine ELR+ CXC chemokines. Data are represented as inverted equilibrium binding constants $(1/K_D; M^{-1})$ and indicate the means of at least three independent experiments. h=human, m=murine.

[0065] FIGS. 2D-2F provide plots of binding affinities of engineered clones derived from CK1 (FIG. 2D), CK2 (FIG. 2E), and CK4 (FIG. 2F) lineage after two independent processes of selection (I and II), each including the generation of random yeast-display antibody libraries and cycles of flow cytometry sorting, followed by a third round of site-directed mutagenesis (III). Data are represented as inverted equilibrium binding constants $(1/K_D; M^{-1})$ and indicate the means of at least three independent experiments.

[0066] FIGS. **2**G and **2**H show homology models and frequencies of enriched mutations of engineered CK138 (FIG. **2**G) and CK157 (FIG. **2**H) antibodies. The V_L and V_H backbones are represented as ribbons (light gray). Mutations acquired during the selection process are depicted as spheres at the Ca positions. Mutated amino acids belonging to CDR loops of CK138 and CK157 are shown in dark circles. Diversified amino acids belonging to FWR regions of CK138 and CK157 are shown in light circles.

[0067] FIG. **3**A is a heat map indicating the normalized binding/display intensities of the engineered antibodies against twenty diverse human and murine CXC chemokines. Binding between soluble CXC chemokines and yeast-displayed CK129, CK138 and CK157 is shown on the left, and binding between soluble serum-albumin antibody fusions SA129, SA138 and SA157* are shown on the right. The intensity of color correlates with the strength of the inter-

action with weak and strong interactions shown in light and dark colors, respectively. h=human, m=murine.

[0068] FIG. **3**B provides graphs showing the binding isotherms of yeast-displayed human and murine CXC chemokines to soluble SA129, SA138 and SA157* protein fusions. Equilibrium binding affinity (K_D) values were determined only for clones exhibiting signals at high concentration of soluble agents. h=human, m=murine.

[0069] FIG. **3**C is a plot of the binding affinities of yeast-displayed human and murine CXC chemokines to soluble SA129, SA138 and SA157* protein fusions. The indicated values are displayed as filled circles and represent the means of at least three independent experiments presented as inverted of equilibrium binding constants ($1/K_D$; M^{-1}). h=human, m=murine.

[0070] FIG. **4**A shows the normalized binding/display intensities of crossreactive protein fusions SA129, SA138 and SA157*, and commercially available antibodies Ab276 and Ab275, to a defined panel of hCXCL1 alanine-mutants, as assessed by flow cytometry. The intensity of color correlates with the strength of the interaction with weak and strong interactions shown in light and dark colors, respectively. h=human.

[0071] FIG. 4B provides schematics showing residues of hCXCL1 contacted by SA129 (top left), SA138 (top middle), SA157* (top right), Ab276 (bottom left) and Ab275 (bottom right). The intensity of color correlates with the strength of the interaction with weak and strong interactions shown in light and dark colors, respectively.

[0072] FIG. **4**C is a graph showing the number of interacting residues plotted against the number of bound CXC chemokine ligands (CXCL).

[0073] FIG. 4D is a graph showing the percent of strong and combined weak and moderate interactions of each selected protein binders (SA129, SA138 and SA157) plotted against the number of bound CXC chemokines. Weak/ moderate and strong interactions are shown in blue and red, respectively.

[0074] FIG. **5**A is a plot showing the ability of serum albumin-antibody fusion SA129 (red), SA138 (blue) and SA157* (gray) to block binding of hCXCL1 and hCXCL8 chemokines to CXCR1 and CXCR2 receptors, assessed by a flow cytometry based assay. The K_i values were determined, transformed to log K_i and plotted against pK_D . h=human.

[0075] FIGS. **5**B and **5**C provide plots showing the ability of serum albumin-antibody fusion SA129, SA138 and SA157* to antagonize the ELR+ CXC chemokine-induced receptors activation on mouse and human neutrophils, assessed by flow cytometry intracellular Ca²⁺ mobilization assay. The residual activity of human chemokines (hCXCL1, hCXCL5 and hCXCL8) (FIG. **5**B) and mouse chemokines (mCXCL1 and mCXCL2) (FIG. **5**C) incubated with varying concentrations of SA129 (red), SA138 (blue), SA157* (gray) and commercial neutralizing antibody (Ab, white). The indicated values are means of three independent experiments. h=human, m=murine.

[0076] FIG. **5**D is a plot showing calculated pK_i correlated linearly with the calculated pK_D suggesting a strict correlation between binding affinity and inhibitory activity. h=human, m=murine.

[0077] FIG. 6 is a schematic representation of the antibody single-chain variable fragment fused to the C-terminus of mouse serum albumin to generate SA129, SA138 and control SA^{CTR} fusion proteins.

[0078] FIG. 7A is a plot showing the percent clinical score of mice treated with serum albumin-antibody fusion proteins on day 0 (preventative regimen). Arrows indicate day begin of treatment. All data are presented as mean (dots) \pm SE (bars).

[0079] FIG. 7B is a plot showing the change in ankle thickness (mm) of mice treated with serum albumin-antibody fusion proteins on day 0 (preventative regimen). Arrows indicate day begin of treatment. All data are presented as mean (dots) \pm SE (bars).

[0080] FIG. 7C is a graph showing quantification of purified infiltrating synovial fluid neutrophils (Ly6G+ cells) from the ankles of serum transfer arthritic mice measured at day 8 by flow cytometry (n=3 per condition). Statistical comparisons were made between each group using one-way analysis of variance (ANOVA). P values: *P<0.05, ** P<0. 01, *** P<0.001; **** P<0.0001. ns: non-significant.

[0081] FIG. 7D is a graph showing histopathological scoring of ankle tissue sections of mice treated with SA129, SA138 and control SA^{CTR} on day 8.

[0082] FIG. 7E provides representative H&E staining of ankle tissue sections of mice treated with SA129 (top), SA138 (middle) and control SA^{CTR} (bottom) on day 8. Scale bar represents 200 White arrow indicates the infiltrated inflammatory cell in the joints and red arrow indicates pannus formation. T, taulus; N, navicular.

[0083] FIGS. 7F and 7G are plots providing the percent clinical score (FIG. 7F) and change in ankle thickness (mm) (FIG. 7G) of K/B×N serum-induced arthritic mice treated beginning on day 4 with serum albumin-antibody fusion proteins (therapeutic regimen). Arrows indicate day treatment began. All data are presented as mean (dots) ±SE (bars).

DETAILED DESCRIPTION

Overview

[0084] Various diseases are characterized by the development of immunological dysregulation in a patient. The presence of an impaired immune response in patients with autoimmune and related disorders has been particularly well-documented. Augmenting immune functions in patients may have beneficial effects for the alleviation of autoimmune and related diseases.

[0085] Described herein are fusion proteins, and isolated monoclonal antibodies, or antigen binding fragments thereof, that were designed to target soluble pro-inflammatory factors (e.g., ELR+ CXC chemokines).

[0086] ELR+ CXC chemokines (so-called because members of the chemokine family all possess an E-L-R amino acid motif immediately adjacent to their CXC motif) play an important role in a variety of pathogenic mechanisms, including the migration of neutrophils to sites of inflammation and angiogenesis. Neutrophils contribute to the pathogenesis of several acute and chronic inflammatory/autoimmune diseases.

[0087] In general, chemokines are grouped into four subfamilies: CXC, CC, (X)C, and CX3C. In the CXC chemokines, one amino acid separates the first two cysteines ("the CXC motif"). ELR+ CXC chemokines are ligands for CXCR1 and/or CXCR2 chemokine receptors, which are G-protein coupled seven transmembrane domain-type receptors that specifically bind ELR+ CXC chemokines. The seven human ELR+ CXC chemokines are human Gro-alpha (also known as CXCL1), human Gro-beta (also known as CXCL2), human Gro-gamma (also known as CXCL3), human ENA-78 (also known as CXCL5), human GCP-2 (also known as CXCL6), human NAP-2 (also known as CXCL7), and human IL-8 (also known as CXCL8). All ELR+ CXC chemokines bind the CXCR2 receptor; moreover, some ELR+ CXC chemokines bind both CXCR1 and CXCR2 receptors (i.e., CXCL6 and CXCL8), all of which contributes to redundancy in the activation pathways. The five murine ELR+ CXC chemokines are keratinocyte chemoattractant (KC) (also known as CXCL1), Macrophage Inflammatory Protein-2 (MIP-2) (also known as CXCL2), dendritic cell inflammatory protein-1 (DCIP-1) (also known as CXCL3), lipopolysaccharide-induced CXC chemokine (LIX) (also known as CXCL5), and neutrophil activating peptide-2 (NAP-2) (also known as CXCL7).

[0088] Crossreactive protein binders are challenging to obtain using traditional methodologies involving animal immunization and hybridoma development. Immune systems tend to remove self-reactive antibodies, making it difficult to generate in vivo antibodies against sequence- and structurally-related antigens derived from different species. In contrast, in vitro protein libraries associated with display technologies are unaffected by immune tolerance (Bradbury, A. R., et al. Nature biotechnology 29, 245-254 (2011)). Described herein are selection strategies for the isolation of protein binders with unprecedented crossreactivity towards a panel of structurally related, yet diverse in sequence, protein targets. Moreover, a serum albumin antibody fusionbased strategy was used to enable high drug dosing and optimal pharmacokinetic profiles, thus overcoming continuous receptor occupancy and buffering effect phenomena that have limited previous interventions.

[0089] Accordingly, in some aspects, the present disclosure provides fusion proteins comprising a multispecific variable region operably coupled to a polymer, wherein the multispecific variable region binds to at least four ELR+ CXC chemokines. In other aspects, the present disclosure provides methods for treating or preventing a disorder associated with an abnormal immune response (e.g., autoimmune disorder, e.g., rheumatoid arthritis), comprising administering a fusion protein described herein.

Definitions

[0090] Terms used in the claims and specification are defined as set forth below unless otherwise specified.

[0091] As used herein, "about" will be understood by persons of ordinary skill and will vary to some extent depending on the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill given the context in which it is used, "about" will mean up to plus or minus 10% of the particular value.

[0092] The term "ameliorating" refers to any therapeutically beneficial result in the treatment of a disease state, e.g., autoimmune disorder, including prophylaxis, lessening in the severity or progression, remission, or cure thereof.

[0093] "Amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups {e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that function in a manner similar to a naturally occurring amino acid.

[0094] Amino acids can be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, can be referred to by their commonly accepted single-letter codes.

[0095] An "amino acid substitution" refers to the replacement of at least one existing amino acid residue in a predetermined amino acid sequence (an amino acid sequence of a starting polypeptide) with a second, different "replacement" amino acid residue. An "amino acid insertion" refers to the incorporation of at least one additional amino acid into a predetermined amino acid sequence. While the insertion will usually consist of the insertion of one or two amino acid residues, larger "peptide insertions," can also be made, e.g. insertion of about three to about five or even up to about ten, fifteen, or twenty amino acid residues. The inserted residue(s) may be naturally occurring or non-naturally occurring as disclosed above. An "amino acid residue from a predetermined amino acid sequence.

[0096] A polypeptide or amino acid sequence "derived from" a designated polypeptide or protein refers to the origin of the polypeptide. Preferably, the polypeptide or amino acid sequence which is derived from a particular sequence has an amino acid sequence that is essentially identical to that sequence or a portion thereof, wherein the portion consists of at least 10-20 amino acids, preferably at least 20-30 amino acids, more preferably at least 30-50 amino acids, or which is otherwise identifiable to one of ordinary skill in the art as having its origin in the sequence. Polypeptides derived from another peptide may have one or more mutations relative to the starting polypeptide, e.g., one or more amino acid residues which have been substituted with another amino acid residue or which has one or more amino acid residue insertions or deletions. A polypeptide can comprise an amino acid sequence which is not naturally occurring. Such variants necessarily have less than 100% sequence identity or similarity with the starting molecule. In some embodiments, the variant will have an amino acid sequence from about 75% to less than 100% amino acid sequence identity or similarity with the amino acid sequence of the starting polypeptide. In some embodiments, the variant has an amino acid sequence from about 80% to less than 100% amino acid sequence identity or similarity with the amino acid sequence of the starting polypeptide. In some embodiments, the variant has an amino acid sequence from about 85% to less than 100%, amino acid sequence identity or similarity with the amino acid sequence of the starting polypeptide. In some embodiments, the variant has an amino acid sequence from about 90% to less than 100% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) amino acid sequence identity or similarity with the amino acid sequence of the starting polypeptide. In some embodiments, the variant has an amino acid sequence from about 95% to less than 100%, e.g., over the length of the variant molecule, amino acid sequence identity or similarity with the amino acid sequence of the starting polypeptide.

[0097] In some embodiments, there is one amino acid difference between a starting polypeptide sequence and the sequence derived therefrom. Identity or similarity with respect to this sequence is defined herein as the percentage of amino acid residues in the candidate sequence that are identical (i.e., same residue) with the starting amino acid residues, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. In some embodiments, a polypeptide consists of, consists essentially of, or comprises an amino acid sequence selected from SEQ ID NOs: 1, 2, 5-12, 15-22, 25-30, 37-42, 63-82, 95-106, 127-146, 148, and 160-182. In some embodiments, a polypeptide includes an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence selected from SEO ID NOs: 1, 2, 5-12, 15-22, 25-30, 37-42, 63-82, 95-106, 127-146, 148, and 160-182. In some embodiments, a polypeptide includes a contiguous amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to a contiguous amino acid sequence selected from SEQ ID NOs: 1, 2, 5-12, 15-22, 25-30, 37-42, 63-82, 95-106, 127-146, 148, and 160-182. In some embodiments, a polypeptide includes an amino acid sequence having at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, or 500 (or any integer within these numbers) contiguous amino acids of an amino acid sequence selected from SEQ ID NOs: 1, 2, 5-12, 15-22, 25-30, 37-42, 63-82, 95-106, 127-146, 148, and 160-182.

[0098] In some embodiments, the polypeptides are encoded by a nucleotide sequence. Nucleotide sequences of the invention can be useful for a number of applications, including: cloning, gene therapy, protein expression and purification, mutation introduction, DNA vaccination of a host in need thereof, antibody generation for, e.g., passive immunization, PCR, primer and probe generation, and the like. In some embodiments, the nucleotide sequence described herein comprises, consists of, or consists essentially of, a nucleotide sequence selected from SEQ ID NOs: 3, 4, 13, 14, 23, 24, 31-36, 43-62, 83-94, 107-126, 147, 149, and 150-159. In some embodiments, a nucleotide sequence includes a nucleotide sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to a nucleotide sequence set forth in SEQ ID NOs: 3, 4, 13, 14, 23, 24, 31-36, 43-62, 83-94, 107-126, 147, 149, and 150-159. In some embodiments, a nucleotide sequence includes a contiguous nucleotide sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to a contiguous nucleotide sequence set forth in SEQ ID NOs: 3, 4, 13, 14, 23, 24, 31-36, 43-62, 83-94, 107-126, 147, 149, and 150-159. In some embodiments, a nucleotide sequence includes a nucleotide sequence having at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, or 500 (or any integer within these numbers) contiguous nucleotides of a nucleotide sequence set forth in SEQ ID NOs: 3, 4, 13, 14, 23, 24, 31-36, 43-62, 83-94, 107-126, 147, 149, and 150-159.

[0099] It will also be understood by one of ordinary skill in the art that the polypeptides (e.g., fusion proteins) disclosed herein may be altered such that they vary in sequence from the naturally occurring or native sequences from which they were derived, while retaining the desirable activity of the native sequences. For example, nucleotide or amino acid substitutions leading to conservative substitutions or changes at "non-essential" amino acid residues may be made. Mutations may be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis.

[0100] The polypeptides disclosed herein may comprise conservative amino acid substitutions at one or more amino acid residues, e.g., at essential or non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a nonessential amino acid residue in a binding polypeptide is preferably replaced with another amino acid residue from the same side chain family. In some embodiments, a string of amino acids can be replaced with a structurally similar string that differs in order and/or composition of side chain family members. Alternatively, in some embodiments, mutations may be introduced randomly along all or part of a coding sequence, such as by saturation mutagenesis, and the resultant mutants can be incorporated into binding polypeptides of the invention and screened for their ability to bind to the desired target.

[0101] As used herein, the term "antibody" refers to a whole antibody comprising two light chain polypeptides and two heavy chain polypeptides. Whole antibodies include different antibody isotypes including IgM, IgG, IgA, IgD, and IgE antibodies. The term "antibody" includes a polyclonal antibody, a monoclonal antibody, a chimerized or chimeric antibody, a humanized antibody, a primatized antibody, a deimmunized antibody, and a fully human antibody. The antibody can be made in or derived from any of a variety of species, e.g., mammals such as humans, nonhuman primates (e.g., orangutan, baboons, or chimpanzees), horses, cattle, pigs, sheep, goats, dogs, cats, rabbits, guinea pigs, gerbils, hamsters, rats, and mice. The antibody can be a purified or a recombinant antibody.

[0102] As used herein, the term "antibody fragment," "antigen-binding fragment," or similar terms refer to a fragment of an antibody that retains the ability to bind to a target antigen(s) (e.g., ELR+ CXC chemokine(s)) and promote, induce, and/or increase the activity of the target antigen. Such fragments include, e.g., a single chain antibody, a single chain Fv fragment (scFv), an Fd fragment, an Fab fragment, an Fab' fragment, or an F(ab')2 fragment. An scFv fragment is a single polypeptide chain that includes both the heavy and light chain variable regions of the antibody from which the scFv is derived. In addition, intrabodies, minibodies, triabodies, and diabodies are also included in the definition of antibody and are compatible for use in the methods described herein. See, e.g., Todorovska et al. (2001) *J Immunol Methods* 248(1):47-66; Hudson and Kortt (1999) *J Immunol Methods* 231(1):177-189; Poljak (1994) *Structure* 2(12):1121-1123; Rondon and Marasco (1997) *Annual Review of Microbiology* 51:257-283, the disclosures of each of which are incorporated herein by reference in their entirety.

[0103] As used herein, the term "antibody fragment" also includes, e.g., single domain antibodies such as camelized single domain antibodies. See, e.g., Muyldermans et al. (2001) *Trends Biochem Sci* 26:230-235; Nuttall et al. (2000) *Curr Pharm Biotech* 1:253-263; Reichmann et al. (1999) *J Immunol Meth* 231:25-38; PCT application publication nos. WO 94/04678 and WO 94/25591; and U.S. Pat. No. 6,005, 079, all of which are incorporated herein by reference in their entireties. In some embodiments, the disclosure provides single domain antibodies comprising two VH domains with modifications such that single domain antibodies are formed.

[0104] In some embodiment, an antigen-binding fragment includes the variable region of a heavy chain polypeptide and the variable region of a light chain polypeptide. In some embodiments, an antigen-binding fragment described herein comprises the CDRs of the light chain and heavy chain polypeptide of an antibody.

[0105] As used herein, the term "autoimmune and/or related diseases" refers to diseases, disorders, conditions, and/or syndromes arising from and/or directed against a patient's own cells, tissues, and/or organs, or a co-segregate or manifestation thereof, or resulting condition therefrom. Examples of autoimmune and related diseases include graft rejection (e.g. graft vs. host disease), allergy, inflammatory diseases, and also include, but are not limited to, Acute Disseminated Encephalomyelitis (ADEM), Acute necrotizing hemorrhagic leukoencephalitis, Addison's disease, Agammaglobulinemia, Allergic conjunctivitis, Allergic rhinitis, Allergic disorders of the gastrointestinal tract, Alopecia areata, Alzheimer's disease, Amyloidosis, Ankylosing spondylitis, Anti-GBM/Anti-TBM nephritis, Antiphospholipid syndrome (APS), Arteriosclerosis, Asthma, Autoimmune angioedema, Autoimmune aplastic anemia, Autoimmune-associated infertility, Autoimmune dysautonomia, Autoimmune encephalomyelitis, Autoimmune hemophilia, Autoimmune hepatitis, Autoimmune hyperlipidemia, Autoimmune immunodeficiency, Autoimmune inner ear disease (AIED), Autoimmune lymphoproliferative syndrome, Autoimmune myocarditis, Autoimmune oophoritis, Autoimmune pancreatitis, Autoimmune retinopathy, Autoimmune thrombocytopenic purpura (ATP), Autoimmune thyroid disease, Autoimmune urticaria, Autoimmune uveoretinitis, Axonal & neuronal neuropathies, Balo disease, Behcet's disease, Bullous pemphigoid, Cardiomyopathy, Castleman disease, Celiac disease, Chagas disease, Chronic fatigue syndrome, Chronic inflammatory demyelinating polyneuropathy (CIDP), Chronic recurrent multifocal ostomyelitis (CRMO), Churg-Strauss syndrome, Cicatricial pemphigoid/benign mucosal pemphigoid, Crohn's disease, Cogans syndrome, Cold agglutinin disease, Congenital heart block, Coxsackie myocarditis, CREST disease, Essential mixed cryoglobulinemia, Demyelinating neuropathies, Dermatitis herpetiformis, Dermatomyositis, Devic's disease (neuromyelitis optica), Discoid lupus, Dressler's syndrome, Eczema, Endometriosis, Eosinophilic esophagitis, Eosinophilic fasciitis, Erythema nodosum, Eustachian tube itching, Experimental allergic encephalomyelitis, Evans syndrome, Fibromyalgia, Fibrosing alveolitis, Giant cell arteritis (temporal arteritis), Giant cell myocarditis, Giant papillary conjunctivitis, Glomerulonephritis, Goodpasture's syndrome, Granulomatosis with Polyangiitis (GPA) (formerly called Wegener's Granulomatosis), Graves' disease, Guillain-Barre syndrome, Hashimoto's encephalitis, Hashimoto's thyroiditis, Hemolytic anemia, Henoch-Schonlein purpura, Herpes gestationis, Hypogammaglobulinemia, Idiopathic thrombocytopenic purpura (ITP), IgA nephropathy, IgG4-related sclerosing disease, Immunoregulatory lipoproteins, Inclusion body myositis, Inflammatory Bowel Disease, Insulin resistance, Interstitial cystitis, Juvenile rheumatoid arthritis, Juvenile diabetes (Type 1 diabetes), Juvenile myositis, Kawasaki disease/syndrome, Lambert-Eaton syndrome, Leukocytoclastic vasculitis, Lichen planus, Lichen sclerosus, Ligneous conjunctivitis, Linear IgA disease (LAD), Lyme disease, chronic, Meniere's disease, Microscopic polyangiitis, Mixed connective tissue disease (MCTD), Mooren's ulcer, Mucha-Habermann disease, Multiple sclerosis, Myasthenia gravis, Myositis, Narcolepsy, Neuromyelitis optica (Devic's), Neutropenia, Osteoarthritis, Ocular cicatricial pemphigoid, Optic neuritis, Palindromic rheumatism, PANDAS (Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus), Paraneoplastic cerebellar degeneration, Paroxysmal nocturnal hemoglobinuria (PNH), Parry Romberg syndrome, Parsonnage-Turner syndrome, Pars planitis (peripheral uveitis), Pemphigus, Peripheral neuropathy, Perivenous encephalomyelitis, Pernicious anemia, POEMS syndrome, Polyarteritis nodosa, Type I, II, & III autoimmune polyglandular syndromes, Polymyalgia rheumatic, Polymyositis, Postmyocardial infarction syndrome, Postpericardiotomy syndrome, Progesterone dermatitis, Primary biliary cirrhosis, Primary sclerosing cholangitis, Psoriasis, Psoriatic arthritis, Idiopathic pulmonary fibrosis, Pyoderma gangrenosum, Pure red cell aplasia, Raynauds phenomenon, Reactive Arthritis, Reflex sympathetic dystrophy, Reiter's syndrome, Relapsing polychondritis, Restless legs syndrome, Retroperitoneal fibrosis, Rheumatic fever, Rheumatoid arthritis, Sarcoidosis, Schmidt syndrome, Scleritis, Scleroderma, Sinusitis, Sjogren's syndrome, Sperm & testicular autoimmunity, Stiff person syndrome, Subacute bacterial endocarditis (SBE), Susac's syndrome, Sympathetic ophthalmia, Systemic lupus eythematosus (SLE), Takayasu's arteritis, Temporal arteritis/Giant cell arteritis, Thrombocytopenic purpura (TTP), Tolosa-Hunt syndrome, Transverse myelitis, Type 1 diabetes, Ulcerative colitis, Undifferentiated connective tissue disease (UCTD), Uveitis, Vernal conjunctivitis, Vernal keratoconjunctivitis, Vasculitis, Vesiculobullous dermatosis, Vitiligo, Wegener's granulomatosis (now termed Granulomatosis with Polyangiitis (GPA). Any one or more of the aforementioned or unmentioned autoimmune and/or related diseases may be the target disease for a method of treatment as disclosed herein.

[0106] As used herein, the term "bispecific" or "bifunctional antibody" refers to an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai & Lachmann, *Clin. Exp. Immunol.* 79:315-321 (1990); Kostelny et al., *J. Immunol.* 148, 1547-1553 (1992).

[0107] Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chain/light-chain pairs have different specificities (Milstein and Cuello (1983) Nature 305:537-539). Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion of the heavy chain variable region is preferably with an immunoglobulin heavy-chain constant domain, including at least part of the hinge, CH2, and CH3 regions. For further details of illustrative currently known methods for generating bispecific antibodies see, e.g., Suresh et al. (1986) Methods in Enzymology 121:210; PCT Publication No. WO 96/27011; Brennan et al. (1985) Science 229:81; Shalaby et al., J Exp Med (1992) 175:217-225; Kostelny et al. (1992) J Immunol 148(5):1547-1553; Hollinger et al. (1993) Proc Natl Acad Sci USA 90:6444-6448; Gruber et al. (1994) J Immunol 152:5368; and Tutt et al. (1991) J Immunol 147:60. Bispecific antibodies also include cross-linked or heteroconjugate antibodies. Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of crosslinking techniques.

[0108] Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. See, e.g., Kostelny et al. (1992) J Immunol 148(5):1547-1553. The leucine zipper peptides from the Fos and Jun proteins may be linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers may be reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al. (1993) Proc Natl Acad Sci USA 90:6444-6448 has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (scFv) dimers has also been reported. See, e.g., Gruber et al. (1994) J Immunol 152:5368. Alternatively, the antibodies can be "linear antibodies" as described in, e.g., Zapata et al. (1995) Protein Eng. 8(10):1057-1062. Briefly, these antibodies comprise a pair of tandem Fd segments (VH-CH1-VH-CH1) which form a pair of antigen binding regions. Linear antibodies can be bispecific or monospecific. Antibodies with more than two valencies (e.g., trispecific antibodies) are contemplated and described in, e.g., Tutt et al. (1991) J Immunol 147:60.

[0109] As used herein, the term "chemokine" refers to a member of the family of small cytokines, or signaling proteins, that induce directed chemotaxis. Chemokines are

grouped into four subfamilies: CXC, CC, (X)C, and CX3C. In some embodiments, the chemokine or chemokines of interest are CXC chemokines. In the CXC chemokines, one amino acid separates the first two cysteines ("the CXC motif").

[0110] As used herein, the term "cross-reacts" refers to the ability of an antibody or fusion protein of the disclosure to bind to chemokines from a different species. For example, an antibody or fusion protein of the present disclosure which binds human ELR+ CXC chemokines may also bind another species of ELR+ CXC chemokines. As used herein, crossreactivity is measured by detecting a specific reactivity with purified antigen in binding assays (e.g., SPR, ELISA). Methods for determining cross-reactivity include standard binding assays as described herein, for example, by BiacoreTM surface plasmon resonance (SPR) analysis using a Biacore[™] 2000 SPR instrument (Biacore AB, Uppsala, Sweden), or flow cytometric techniques. In some embodiments, a fusion protein described herein comprises a multispecific variable region that binds human and murine ELR+ CXC chemokines.

[0111] As used herein, the term "ELR+ CXC chemokine" refers to a chemokine possessing an E-L-R amino acid motif immediately adjacent to a CXC motif. ELR+ CXC chemokines are ligands for CXCR1 and/or CXCR2 chemokine receptors, which are G-protein coupled seven transmembrane domain-type receptors that specifically binds ELR+ CXC chemokines. All ERL+ CXC chemokines bind the CXCR2 receptor, whereas some bind both CXCR1 and CXCR2 receptors. The ELR+ CXC chemokines are human Gro-alpha (also known as CXCL1), human Gro-beta (also known as CXCL2), human Gro-gamma (also known as CXCL3), human ENA-78 (also known as CXCL5), human GCP-2 (also known as CXCL6), human NAP-2 (also known as CXCL7), human IL-8 (also known as CXCL58). The five murine ELR+ CXC chemokines are keratinocyte chemoattractant (KC), Macrophage Inflammatory Protein-2 (MIP-2), dendritic cell inflammatory protein-1 (DCIP-1), neutrophil activating peptide-2 (NAP-2) and lipopolysaccharide-induced CXC chemokine (LIX). The table below provides the list of ELR+ CXC chemokines, their alternative names, including the murine equivalent, and what receptors they bind to.

Chemokine	Alternative Names	Receptor(s) Binding
CXCL1	GROα, MGSA, murine KC	CXCR2
CXCL2	GROβ, MIP-2a, murine MIP-2	CXCR2
CXCL3	GROγ, MIP-2b, murine DCIP-1	CXCR2
CXCL5 CXCL6	ENA-78, murine LIX GCP-2 (no murine equivalent)	CXCR2 CXCR2 CXCR1, CXCR2
CXCL7	NAP-2	CXCR2
CXCL8	IL-8 (no murine equivalent)	CXCR1, CXCR2

[0112] As used herein, the term "epitope" or "antigenic determinant" refers to a site on an antigen (e.g., ELR+ CXC chemokine) to which an immunoglobulin or antibody specifically binds. Epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acids in a unique spatial

conformation. Methods for determining what epitopes are bound by a given antibody (i.e., epitope mapping) are well known in the art and include, for example, immunoblotting and immunoprecipitation assays, wherein overlapping or contiguous peptides from a chemokine are tested for reactivity with the given antibody. Methods of determining spatial conformation of epitopes include techniques in the art and those described herein, for example, x-ray crystallography and 2-dimensional nuclear magnetic resonance (see, e.g., *Epitope Mapping Protocols in Methods in Molecular Biology*, Vol. 66, G. E. Morris, Ed. (1996)).

[0113] Also, encompassed by the present disclosure are antibodies that bind to epitopes on chemokines (e.g., ELR+CXC chemokines) which comprises all or a portion of an epitope recognized by the particular antibodies described herein (e.g., the same or an overlapping region or a region between or spanning the region).

[0114] Also encompassed by the present disclosure are antibodies that bind the same epitope and/or antibodies that compete for binding to chemokines (e.g., ELR+ CXC chemokines) with the antibodies described herein. Antibodies that recognize the same epitope or compete for binding can be identified using routine techniques. Such techniques include, for example, an immunoassay, which shows the ability of one antibody to block the binding of another antibody to a target antigen, i.e., a competitive binding assay. Competitive binding is determined in an assay in which the immunoglobulin under test inhibits specific binding of a reference antibody to a common antigen. Numerous types of competitive binding assays are known, for example: solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see Stahli et al., Methods in Enzymology 9:242 (1983)); solid phase direct biotin-avidin EIA (see Kirkland et al., J. Immunol. 137:3614 (1986)); solid phase direct labeled assay, solid phase direct labeled sandwich assay (see Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Press (1988)); solid phase direct label RIA using I-125 label (see Morel et al., Mol. Immunol. 25(1):7 (1988)); solid phase direct biotin-avidin EIA (Cheung et al., Virology 176:546 (1990)); and direct labeled RIA. (Moldenhauer et al., Scand. J. Immunol. 32:77 (1990)). Typically, such an assay involves the use of purified antigen bound to a solid surface or cells bearing either of these, an unlabeled test immunoglobulin and a labeled reference immunoglobulin. Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test immunoglobulin. Usually the test immunoglobulin is present in excess. Usually, when a competing antibody is present in excess, it will inhibit specific binding of a reference antibody to a common antigen by at least 50-55%, 55-60%, 60-65%, 65-70% 70-75% or more.

[0115] Other techniques include, for example, epitope mapping methods, such as, x-ray analyses of crystals of antigen: antibody complexes which provides atomic resolution of the epitope. Other methods monitor the binding of the antibody to antigen fragments or mutated variations of the antigen where loss of binding due to a modification of an amino acid residue within the antigen sequence is often considered an indication of an epitope component. In addition, computational combinatorial methods for epitope mapping can also be used. These methods rely on the ability of the antibody of interest to affinity isolate specific short

peptides from combinatorial phage display peptide libraries. The peptides are then regarded as leads for the definition of the epitope corresponding to the antibody used to screen the peptide library. For epitope mapping, computational algorithms have also been developed which have been shown to map conformational discontinuous epitopes.

[0116] As used herein, the term "Fc region" refers to the portion of a native immunoglobulin formed by the respective Fc domains (or Fc moieties) of its two heavy chains. As used herein, the term "Fc domain" refers to a portion of a single immunoglobulin (Ig) heavy chain wherein the Fc domain does not comprise an Fv domain. As such, an Fc domain can also be referred to as "Ig" or "IgG." In some embodiments, an Fc domain begins in the hinge region just upstream of the papain cleavage site and ends at the C-terminus of the antibody. Accordingly, a complete Fc domain comprises at least a hinge domain, a CH2 domain, and a CH3 domain. In some embodiments, an Fc domain comprises at least one of: a hinge (e.g., upper, middle, and/or lower hinge region) domain, a CH2 domain, a CH3 domain, a CH4 domain, or a variant, portion, or fragment thereof. In some embodiments, an Fc domain comprises a complete Fc domain (i.e., a hinge domain, a CH2 domain, and a CH3 domain). In some embodiments, an Fc domain comprises a hinge domain (or portion thereof) fused to a CH3 domain (or portion thereof). In some embodiments, an Fc domain comprises a CH2 domain (or portion thereof) fused to a CH3 domain (or portion thereof). In some embodiments, an Fc domain consists of a CH3 domain or portion thereof. In some embodiments, an Fc domain consists of a hinge domain (or portion thereof) and a CH3 domain (or portion thereof). In some embodiments, an Fc domain consists of a CH2 domain (or portion thereof) and a CH3 domain. In some embodiments, an Fc domain consists of a hinge domain (or portion thereof) and a CH2 domain (or portion thereof). In some embodiments, an Fc domain lacks at least a portion of a CH2 domain (e.g., all or part of a CH2 domain). An Fc domain herein generally refers to a polypeptide comprising all or part of the Fc domain of an immunoglobulin heavy-chain. This includes, but is not limited to, polypeptides comprising the entire CH1, hinge, CH2, and/or CH3 domains as well as fragments of such peptides comprising only, e.g., the hinge, CH2, and CH3 domain. In some embodiments, the Fc domain is derived from an immunoglobulin of any species and/or any subtype, including, but not limited to, a human IgG1, IgG2, IgG3, IgG4, IgD, IgA, IgE, or IgM antibody. A human IgG1 constant region can be found at Uniprot P01857 and in Table 12 (i.e., SEQ ID NO: 172). The Fc domain of human IgG1 can be found in Table 12 (i.e., SEQ ID NO: 173). The Fc domain encompasses native Fc and Fc variant molecules. As with Fc variants and native Fc's, the term Fc domain includes molecules in monomeric or multimeric form, whether digested from whole antibody or produced by other means. The assignment of amino acid residue numbers to an Fc domain is in accordance with the definitions of Kabat. See, e.g., Sequences of Proteins of Immunological Interest (Table of Contents, Introduction and Constant Region Sequences sections), 5th edition, Bethesda, Md.:NIH vol. 1:647-723 (1991); Kabat et al., "Introduction" Sequences of Proteins of Immunological Interest, US Dept of Health and Human Services, NIH, 5th edition, Bethesda, Md. vol. 1:xiii-xcvi (1991); Chothia & Lesk, J. Mol. Biol. 196:901-917 (1987); Chothia et al., Nature 342:878-883 (1989), each of which is herein incorporated by reference for all purposes.

[0117] As set forth herein, it will be understood by one of ordinary skill in the art that any Fc domain may be modified such that it varies in amino acid sequence from the native Fc domain of a naturally occurring immunoglobulin molecule. In some embodiments, the Fc domain has reduced effector function (e.g., Fc γ R binding).

[0118] In some embodiments, the Fc domains are derived from different immunoglobulin molecules. For example, an Fc domain may comprise a CH2 and/or CH3 domain derived from an IgG1 molecule and a hinge region derived from an IgG3 molecule. In another example, an Fc domain can comprise a chimeric hinge region derived, in part, from an IgG1 molecule and, in part, from an IgG3 molecule. In another example, an Fc domain can comprise a chimeric hinge derived, in part, from an IgG1 molecule and, in part, from an IgG4 molecule.

[0119] As used herein, the term "fusion protein" refers to a recombinant protein prepared by fusion of a multispecific variable region described herein, and a polymer (e.g., serum albumin).

[0120] As used herein, the term "gly-ser polypeptide linker" refers to a peptide that consists of glycine and serine residues. An exemplary gly-ser polypeptide linker comprises the amino acid sequence Ser(Gly₄Ser)n. In some embodiments, n=1. In some embodiments, n=2. In some embodiments, n=3, i.e., Ser(Gly₄Ser)3. In some embodiments, n=4, i.e., Ser(Gly₄Ser)4. In some embodiments, n=5. In some embodiments, n=6. In some embodiments, n=7. In some embodiments, n=8. In some embodiments, n=9. In some embodiments, n=10. Another exemplary gly-ser polypeptide linker comprises the amino acid sequence (Gly₄Ser)n. In some embodiments, n=1. In some embodiments, n=2. In some embodiments, n=3. In some embodiments, n=4. In some embodiments, n=5. In some embodiments, n=6. Another exemplary gly-ser polypeptide linker comprises the amino acid sequence (Gly₃Ser)n. some embodiments, n=1. In some embodiments, n=2. In some embodiments, n=3. In some embodiments, n=4. In some embodiments, n=5. In some embodiments, n=6.

[0121] As used herein, "half-life" refers to the time taken for the serum or plasma concentration of a polypeptide to reduce by 50%, in vivo, for example due to degradation and/or clearance or sequestration by natural mechanisms. The fusion protein disclosed herein is stabilized in vivo and its half-life increased by, e.g., fusion to an Fc region, fusion to serum albumin (e.g., HSA or MSA), through PEGylation, or by binding to serum albumin molecules (e.g., human serum albumin) which resist degradation and/or clearance or sequestration. The half-life can be determined in any manner known per se, such as by pharmacokinetic analysis. Suitable techniques will be clear to the person skilled in the art, and may for example generally involve the steps of suitably administering a suitable dose of the amino acid sequence or compound to a subject; collecting blood samples or other samples from said subject at regular intervals; determining the level or concentration of the amino acid sequence or compound in said blood sample; and calculating, from (a plot of) the data thus obtained, the time until the level or concentration of the amino acid sequence or compound has been reduced by 50% compared to the initial level upon dosing. Further details are provided in, e.g., standard handbooks, such as Kenneth, A. et al., Chemical Stability of Pharmaceuticals: A Handbook for Pharmacists and in Peters et al., Pharmacokinetic Analysis: A Practical Approach (1996). Reference is also made to Gibaldi, M. et al., Pharmacokinetics, 2nd Rev. Edition, Marcel Dekker (1982).

[0122] As used herein, the term "human antibody" includes antibodies having variable and constant regions (if present) of human germline immunoglobulin sequences. Human antibodies of the disclosure can include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or sitespecific mutagenesis in vitro or by somatic mutation in vivo) (see, Lonberg, N. et al. (1994) Nature 368(6474): 856-859); Lonberg, N. (1994) Handbook of Experimental Pharmacology 113:49-101; Lonberg, N. and Huszar, D. (1995) Intern. Rev. Immunol. Vol. 13: 65-93, and Harding, F. and Lonberg, N. (1995) Ann. N.Y. Acad. Sci 764:536-546). However, the term "human antibody" does not include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences (i.e., humanized antibodies). [0123] As used herein, the term a "heterologous antibody"

[0123] As used herein, the term a "heterologous antibody" is defined in relation to the transgenic non-human organism producing such an antibody. This term refers to an antibody having an amino acid sequence or an encoding nucleic acid sequence corresponding to that found in an organism not consisting of the transgenic non-human animal, and generally from a species other than that of the transgenic non-human animal.

[0124] As used herein, "immune cell" is a cell of hematopoietic origin and that plays a role in the immune response. Immune cells include lymphocytes (e.g., B cells and T cells), natural killer cells, and myeloid cells (e.g., monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes).

[0125] As used herein, a subject "in need of prevention," "in need of treatment," or "in need thereof," refers to one, who by the judgment of an appropriate medical practitioner (e.g., a doctor, a nurse, or a nurse practitioner in the case of humans; a veterinarian in the case of non-human mammals), would reasonably benefit from a given treatment (such as treatment with a composition comprising a fusion protein described herein).

[0126] The term "in vivo" refers to processes that occur in a living organism.

[0127] As used herein, the term "isolated antibody" is intended to refer to an antibody which is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that binds to chemokines (e.g., ELR+ CXC chemokines) is substantially free of antibodies that specifically bind antigens other than chemokines (e.g., ELR+ CXC chemokines)). An isolated antibody that specifically binds to an epitope may, however, have cross-reactivity to other chemokines (e.g., ELR+ CXC chemokines) from different species. In addition, an isolated antibody is typically substantially free of other cellular material and/or chemicals.

[0128] As used herein, the term "isolated nucleic acid molecule" refers to nucleic acids encoding fusion proteins, antibodies or antibody portions (e.g., V_H , V_L , CDR3) that bind to chemokines (e.g., ELR+ CXC chemokines), is intended to refer to a nucleic acid molecule in which the nucleotide sequences encoding the fusion protein, antibody or antibody portion are free of other nucleotide sequences encoding fusion proteins, antibodies or antibody portions

that bind antigens other than chemokines (e.g., ELR+ CXC chemokines), which other sequences may naturally flank the nucleic acid in human genomic DNA. For example, Table 12 shows nucleotide sequences comprising the heavy chain (V_H) and light chain (V_L) variable regions of multispecific monoclonal antibodies described herein.

[0129] As used herein, "isotype" refers to the antibody class (e.g., IgM or IgG1) that is encoded by heavy chain constant region genes. In some embodiments, an antibody of the disclosure is of the IgG1 isotype. In some embodiments, an antibody of the disclosure is of the IgG2 isotype. In some embodiments, an antibody of the disclosure is of the IgG3 isotype. In some embodiments, an antibody of the disclosure is of the IgG3 isotype. In some embodiments, an antibody of the disclosure is of the IgG3 isotype. In some embodiments, an antibody of the disclosure is of the IgG4 isotype.

[0130] As used herein, the term "isotype switching" refers to the phenomenon by which the class, or isotype, of an antibody changes from one Ig class to one of the other Ig classes.

[0131] As used herein, the term "kd" is intended to refer to the off rate constant for the dissociation of an antibody from the antibody/antigen complex.

[0132] As used herein, the term "ka" is intended to refer to the on rate constant for the association of an antibody with the antigen.

[0133] As used herein, the terms "linked," "fused", or "fusion", are used interchangeably. These terms refer to the joining together of two more elements or components or domains, by whatever means including chemical conjugation or recombinant means. Methods of chemical conjugation (e.g., using heterobifunctional crosslinking agents) are known in the art.

[0134] As used herein, "local administration" or "local delivery," refers to delivery that does not rely upon transport of the composition or agent to its intended target tissue or site via the vascular system. For example, the composition may be delivered by injection or implantation of the composition or agent or by injection or implantation of a device containing the composition or agent. Following local administration in the vicinity of a target tissue or site, the composition or agent, or one or more components thereof, may diffuse to the intended target tissue or site.

[0135] The term "mammal" or "subject" or "patient" as used herein includes both humans and non-humans and includes, but is not limited to, humans, non-human primates, canines, felines, murines, bovines, equines, and porcines.

[0136] The term "multispecific" as used herein refers to a polypeptide (e.g., fusion protein and/or variable region) capable of binding more than one target of interest (e.g., ELR+ CXC chemokine). In some embodiments, the terms "multispecific" and "crossreactive" are interchangeable. In some embodiments, the polypeptide binds at least two targets of interest (e.g., ELR+ CXC chemokines). In some embodiments, the polypeptide binds at least four targets of interest (e.g., ELR+ CXC chemokines). In some embodiments, the polypeptide binds at least five targets of interest (e.g., ELR+ CXC chemokines). In some embodiments, the polypeptide binds at least six targets of interest (e.g., ELR+ CXC chemokines). In some embodiments, the polypeptide binds at least seven targets of interest (e.g., ELR+ CXC chemokines). In some embodiments, the polypeptide binds at least eight targets of interest (e.g., ELR+ CXC chemokines). In some embodiments, the polypeptide binds at least nine targets of interest (e.g., ELR+ CXC chemokines). In some embodiments, the polypeptide binds at least ten targets

of interest (e.g., ELR+ CXC chemokines). In some embodiments, the polypeptide binds at least eleven targets of interest (e.g., ELR+ CXC chemokines). In some embodiments, the polypeptide binds at least twelve targets of interest (e.g., ELR+ CXC chemokines).

[0137] "Nucleic acid" refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences and as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions can be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixedbase and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081, 1991; Ohtsuka et al., Biol. Chem. 260:2605-2608, 1985; and Cassol et al, 1992; Rossolini et al, Mol. Cell. Probes 8:91-98, 1994). For arginine and leucine, modifications at the second base can also be conservative. The term nucleic acid is used interchangeably with gene, cDNA, and mRNA encoded by a gene.

[0138] Polynucleotides used herein can be composed of any polyribonucleotide or polydeoxribonucleotide, which can be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of singleand double-stranded DNA, DNA that is a mixture of singleand double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and doublestranded regions, hybrid molecules comprising DNA and RNA that can be single-stranded or, more typically, doublestranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide can also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

[0139] As used herein, the term "operably linked" or "operably coupled" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner.

[0140] As used herein, "parenteral administration," "administered parenterally," and other grammatically equivalent phrases, refer to modes of administration other than enteral and topical administration, usually by injection, and include, without limitation, intravenous, intranasal, intraocular, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural, intracerebral, intracarnial, intracarotid and intrasternal injection and infusion.

[0141] As used herein, the term "patient" includes human and other mammalian subjects that receive either prophylactic or therapeutic treatment.

[0142] The term "percent identity," in the context of two or more nucleic acid or polypeptide sequences, refer to two or more sequences or subsequences that have a specified percentage of nucleotides or amino acid residues that are the same, when compared and aligned for maximum correspondence, as measured using one of the sequence comparison algorithms described below (e.g., BLASTP and BLASTN or other algorithms available to persons of skill) or by visual inspection. Depending on the application, the "percent identity" can exist over a region of the sequence being compared, e.g., over a functional domain, or, alternatively, exist over the full length of the two sequences to be compared. For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.

[0143] The percent identity between two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology=# of identical positions/total # of positions×100), taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm, as described in the non-limiting examples below.

[0144] Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see generally Ausubel et al., infra).

[0145] One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al., J. Mol. Biol. 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information website.

[0146] As generally used herein, "pharmaceutically acceptable" refers to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues, organs, and/or bodily fluids of human beings and animals without excessive toxicity, irritation, allergic response, or other problems or complications commensurate with a reasonable benefit/risk ratio.

[0147] As used herein, a "pharmaceutically acceptable carrier" refers to, and includes, any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. The compositions can include a pharmaceutically acceptable salt, e.g., an acid addition salt or a base addition salt (see, e.g., Berge et al. (1977) *J Pharm Sci* 66:1-19).

[0148] As used herein, the term "PK" is an acronym for "pharmacokinetic" and encompasses properties of a compound including, by way of example, absorption, distribution, metabolism, and elimination by a subject. As used herein, an "extended-PK group" refers to a polymer, protein, peptide, or moiety that increases the circulation half-life of a biologically active molecule when fused to or administered together with the multispecific variable region. Examples of an extended-PK group include PEG, human serum albumin (HSA) binders (as disclosed in U.S. Publication Nos. 2005/ 0287153 and 2007/0003549, PCT Publication Nos. WO 2009/083804 and WO 2009/133208, and SABA molecules as described in US2012/094909), serum albumin (e.g., HSA), Fc or Fc fragments and variants thereof, transferrin and variants thereof, and sugars (e.g., sialic acid). Other exemplary extended-PK groups are disclosed in Kontermann et al., Current Opinion in Biotechnology 2011; 22:868-876, which is herein incorporated by reference in its entirety.

[0149] "Polypeptide," "peptide", and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.

[0150] As used herein, the term "preventing" when used in relation to a condition, refers to administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition.

[0151] As used herein, the term "purified" or "isolated" as applied to any of the proteins (fusion proteins, antibodies or fragments) described herein refers to a polypeptide that has been separated or purified from components (e.g., proteins or other naturally-occurring biological or organic molecules) which naturally accompany it, e.g., other proteins, lipids, and nucleic acid in a prokaryote expressing the proteins. Typically, a polypeptide is purified when it constitutes at least 60 (e.g., at least 65, 70, 75, 80, 85, 90, 92, 95, 97, or 99) %, by weight, of the total protein in a sample.

[0152] As used herein, the term "recombinant host cell" (or simply "host cell") is intended to refer to a cell into which a recombinant expression vector has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein.

[0153] As used herein, the term "recombinant human antibody" includes all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as (a) antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immuno-globulin genes or a hybridoma prepared therefrom, (b) antibodies isolated from a host cell transformed to express the antibody, e.g., from a transfectoma, (c) antibodies isolated from a recombinant, combinatorial human antibody library, and (d) antibodies prepared, expressed, created or isolated by any other means that involve splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies comprise variable and

constant regions that utilize particular human germline immunoglobulin sequences are encoded by the germline genes, but include subsequent rearrangements and mutations which occur, for example, during antibody maturation. As known in the art (see, e.g., Lonberg (2005) Nature Biotech. 23(9):1117-1125), the variable region contains the antigen binding domain, which is encoded by various genes that rearrange to form an antibody specific for a foreign antigen. In addition to rearrangement, the variable region can be further modified by multiple single amino acid changes (referred to as somatic mutation or hypermutation) to increase the affinity of the antibody to the foreign antigen. The constant region will change in further response to an antigen (i.e., isotype switch). Therefore, the rearranged and somatically mutated nucleic acid molecules that encode the light chain and heavy chain immunoglobulin polypeptides in response to an antigen may not have sequence identity with the original nucleic acid molecules, but instead will be substantially identical or similar (i.e., have at least 80% identity).

[0154] As used herein, the terms "specific binding," "selective binding," "selectively binds," and "specifically binds," refer to fusion protein or antibody binding to an epitope on a predetermined antigen. Typically, the fusion protein or antibody binds with an equilibrium dissociation constant (K_d) of approximately less than 10^{-6} M, such as approximately less than 10^{-7} M, 10^{-8} M, 10^{-9} M or 10^{-10} M or even lower when determined by surface plasmon resonance (SPR) technology in a BIACORE 2000 instrument using an ELR+ CXC chemokine of interest as the analyte and the fusion protein or antibody as the ligand and binds to the predetermined antigen with an affinity that is at least two-fold greater than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than the predetermined antigen or a closely-related antigen. The phrases "recognizing an antigen" and "specific for an antigen" are used interchangeably herein with the term "binds specifically to an antigen."

[0155] As used herein, the term "subject" includes any human or non-human animal. For example, the methods and compositions of the present disclosure can be used to treat a subject with an immune disorder. The term "non-human animal" includes all vertebrates, e.g., mammals and non-mammals, such as non-human primates, sheep, dog, cow, chickens, amphibians, reptiles, etc.

[0156] The term "sufficient amount" or "amount sufficient to" means an amount sufficient to produce a desired effect, e.g., an amount sufficient to reduce the size of a tumor.

[0157] The term "substantial homology" indicates that two nucleotide sequences or two amino acid sequences, when optimally aligned and compared, are identical, with appropriate insertions or deletions, in at least about 80% of the nucleotides or amino acids, usually at least about 90% to 95%, and more preferably at least about 98% to 99.5% of the nucleotides or amino acids. Alternatively, substantial homology exists when the segments will hybridize under selective hybridization conditions, to the complement of the strand.

[0158] The nucleic acids may be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form. A nucleic acid is "isolated" or "rendered substantially pure" when purified away from other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis and others well known in the art. See, F. Ausubel, et al., ed. Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York (1987).

[0159] The nucleic acid compositions of the present disclosure, while often in a native sequence (except for modified restriction sites and the like), from either cDNA, genomic or mixtures thereof may be mutated, in accordance with standard techniques to provide gene sequences. For coding sequences, these mutations, may affect amino acid sequence as desired. In particular, DNA sequences substantially homologous to or derived from native V, D, J, constant, switches and other such sequences described herein are contemplated (where "derived" indicates that a sequence is identical or modified from another sequence).

[0160] The term "T cell" refers to a type of white blood cell that can be distinguised from other white blood cells by the presence of a T cell receptor on the cell surface. There are several subsets of T cells, including, but not limited to, T helper cells (a.k.a. T_H cells or CD4⁺ T cells) and subtypes, including T_H1, T_H2, T_H3, T_H17, T_H9, and T_{FH} cells, cytotoxic T cells (a.k.a T_c cells, CD8⁺ T cells, cytotoxic T lymphocytes, T-killer cells, killer T cells), memory T cells and subtypes, including central memory T cells (T_{CM} cells), effector memory T cells (T_{EM} and T_{EMRA} cells), and resident memory T cells (T_{RM} cells), regulatory T cells (a.k.a. T_{reg} cells or suppressor T cells) and subtypes, including CD4⁺ FOXP3⁺ T_{reg} cells, CD4⁺ FOXP3⁻ T_{reg} cells, Tr1 cells, Th3 cells, and T_{reg} 17 cells, natural killer T cells (a.k.a. NKT cells), mucosal associated invariant T cells (MAITs), and gamma delta T cells ($\gamma\delta$ T cells), including V $\gamma9$ /V $\delta2$ T cells. Any one or more of the aforementioned or unmentioned T cells may be the target cell type for a method as disclosed herein.

[0161] The term "therapeutically effective amount" is an amount that is effective to ameliorate a symptom of a disease. A therapeutically effective amount can be a "prophylactically effective amount" as prophylaxis can be considered therapy.

[0162] The terms "treat," "treating," and "treatment," as used herein, refer to therapeutic or preventative measures described herein. The methods of "treatment" employ administration to a subject, in need of such treatment, a fusion protein or antibody, or antigen binding fragment thereof, of the present disclosure, for example, a subject in need of a reduced immune response or a subject who ultimately may acquire such a disorder, in order to prevent, cure, delay, reduce the severity of, or ameliorate one or more symptoms of the disorder or recurring disorder, or in order to prolong the survival of a subject beyond that expected in the absence of such treatment.

[0163] As used herein, the term "vector" is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid," which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Another type of vector is a viral vector, wherein additional DNA segments may be ligated. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell,

and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors") In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses), which serve equivalent functions.

[0164] It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise.

Multispecific Variable Regions and Antibodies

[0165] The present disclosure provides multispecific variable regions capable of binding more than one ELR+ CXC chemokine (e.g., at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve). In some embodiments, the multispecific variable region is a single chain variable fragment (scFv). In some embodiments, the present disclosure also provides isolated monoclonal antibodies, or antigen binding fragments thereof, capable of binding more than one ELR+ CXC chemokine (e.g., at least two, at least three, at least four, at least six, at least seven, at least seven, at least ten, at least eight, at least nine, at least six, at least seven, at least twelve).

[0166] The ELR+ CXC chemokine system consists of numerous small and structurally similar chemoattractant ligands capable of binding to and activating the related CXCR1 and CXCR2 G protein-coupled receptors (GCPRs) expressed abundantly on the surface of neutrophils (Griffith, J. W. et al. Annu Rev Immunol 32, 659-702(2014)). These ligands act either by autocrine or paracrine mechanisms to induce signaling networks that direct neutrophils to sites of inflammation. Studies in animals have demonstrated that genetic deletion of the most promiscuous ELR+ CXC chemokine receptor, CXCR2, can block the development of joint inflammation in anti-type II collagen antibody-induced arthritis (CAIA) (Min, S. H. et al Biochem Biophy Res Commun 391, 1080-1086 (2010)), adjuvant-induced arthritis (AIA) (Barsante, M. M. et al Br J Pharmacol 153, 992-2001 (2008); Coelho, F. M. et al Arthritis Rheum 58, 2329-2337 (2008); Grespan, R. et al Arthritis Rheum 58, 2030-2040 (2008)), and K/B×N serum transfer induced arthritis (Jacobs, J. P. et al Arthritis Rheum 62, 1921-1932 (2010); Chou, R. C. et al Immunity 33, 266-278 (2010)).

[0167] Inhibition of ELR+ CXC chemokine-driven signaling has been previously attempted by employing various antagonists against CXCR1 and CXCR2 receptors, including neutralizing antibodies, small molecules and peptidederived inhibitors. However, these antagonists have shown limited therapeutic effects (Schall, T. J. & Proudfoot, A. E. *Nat Rev Immunol* 11, 355-363 (2011); Szekanecz, Z. & Koch, A. E. *Nat Rev Rheumatol* 12, 5-13 (2016)). Failures of such receptor-based therapies have been attributed to (i) difference between the orthologous rodent (pre-clinical) and human (clinical systems); and (ii) the extremely high doses of antagonist required to guarantee continuous receptor occupancy, such that all receptors in the body are antagonized (Id.).

[0168] Accordingly, the present disclosure provides multispecific variable regions, and isolated monoclonal antibodies, or antigen binding fragments thereof, that bind to the ELR+ CXC chemokine ligands themselves. In some embodiments, the multispecific variable regions, and isolated monoclonal antibodies, or antigen binding fragments thereof, described herein, bind to and inhibit or reduce the activity of the ELR+ CXC chemokine ligands.

[0169] In some embodiments, the multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 1, 11 or 21. In some embodiments, the heavy chain variable region comprises the amino acid sequence set forth in SEQ ID NO: 1. In some embodiments, the heavy chain variable region comprises the amino acid sequence set forth in SEQ ID NO: 11. In some embodiments, the heavy chain variable region comprises the amino acid sequence set forth in SEQ ID NO: 11. In some embodiments, the heavy chain variable region comprises the amino acid sequence set forth in SEQ ID NO: 21.

[0170] In some embodiments, the multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, comprises a heavy chain variable region and a light chain variable region, wherein the light chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 2, 12 or 22. In some embodiments, the light chain variable region comprises the amino acid sequence set forth in SEQ ID NO: 2. In some embodiments, the light chain variable region comprises the amino acid sequence set forth in SEQ ID NO: 12. In some embodiments, the light chain variable region comprises the amino acid sequence set forth in SEQ ID NO: 12. In some embodiments, the light chain variable region comprises the amino acid sequence set forth in SEQ ID NO: 22.

[0171] In some embodiments, the multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 1, 11 or 21, and wherein the light chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 2, 12 or 22.

[0172] In some embodiments, the multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, comprises a heavy chain variable region and a light chain variable region comprising the amino acid sequences set forth in:

[0173] (a) SEQ ID NOs: 1 and 2, respectively;

[0174] (b) SEQ ID NOs: 11 and 12, respectively; or

[0175] (c) SEQ ID NOs: 21 and 22, respectively.

[0176] In some embodiments, the multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, comprises a heavy chain variable region and light chain variable region comprising amino acid sequences having 90% identity to the amino acid sequences set forth in:

[0177] (a) SEQ ID NOs: 1 and 2, respectively;

[0178] (b) SEQ ID NOs: 11 and 12, respectively; or

[0179] (c) SEQ ID NOs: 21 and 22, respectively.

[0180] In some embodiments, the multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, comprises heavy and light chain CDRs selected from the group consisting of:

[0181] (a) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 5, 6 and 7, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 8, 9 and 10, respectively;

[0182] (b) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 15, 16 and 17, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 18, 19 and 20, respectively; and

[0183] (c) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 25, 26 and 27, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 28, 29 and 30, respectively.

[0184] In some embodiments, the multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, comprises heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 5, 6 and 7, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 8, 9 and 10, respectively.

[0185] In some embodiments, the multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, comprises heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 25, 26 and 27, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 28, 29 and 30, respectively.

[0186] In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to human CXCL1, human CXCL2, human CXCL3, human CXCL5, human CXCL6, human CXCL7, human CXCL8, murine CXCL1, murine CXCL2, murine CXCL3, murine CXCL5, murine CXCL7, or any combination thereof.

[0187] In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to at least two ELR+ CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to at least four ELR+ CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody provided herein, binds to at least four ELR+ CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to at least five ELR+ CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to at least six ELR+ CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody provided herein, binds to at least seven ELR+ CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody provided herein, binds to at least eight ELR+ CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody provided herein, binds to at least nine ELR+ CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody provided herein, binds to at least ten ELR+ CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody provided herein, binds to at least eleven ELR+ CXC chemokines. In some embodiments,

a multispecific variable region, or isolated monoclonal antibody provided herein, binds to at least twelve ELR+ CXC chemokines.

[0188] In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to human CXCL1, human CXCL2, human CXCL3, and murine CXCL1. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to human CXCL1, human CXCL5, human CXCL8, murine CXCL1, murine CXCL2 and murine CXCL5. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to human CXCL2, and murine CXCL5. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to human CXCL1, human CXCL2, human CXCL3, human CXCL5, human CXCL6, human CXCL7, human CXCL8, murine CXCL1, murine CXCL2, murine CXCL3 and murine CXCL1, murine CXCL2, murine CXCL3, and murine CXCL5.

[0189] In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to human ELR+CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to murine ELR+CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to murine ELR+CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to human and murine ELR+CXC chemokines. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, binds to human and murine ELR-CXC chemokines (e.g., murine CXCL4, human CXCL10 and human CXCL11).

[0190] In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, inhibits or reduces binding of an ELR+ CXC chemokine of interest to its cognate receptor. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, inhibits or reduces binding of an ELR+ CXC chemokine of interest to CXCR2. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, inhibits or reduces binding of an ELR+ CXC chemokine of interest CXCR1. In some embodiments, a multispecific variable region, or isolated monoclonal antibody, or antigen binding fragment thereof, provided herein, inhibits or reduces binding of an ELR+ CXC chemokine of interest to CXCR1 and CXCR2.

[0191] Fusion Protein

[0192] In some embodiments, the present disclosure provides fusion proteins comprising a multispecific variable region (e.g., scFv) described herein, operably coupled to a polymer. Examples of polymers suitable for use in the fusion proteins described herein, are provided in Strohl, W. R. *BioDrugs*, Vol. 29: 215-239 (2015), herein incorporated by reference in its entirety. The coupling of a polymer to multispecific variable region, either covalently or non-covalently, enhances the solubility and stability of the multispecific variable region.

[0193] Moreover, in some embodiments, the conjugating of a polymer to a multispecific variable region extends the pharmacokinetic profile (e.g., serum half-life) of the multispecific variable region. In some embodiments, the serum

half-life of a fusion protein described herein is increased relative to the multispecific variable region alone. In some embodiments, the serum half-life of a fusion protein described herein is at least 20, 40, 60, 80, 100, 120, 150, 180, 200, 400, 600, 800, or 1000% longer relative to the multispecific variable region alone. In certain embodiments, the serum half-life of a fusion protein described herein is at least 1.5-fold, 2-fold, 2.5-fold, 3-fold, 3.5 fold, 4-fold, 4.5-fold, 5-fold, 6-fold, 7-fold, 8-fold, 10-fold, 12-fold, 13-fold, 15-fold, 17-fold, 20-fold, 22-fold, 25-fold, 27-fold, 30-fold, 35-fold, 40-fold, or 50-fold greater than the serum half-life of the multispecific variable region alone. In certain embodiments, the serum half-life of a fusion protein described herein is at least 10 hours, 15 hours, 20 hours, 25 hours, 30 hours, 35 hours, 40 hours, 50 hours, 60 hours, 70 hours, 80 hours, 90 hours, 100 hours, 110 hours, 120 hours, 130 hours, 135 hours, 140 hours, 150 hours, 160 hours, or 200 hours. [0194] In some embodiments, the polymer is an albumin moiety (e.g., serum albumin). In some embodiments, the polymer is an Fc domain. In some embodiments, the polymer is polyethylene glycol (PEG). In some embodiments, the polymer is transferrin. In some embodiments, the polymer is a serum immunoglobulin binding protein. In some embodiments, the polymer is an albumin binding moiety.

Serum Albumin

[0195] In some embodiments, the fusion protein comprises a multispecific variable region (e.g., scFv) described herein, operably coupled to an albumin moiety, or fragment thereof. Suitable albumins for use in the fusion proteins can be from human, primate, rodent, bovine, equine, donkey, rabbit, goat, sheep, dog, chicken or pig. In some embodiments, the albumin is a serum albumin, for example, a human serum albumin, primate serum albumin (e.g., chimpanzee serum albumin, gorilla serum albumin), rodent serum albumin, mouse serum albumin and rat serum albumin, bovine serum albumin, equine serum albumin, donkey serum albumin, rabbit serum albumin, goat serum albumin, sheep serum albumin, dog serum albumin, chicken serum albumin, and pig serum albumin.

[0196] Serum albumin exploits the FcRn receptor to achieve long half-life in circulation but its plasma persistence is still shorter than full length monoclonal antibodies, thus avoiding "buffering" effects associated with the use of full-length antibody-based strategies (Sand, K. M. et al *Front Immunol* 5, 682 (2014); Mihara, M. e al *Immunology* 74, 55-59 (1991); O'Hear, C. E. & Foote, J. *Proc Natl Acad Sci USA* 102, 40-44 (2005); Haringman, J. J. et al *Arthritis and Rheumatism* 54, 2387-2393 (2006)). Unlike an antibody, serum albumin does not find the FcyR receptors expressed on the surface of immune system cells, thus eluding extra immune system activation and inflammation mediated by antibody-dependent cell-mediated cytotoxicity (ADCC).

[0197] In some embodiments, the fusion protein comprises a human serum albumin (HSA), or variants or fragments thereof, such as those disclosed in U.S. Pat. No. 5,876,969, WO 2011/124718, WO 2013/075066, and WO 2011/0514789. In some embodiments, the serum albumin moiety used in the fusion protein described herein, has sequence identity to the sequence of wild-type HSA as set forth in SEQ ID NO: 171. of at least 50%, such as at least 60%, at least 70%, at least 80%, at least 85%, at least 86%,

at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%.

[0198] In some embodiments, the fusion protein comprises a mouse serum albumin (MSA), or variants or fragments thereof. In some embodiments, the serum albumin moiety used in the fusion protein described herein, has sequence identity to the sequence of wild-type MSA as set forth in SEQ ID NO: 173. of at least 50%, such as at least 60%, at least 70%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%.

[0199] In some embodiments, the number of alternations, e.g., substitutions, insertions, or deletions in the albumin variants of the present disclosure is 1-20, e.g., 1-10, 1-5, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 alterations compared to the corresponding wild-type albumin (e.g., HSA or MSA). [0200] In addition to wild-type albumin, albumin variants are considered applicable as fusion partners with the multispecific variable regions (e.g., scFv) of the disclosure. Non-limiting examples of such variants include one or more alterations (e.g., substitutions, deletions, or insertions) in one or more positions corresponding to positions 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501, 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541, 542, 550, 573, 574, 575, 577, 578, 579, 580, 581, 582 and 584 of HSA (SEQ ID NO: 171). In some embodiments, a variant comprises an alteration of at least one of these positions, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, or all of these positions. The substitution(s) may be any substitution(s) where the amino acid in the natural albumin sequence is substituted with a different amino acid selected among the remaining 19 natural occurring amino acids, provided that the substitution(s) increases the half-life of the polypeptide it is fused or conjugated to relative to the polypeptide not fused to the variant or a polypeptide fused to the wild-type albumin. Exemplary variants with altered serum half-life and/or binding to FcRn are those that include one or more of the following amino acid substitutions in HSA (SEQ ID NO: 171), as disclosed in U.S. Published Application No. 2012-0220530: Q417A, Q417H, H440Q, H464O, A490D, E492G, E492T, E492P, E492H, V493P, V493L, D494N, D494Q, D494A, D494E, D494P, E495Q, E495A, T496A, P499A, K500E, K500G, K500A, K500S, K500C, K500P, K500H, K500F, K500N, K500W, K500T, K500M, K500Y, K500V, K500Q, K500L, K500I, K500R, E501A, E501P, E501Q, N503K, N503D, E503H, A504E, E505K, E505D, T506F, T506S, H510Q, H535Q, K536A, P537A, K538A, K538H, T540S, K541A, K541D, K541G, K541N, K541E, E542P, E542D, D550N, K573Y, K573W, K573P, K573H, K573F, K573V, K573I, K573T, K573N, K573S, K573G, K573M, K573C, K573A, K573E, K573Q, K573R, K573L, K573D, K574N, Q580K, L575F, A577T, A577E, A578R, A578S, S579C, S579T, Q580K, A581D, A582T, G584A (the contents of which are incorporated herein by reference). In particular embodiments, the variant has position 573 of HSA (SEQ ID NO: 171) substituted with proline (P), tryptophan (W), or tyrosine (Y). In some embodiments, the variant comprises multiple alterations, such as substitutions, at positions corresponding to 494 and 496; 492 and 493; 494 and 417; 492 and 503; 492 and 573 (e.g., E492G+K573P, E492G+K573A); and 492, 503, and 573 (e.g., E492G+N503H+K573P). It should be understood that variants containing any alteration (e.g., substitution, insertion, deletion) at any one of the above positions of HSA (SEQ ID NO: 171), or at any other position(s), are suitable for use in the fusion proteins described herein.

[0201] In some embodiments, the albumin variant has an increased serum half-life compared to a wild-type albumin. Albumin variants with increased serum half-life, as disclosed in WO2011/051489, include E492G, K500R, N503H, N503K, D550E, K573Y, K573W, K573P, K573H, K573F, K573V, K573I, K573T, K573N, K573S, K573G, K573M, K573C, K573A, K573E, K573Q, K573R, K573L, K573D, K574N, O580K, E492G+N503K, E492G+N503H, E492G+K573A, E492G+K573P, E492G+N503K+K573P, E492G+N503H+K573P, E492G+N503K+K573A K573P+ L575F+G584A, K573P+A578S+S579T+G584A, K573P+ A577E+A578S+Q580K+A582T, K573P+K574N+A577T+ A578R+S579C+O580K+A581D+G584A. and E492H+ E501P+N503H+E505D+T506S+T540S+K541E. It will be evident to the skilled artisan that variants with other amino acid substitutions or combinations of amino acid substitutions can be readily tested with routine methods to determine whether they exhibit increased serum half-life.

[0202] Some natural variants of albumin also exhibit increased serum half-life, and are suitable for use in the fusion proteins described herein. Such natural HSA variants with increased serum half-life are known in the art, such as E501K, E570K (Iwao et al. 2007, *B. B. A. Proteins and Proteomics* 1774, 1582-90), E505K (Gallino et al., supra), K536E, K574N (Minchiotti et al., *Biochim Biophys Acta* 1987:916:411-418), D550G (Takahashi et al., *PNAS* 1987: 84:4413-7), and D550A (Carlson et al., *PNAS* 1992:89: 8225-9).

[0203] In some embodiments, the variant albumin has an amino acid substitution that increases the affinity of the albumin to FcRn, which correlates with increased serum half-life. Such amino acid substitutions include, but are not limited to, HSA with K573P (i.e., lysine at position 573 substituted with a proline). Routine methods, such as surface plasmon resonance (SPR), as disclosed in WO2011/051489, can be used to determine whether a particular albumin variant exhibits increased affinity to FcRn relative to the corresponding wild-type albumin. It will be evident to the skilled artisan that increased affinity to FcRn can be determined by comparing the binding constants KD of the albumin variant and wild-type albumin. In the context of the present disclosure, variant albumins having a KD that is lower than the KD for natural HSA is considered to have a higher plasma half-life than HSA.

[0204] In some embodiments, it may be desirable for the variant albumin, or fragment thereof, to decrease the serum half-life of a fusion protein. Such variant albumins, or fragments thereof, may decrease the binding of the fusion proteins to FcRn relative to non-albumin fused multispecific variable regions in which albumin is the corresponding wild-type albumin. Fusion proteins with decreased serum half-lives, e.g., those with decreased FcRn binding affinity, are useful, for example, for administration to a mammal where a shortened circulation time may be advantageous, e.g., for in vivo diagnostic imaging or in situations where the starting polypeptide has toxic side effects when present in the circulation for prolonged periods. Albumin variants with decreased FcRn binding affinity are also less likely to cross the placenta and, thus, are also useful in the treatment of

diseases or disorders in pregnant women. In addition, other applications in which reduced FcRn binding affinity may be desired include those applications in which localization in the brain, kidney, and/or liver is desired. In some embodiments, the fusion proteins described herein exhibit reduced transport across the epithelium of kidney glomeruli from the vasculature. In some embodiments, the fusion proteins described herein exhibit reduced transport across the blood brain barrier (BBB) from the brain, into the vascular space. In some embodiments, a fusion protein with altered FcRn binding comprises at least one albumin domain (e.g., domain III of HSA) having one or more amino acid substitutions within the "FcRn binding region" of an albumin domain. Exemplary albumin variants that exhibit decreased serum half-life are disclosed in, e.g., WO2011/124718, and include Q417A, H464Q, D494N, D494Q, D494A, E495Q, E495A, T496A, P499A, K500E, K500G, K500D, K500A, K500S, K500C, K500P, K500H, K500F, K500N, K500W, K500T, K500M, K500Y, K500V, K500Q, K500L, K500I, K500R, D500N, E501A, E501Q, N503K, N503D, H510Q, H535Q, K536A, P537A, K541G, K541D, K541A, K541N, E492T+N503D, E492G+V493P, D494E+Q417H, E495Q+ T496A, D494N+E495Q+T496A, E492G+K538H+K541N+ E542D, E492G+V493P+K538H+K541N+E542D, A490D+ E492T+V493L+E501P+E503D+A504E+E505K+T506F+ K541D. Exemplary natural albumin variants that exhibit decreased serum half-life include D494N (Peach et al., Biochim Biophys Acta 1991; 1097:49-54), and K541E and K560E (Iwao et al., B. B. A. Proteins and Proteomics 2007; 1774:1582-90).

[0205] One or more positions of albumin, or a variant or fragment thereof, can be altered to provide reactive surface residues for, e.g., conjugation with a multispecific variable region. Exemplary positions in HSA (SEQ ID NO: 171) that can be altered to provide conjugation competent cysteine residues include, but are not limited to, those disclosed in WO2010/092135, such as, D1C, A2C, T79C, E82C, E86C, D121C, D129C, S270C, A364C, A504C, E505C, D549C, D562C, A578C, A579C, A581C, L585C, and L595C. Alternatively a cysteine residue may be added to the N or C terminus of albumin. Methods suitable for producing conjugation competent albumin, or a variant or peptide thereof, as well as covalently linking albumin, or a variant or fragment thereof, with a conjugation partner or partners (e.g., a multispecific variable region) are routine in the art and disclosed in, e.g., WO2010/092135 and WO 2009/ 019314. In some embodiments, the conjugates may conveniently be linked via a free thiol group present on the surface of HSA (amino acid residue 34 of mature HSA) using art-recognized methods.

[0206] In addition to the albumin or variants thereof described supra, fragments of albumin, or fragments of variants thereof, are suitable for use as the albumin component of the fusion proteins described herein. Exemplary albumin fragments that are suitable for use in the fusion proteins are disclosed in WO 2011/124718. A fragment of albumin (e.g., a fragment of HSA) will typically be at least 20 amino acids in length, such as at least 40 amino acids, at least 60 amino acids, at least 100 amino acids, at least 150 amino acids, at least 200 amino acids, or at least 500 amino acids in length, and will alter (e.g.,

increase) the serum half-life of the polypeptide it is fused to (e.g., multispecific variable region) relative to the non-fused polypeptide.

[0207] In some embodiments, a fragment may comprise at least one whole sub-domain of albumin. Domains of HSA have been expressed as recombinant proteins (Dockal et al., JBC 1999; 274:29303-10), where domain I was defined as consisting of amino acids 1-197 (SEQ ID NO: 175), domain II was defined as consisting of amino acids 189-385 (SEQ ID NO: 176), and domain III was defined as consisting of amino acids 381-585 (SEQ ID NO: 177) of HSA (SEQ ID NO: 171). Partial overlap of the domains occurs given the extended α -helix structure (h10-h1) which exists between domains I and II, and between domains II and III (Peters, 1996, op. cit, Table 2-4). HSA also comprises six subdomains (sub-domains IA, IB, NA, NB, INA and NIB). Sub-domain IA comprises amino acids 6-105, sub-domain IB comprises amino acids 120-177, sub-domain NA comprises amino acids 200-291, sub-domain NB comprises amino acids 316-369, sub-domain INA comprises amino acids 392-491 and sub-domain NIB comprises amino acids 512-583 of SEQ ID NO: 171.

[0208] A fragment may comprise a whole or part of one or more domains or sub-domains as defined above, or any combination of those domains and/or sub-domains. A fragment may comprise or consist of at least 50, 60, 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99% of an albumin or of a domain of an albumin, or a variant or fragment thereof. Additionally, single or multiple heterologous fusions comprising any of the above; or single or multiple heterologous fusions to albumin, or a variant or fragment of any of these may be used. Such fusions include albumin N-terminal fusions, albumin C-terminal fusions and co-N-terminal and C-terminal albumin fusions as exemplified by WO 01/79271. In some embodiments, the fragment of albumin or variant thereof retains the ability to bind to FcRn. In some embodiments, the fusion proteins contain domain III of albumin, or a variant thereof. In some embodiments, the fusion proteins contain domain III of albumin and an additional domain selected from the group consisting of domain I, domain II, and domain III. In some embodiments, the fusion proteins contain domains I, II, and III of albumin.

[0209] In certain embodiments, the fusion protein comprises a serum albumin binding protein such as those described in US2005/0287153, US2007/0003549, US2007/0178082, US2007/0269422, US2010/0113339, WO2009/083804, and WO2009/133208, which are herein incorporated by reference in their entirety.

Fc Fragments

[0210] In some embodiments, the fusion protein comprises a multispecific variable region described herein, operably coupled to an Fc domain. In some embodiments, the Fc domain comprises the amino acid sequence set forth in SEQ ID NO: 174. It will be understood by those in the art that epitope tags corresponding to 6x his tag on the fusion proteins are optional. The Fc domain does not contain a variable region that binds to antigen. Fc domains useful for producing the fusion proteins disclosed herein may be obtained from a number of different sources. In certain embodiments, an Fc domain of the fusion protein is derived from a human immunoglobulin. In certain embodiments, the Fc domain is from a human IgG1 constant region (SEQ ID NO: 172). The Fc domain of human IgG1 is set forth in SEQ

ID NO: 174. It is understood, however, that the Fc domain may be derived from an immunoglobulin of another mammalian species, including for example, a rodent (e.g. a mouse, rat, rabbit, guinea pig) or non-human primate (e.g. chimpanzee, macaque) species. Moreover, the Fc domain or portion thereof may be derived from any immunoglobulin class, including IgM, IgG, IgD, IgA, and IgE, and any immunoglobulin isotype, including IgG1, IgG2, IgG3, and IgG4.

[0211] In some embodiments, a fusion protein includes a mutant Fc domain. In some embodiments, a fusion protein includes a mutant, IgG1 Fc domain. In some embodiments, a mutant Fc domain comprises one or more mutations in the hinge, CH2, and/or CH3 domains. In some embodiments, a mutant Fc domain includes a D265A mutation.

[0212] A variety of Fc domain gene sequences (e.g., mouse and human constant region gene sequences) are available in the form of publicly accessible deposits. Constant region domains comprising an Fc domain sequence can be selected lacking a particular effector function and/or with a particular modification to reduce immunogenicity. Many sequences of antibodies and antibody-encoding genes have been published and suitable Fc domain sequences (e.g. hinge, CH2, and/or CH3 sequences, or portions thereof) can be derived from these sequences using art recognized techniques. The genetic material obtained using any of the foregoing methods may then be altered or synthesized to obtain polypeptides suitable for use in the methods disclosed herein. It will further be appreciated that the scope of this invention encompasses alleles, variants and mutations of constant region DNA sequences.

[0213] Fc domain sequences can be cloned, e.g., using the polymerase chain reaction and primers which are selected to amplify the domain of interest. To clone an Fc domain sequence from an antibody, mRNA can be isolated from hybridoma, spleen, or lymph cells, reverse transcribed into DNA, and antibody genes amplified by PCR. PCR amplification methods are described in detail in U.S. Pat. Nos. 4,683,195; 4,683,202; 4,800,159; 4,965,188; and in, e.g., "PCR Protocols: A Guide to Methods and Applications" Innis et al. eds., Academic Press, San Diego, Calif. (1990); Ho et al. 1989. Gene 77:51; Horton et al. 1993. Methods Enzymol. 217:270). PCR may be initiated by consensus constant region primers or by more specific primers based on the published heavy and light chain DNA and amino acid sequences. As discussed above, PCR also may be used to isolate DNA clones encoding the antibody light and heavy chains. In this case the libraries may be screened by consensus primers or larger homologous probes, such as mouse constant region probes. Numerous primer sets suitable for amplification of antibody genes are known in the art (e.g., 5' primers based on the N-terminal sequence of purified antibodies (Benhar and Pastan. 1994. Protein Engineering 7: 1509); rapid amplification of cDNA ends (Ruberti, F. et al. 1994. J. Immunol. Methods 173:33); antibody leader sequences (Larrick et al. Biochem Biophys Res Commun 1989; 160: 1250). The cloning of antibody sequences is further described in Newman et al., U.S. Pat. No. 5,658,570, filed Jan. 25, 1995, which is herein incorporated by reference.

[0214] Fusion proteins disclosed herein may comprise one or more Fc domains (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more Fc domains). In certain embodiments, the Fc domains may be of different types. In certain embodiments, at least one Fc

domain present in the fusion protein comprises a hinge domain or portion thereof. In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain which comprises at least one CH2 domain or portion thereof. In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain which comprises at least one CH3 domain or portion thereof. In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain which comprises at least one CH4 domain or portion thereof. In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain which comprises at least one hinge domain or portion thereof and at least one CH2 domain or portion thereof (e.g, in the hinge-CH2 orientation). In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain which comprises at least one CH2 domain or portion thereof and at least one CH3 domain or portion thereof (e.g., in the CH2-CH3 orientation). In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain comprising at least one hinge domain or portion thereof, at least one CH2 domain or portion thereof, and least one CH3 domain or portion thereof, for example in the orientation hinge-CH2-CH3, hinge-CH3-CH2, or CH2-CH3-hinge.

[0215] In certain embodiments, the fusion protein comprises at least one complete Fc region derived from one or more immunoglobulin heavy chains (e.g., an Fc domain including hinge, CH2, and CH3 domains, although these need not be derived from the same antibody). In certain embodiments, the fusion protein comprises at least two complete Fc domains derived from one or more immunoglobulin heavy chains. In certain embodiments, the complete Fc domain is derived from a human IgG immunoglobulin heavy chain (e.g., human IgG1).

[0216] In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain comprising a complete CH3 domain. In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain comprising a complete CH2 domain. In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain comprising at least a CH3 domain, and at least one of a hinge region, and a CH2 domain. In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain comprising a hinge and a CH3 domain. In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain comprising a hinge and a CH3 domain. In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain comprises at least one Fc domain comprises at least one Fc domain is derived from a human IgG immunoglobulin heavy chain (e.g., human IgG1).

[0217] The constant region domains or portions thereof making up an Fc domain of the fusion protein disclosed herein may be derived from different immunoglobulin molecules. For example, a fusion protein disclosed herein may comprise a CH2 domain or portion thereof derived from an IgG1 molecule and a CH3 region or portion thereof derived from an IgG3 molecule. In another example, the fusion protein comprises an Fc domain comprising a hinge domain derived, in part, from an IgG1 molecule and, in part, from an IgG3 molecule. As set forth herein, it will be understood by one of ordinary skill in the art that an Fc domain may be altered such that it varies in amino acid sequence from a naturally occurring antibody molecule.

[0218] In certain embodiments, the fusion protein disclosed herein lacks one or more constant region domains of a complete Fc region, i.e., they are partially or entirely deleted. In certain embodiments, the fusion protein disclosed herein will lack an entire CH2 domain. In certain embodiments, the fusion protein disclosed herein comprise CH2 domain-deleted Fc regions derived from a vector (e.g., from IDEC Pharmaceuticals, San Diego) encoding an IgG1 human constant region domain (see, e.g., WO02/060955A2 and WO02/096948A2). This exemplary vector is engineered to delete the CH2 domain and provide a synthetic vector expressing a domain-deleted IgG1 constant region. It will be noted that these exemplary constructs are preferably engineered to fuse a binding CH3 domain directly to a hinge region of the respective Fc domain.

[0219] In other constructs it may be desirable to provide a peptide spacer between one or more constituent Fc domains. For example, a peptide spacer may be placed between a hinge region and a CH2 domain and/or between a CH2 and a CH3 domain. For example, compatible constructs could be expressed wherein the CH2 domain has been deleted and the remaining CH3 domain (synthetic or unsynthetic) is joined to the hinge region with a 1-20, 1-10, or 1-5 amino acid peptide spacer. Such a peptide spacer may be added, for instance, to ensure that the regulatory elements of the constant region domain remain free and accessible or that the hinge region remains flexible. Preferably, any linker peptide compatible used in the instant invention will be relatively non-immunogenic and not prevent proper folding of the Fc.

Modified Fc Domains

[0220] In certain embodiments, an Fc domain employed in the fusion protein disclosed herein is altered or modified, e.g., by amino acid mutation (e.g., addition, deletion, or substitution). As used herein, the term "Fc domain variant" refers to an Fc domain having at least one amino acid modification, such as an amino acid substitution, as compared to the wild-type Fc from which the Fc domain is derived. For example, wherein the Fc domain is derived from a human IgG1 antibody, a variant comprises at least one amino acid mutation (e.g., substitution) as compared to a wild type amino acid at the corresponding position of the human IgG1 Fc region.

[0221] In certain embodiments, the Fc variant comprises a substitution at an amino acid position located in a hinge domain or portion thereof. In certain embodiments, the Fc variant comprises a substitution at an amino acid position located in a CH2 domain or portion thereof. In certain embodiments, the Fc variant comprises a substitution at an amino acid position located in a CH3 domain or portion thereof. In certain embodiments, the Fc variant comprises a substitution at an amino acid position located in a CH3 domain or portion thereof. In certain embodiments, the Fc variant comprises a substitution at an amino acid position located in a CH3 domain or portion thereof.

[0222] In certain embodiments, the fusion protein disclosed herein comprises an Fc variant comprising more than one amino acid substitution. The fusion protein disclosed herein may comprise, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acid substitutions. Preferably, the amino acid substitutions are spatially positioned from each other by an interval of at least 1 amino acid position or more, for example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid positions or more. More preferably, the engineered amino acids are spatially positioned apart from each other by an interval of at least 5, 10, 15, 20, or 25 amino acid positions or more.

[0223] In some embodiments, an Fc domain includes changes in the region between amino acids 234-238, including the sequence LLGGP at the beginning of the CH2 domain. In some embodiments, an Fc variant alters Fc mediated effector function, particularly ADCC, and/or decrease binding avidity for Fc receptors. In some aspects, sequence changes closer to the CH2-CH3 junction, at positions such as K322 or P331 can eliminate complement mediated cytotoxicity and/or alter avidity for FcR binding. In some embodiments, an Fc domain incorporates changes at residues P238 and P331, e.g., changing the wild type prolines at these positions to serine. In some embodiments, alterations in the hinge region at one or more of the three hinge cysteines, to encode CCC, SCC, SSC, SCS, or SSS at these residues can also affect FcR binding and molecular homogeneity, e.g., by elimination of unpaired cysteines that may destabilize the folded protein.

[0224] Other amino acid mutations in the Fc domain are contemplated to reduce binding to the Fc gamma receptor and Fc gamma receptor subtypes. For example, mutations at positions 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 279, 280, 283, 285, 298, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 312, 315, 322, 324, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 356, 360, 373, 376, 378, 379, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 or 439 of the Fc region can alter binding as described in U.S. Pat. No. 6,737,056, issued May 18, 2004, incorporated herein by reference in its entirety. This patent reported that changing Pro331 in IgG3 to Ser resulted in six fold lower affinity as compared to unmutated IgG3, indicating the involvement of Pro331 in Fc gamma RI binding. In addition, amino acid modifications at positions 234, 235, 236, and 237, 297, 318, 320 and 322 are disclosed as potentially altering receptor binding affinity in U.S. Pat. No. 5,624,821, issued Apr. 29, 1997 and incorporated herein by reference in its entirety.

[0225] Further mutations contemplated for use include, e.g., those described in U.S. Pat. App. Pub. No. 2006/ 0235208, published Oct. 19, 2006 and incorporated herein by reference in its entirety. This publication describes Fc variants that exhibit reduced binding to Fc gamma receptors, reduced antibody dependent cell-mediated cytotoxicity, or reduced complement dependent cytotoxicity, that comprise at least one amino acid modification in the Fc region. including 232G, 234G, 234H, 235D, 235G, 235H, 2361, 236N, 236P, 236R, 237K, 237L, 237N, 237P, 238K, 239R, 265G, 267R, 269R, 270H, 297S, 299A, 299I, 299V, 325A, 325L, 327R, 328R, 329K, 3301, 330L, 330N, 330P, 330R, and 331L (numbering is according to the EU index), as well as double mutants 236R/237K, 236R/325L, 236R/328R, 237K/325L, 237K/328R, 325L/328R, 235G/236R, 267R/ 269R, 234G/235G, 236R/237K/325L, 236R/325L/328R, 235G/236R/237K, and 237K/325L/328R. Other mutations contemplated for use as described in this publication include 227G, 234D, 234E, 234G, 234I, 234Y, 235D, 235I, 235S, 236S, 239D, 246H, 255Y, 258H, 260H, 2641, 267D, 267E, 268D, 268E, 272H, 272I, 272R, 281D, 282G, 283H, 284E, 293R, 295E, 304T, 324G, 324I, 327D, 327A, 328A, 328D, 328E, 328F, 328I, 328M, 328N, 328Q, 328T, 328V, 328Y, 3301, 330L, 330Y, 332D, 332E, 335D, an insertion of G between positions 235 and 236, an insertion of A between positions 235 and 236, an insertion of S between positions 235 and 236, an insertion of T between positions 235 and 236, an insertion of N between positions 235 and 236, an

insertion of D between positions 235 and 236, an insertion of V between positions 235 and 236, an insertion of L between positions 235 and 236, an insertion of G between positions 235 and 236, an insertion of A between positions 235 and 236, an insertion of S between positions 235 and 236, an insertion of T between positions 235 and 236, an insertion of N between positions 235 and 236, an insertion of D between positions 235 and 236, an insertion of V between positions 235 and 236, an insertion of L between positions 235 and 236, an insertion of G between positions 297 and 298, an insertion of A between positions 297 and 298, an insertion of S between positions 297 and 298, an insertion of D between positions 297 and 298, an insertion of G between positions 326 and 327, an insertion of A between positions 326 and 327, an insertion of T between positions 326 and 327, an insertion of D between positions 326 and 327, and an insertion of E between positions 326 and 327 (numbering is according to the EU index). Additionally, mutations described in U.S. Pat. App. Pub. No. 2006/0235208 include 227G/332E, 234D/332E, 234E/332E, 234Y/332E, 234I 332E, 234G/332E, 235I/332E, 2358/ 332E, 235D/332E, 235E/332E, 236S/332E, 236A/332E, 236S/332D, 236A/332D, 239D/268E, 246H/332E, 255Y/ 332E, 258H/332E, 260H/332E, 264I 332E, 267E/332E, 267D/332E, 268D/332D, 268E/332D, 268E/332E, 268D/ 332E, 268E/330Y, 268D/330Y, 272R/332E, 272H/332E, 283H/332E, 284E/332E, 293R/332E, 295E/332E, 304T/ 332E, 324I 332E, 324G/332E, 324I/332D, 324G/332D, 327D/332E, 328A/332E, 328T/332E, 328V/332E, 328I 332E, 328F/332E, 328Y/332E, 328M/332E, 328D/332E, 328E/332E, 328N/332E, 328Q/332E, 328A/332D, 328T/ 332D, 328V/332D, 328I 332D, 328F/332D, 328Y/332D, 328M/332D, 328D/332D, 328E/332D, 328N/332D, 328Q/ 332D, 330L/332E, 330Y/332E, 330I 332E, 332D/330Y, 335D/332E, 239D/332E, 239D/332E/330Y, 239D/332E/ 330L, 239D/332E/330I, 239D/332E/268E, 239D/332E/ 268D, 239D/332E/327D, 239D/332E/284E, 239D/268E/ 330Y, 239D/332E/268E/330Y, 239D/332E/327A, 239D/ 332E/268E/327A, 239D/332E/330Y/327A, 332E/330Y/268 E/327A, 239D/332E/268E/330Y/327A, Insert G>297-298/ 332E, Insert A>297-298/332E, Insert S>297-298/332E, Insert D>297-298/332E, Insert G>326-327/332E, Insert A>326-327/332E, Insert T>326-327/332E, Insert D>326-327/332E, Insert E>326-327/332E, Insert G>235-236/332E, Insert A>235-236/332E, Insert S>235-236/332E, Insert T>235-236/332E, Insert N>235-236/332E, Insert D>235-236/332E, Insert V>235-236/332E, Insert L>235-236/332E, Insert G>235-236/332D, Insert A>235-236/332D, Insert S>235-236/332D, Insert T>235-236/332D, Insert N>235-236/332D, Insert D>235-236/332D, Insert V>235-236/ 332D, and Insert L>235-236/332D (numbering according to the EU index) are contemplated for use. The mutant L234A/ L235A is described, e.g., in U.S. Pat. App. Pub. No. 2003/ 0108548, published Jun. 12, 2003 and incorporated herein by reference in its entirety. In embodiments, the described modifications are included either individually or in combination. In certain embodiments, the mutation is D265A in human IgG1.

[0226] In certain embodiments, the fusion protein disclosed herein comprises an amino acid substitution to an Fc domain which alters antigen-independent effector functions of the polypeptide, in particular the circulating half-life of the polypeptide. **[0227]** In certain embodiments, the fusion protein disclosed herein comprises an Fc variant comprising an amino acid substitution which alters the antigen-dependent effector functions of the polypeptide, in particular ADCC or complement activation, e.g., as compared to a wild type Fc region. Such fusion proteins exhibit decreased binding to FcR gamma when compared to wild-type polypeptides and, therefore, mediate reduced effector function. Fc variants with decreased FcR gamma binding affinity are expected to reduce effector function, and such molecules are also useful, for example, for treatment of conditions in which target cell destruction is undesirable, e.g., where normal cells may express target molecules, or where chronic administration of the polypeptide might result in unwanted immune system activation.

[0228] In certain embodiments, the fusion protein exhibits altered binding to an activating Fc γ R (e.g. Fc γ I, Fc γ IIa, or Fc γ RIIIa). In certain embodiments, the fusion protein exhibits altered binding affinity to an inhibitory Fc γ R (e.g. Fc γ RIIb). Exemplary amino acid substitutions which altered FcR or complement binding activity are disclosed in International PCT Publication No. WO05/063815 which is incorporated by reference herein.

[0229] The fusion protein disclosed herein may also comprise an amino acid substitution which alters the glycosylation of the fusion protein. For example, the Fc domain of the fusion protein may comprise an Fc domain having a mutation leading to reduced glycosylation (e.g., N- or O-linked glycosylation) or may comprise an altered glycoform of the wild-type Fc domain (e.g., a low fucose or fucose-free glycan). In certain embodiments, the fusion protein has an amino acid substitution near or within a glycosylation motif, for example, an N-linked glycosylation motif that contains the amino acid sequence NXT or NXS. Exemplary amino acid substitutions which reduce or alter glycosylation are disclosed in WO05/018572 and US2007/ 0111281, the contents of which are incorporated by reference herein. In certain embodiments, the fusion protein disclosed herein comprises at least one Fc domain having engineered cysteine residue or analog thereof which is located at the solvent-exposed surface. In certain embodiments, the fusion protein disclosed herein comprise an Fc domain comprising at least one engineered free cysteine residue or analog thereof that is substantially free of disulfide bonding with a second cysteine residue. Any of the above engineered cysteine residues or analogs thereof may subsequently be conjugated to a functional domain using art-recognized techniques (e.g., conjugated with a thiolreactive heterobifunctional linker).

[0230] In certain embodiments, the fusion protein disclosed herein may comprise a genetically fused Fc domain having two or more of its constituent Fc domains independently selected from the Fc domains described herein. In certain embodiments, the Fc domains are the same. In certain embodiments, at least two of the Fc domains are different. For example, the Fc domains of the fusion protein disclosed herein comprise the same number of amino acid residues or they may differ in length by one or more amino acid residues (e.g., by about 5 amino acid residues, about 10 residues, about 15 residues, about 20 residues, about 30 residues, about 40 residues, or about 50 residues). In certain embodiments, the Fc domains of the fusion protein disclosed herein may differ in sequence at one or more amino acid positions. For

example, at least two of the Fc domains may differ at about 5 amino acid positions (e.g., 1, 2, 3, 4, or 5 amino acid positions), about 10 positions, about 15 positions, about 20 positions, about 30 positions, about 40 positions, or about 50 positions).

Polyethylene Glycol (PEG)

[0231] In certain embodiments, a fusion protein disclosed herein comprises a polyethylene glycol (PEG) domain. PEGylation is well known in the art to confer increased circulation half-life to proteins. Methods of PEGylation are well known and disclosed in, e.g., U.S. Pat. Nos. 7,610,156, 7,847,062, all of which are hereby incorporated by reference.

[0232] PEG is a well-known, water soluble polymer that is commercially available or can be prepared by ring-opening polymerization of ethylene glycol according to methods well known in the art (Sandler and Karo, Polymer Synthesis, Academic Press, New York, Vol. 3, pages 138-161). The term "PEG" is used broadly to encompass any polyethylene glycol molecule, without regard to size or to modification at an end of the PEG, and can be represented by the formula: $X-0(CH_2CH_20)_{n-1}CH_2CH_2OH$, where n is 20 to 2300 and X is H or a terminal modification, e.g., a C₁₋₄ alkyl. In certain embodiments, the PEG suitable for use in the methods disclosed herein terminates on one end with hydroxy or methoxy, i.e., X is H or CH3 ("methoxy PEG"). PEG can contain further chemical groups which are necessary for binding reactions; which results from the chemical synthesis of the molecule; or which is a spacer for optimal distance of parts of the molecule. In addition, such a PEG can consist of one or more PEG side-chains which are linked together. PEGs with more than one PEG chain are called multiarmed or branched PEGs. Branched PEGs can be prepared, for example, by the addition of polyethylene oxide to various polyols, including glycerol, pentaerythriol, and sorbitol. For example, a four-armed branched PEG can be prepared from pentaerythriol and ethylene oxide. Branched PEG are described in, for example, EP-A 0 473 084 and U.S. Pat. No. 5,932,462, both of which are hereby incorporated by reference. One form of PEGs includes two PEG side-chains (PEG2) linked via the primary amino groups of a lysine (Monfardini et al., Bioconjugate Chem 1995; 6:62-9).

[0233] In certain embodiments, the fusion protein comprising PEG is produced by site-directed pegylation, particularly by conjugation of PEG to a cysteine moiety at the N- or C-terminus. A PEG moiety may also be attached by other chemistry, including by conjugation to amines. PEG conjugation to peptides or proteins generally involves the activation of PEG and coupling of the activated PEGintermediates directly to target proteins/peptides or to a linker, which is subsequently activated and coupled to target proteins/peptides (see Abuchowski et al., JBC 1977; 252: 3571 and JBC 1977; 252:3582, and Harris et. al., in: Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications; (J. M. Harris ed.) Plenum Press: New York, 1992; Chap. 21 and 22). A variety of molecular mass forms of PEG can be selected, e.g., from about 1,000 Daltons (Da) to 100,000 Da (n is 20 to 2300), for conjugating to the variable region. The number of repeating units "n" in the PEG is approximated for the molecular mass described in Daltons. It is preferred that the combined molecular mass of PEG on an activated linker is suitable for pharmaceutical use. Thus, in one embodiment, the molecular mass of the PEG molecules does not exceed 100,000 Da. For example, if three PEG molecules are attached to a linker, where each PEG molecule has the same molecular mass of 12,000 Da (each n is about 270), then the total molecular mass of PEG on the linker is about 36,000 Da (total n is about 820). The molecular masses of the PEG attached to the linker can also be different, e.g., of three molecules on a linker two PEG molecules can be 5,000 Da each (each n is about 110) and one PEG molecule can be 12,000 Da (n is about 270).

[0234] One skilled in the art can select a suitable molecular mass for PEG, e.g., based on how the fusion protein comprising PEG will be used therapeutically, the desired dosage, circulation time, resistance to proteolysis, immunogenicity, and other considerations. For a discussion of PEG and its use to enhance the properties of proteins, see N. V. Katre, Advanced Drug Delivery Reviews 1993; 10:91-114. [0235] In certain embodiments, PEG molecules may be activated to react with amino groups on the variable region, such as with lysines (Bencham C. O. et al., Anal. Biochem., 131, 25 (1983); Veronese, F. M. et al., Appl. Biochem., 11, 141 (1985); Zalipsky, S. et al., Polymeric Drugs and Drug Delivery Systems, adrs 9-110 ACS Symposium Series 469 (1999); Zalipsky, S. et al., Europ. Polym. J., 19, 1177-1183 (1983); Delgado, C. et al., Biotechnology and Applied Biochemistry, 12, 119-128 (1990)).

[0236] In certain embodiments, carbonate esters of PEG are used to form the fusion protein. N,N'-disuccinimidylcarbonate (DSC) may be used in the reaction with PEG to form active mixed PEG-succinimidyl carbonate that may be subsequently reacted with a nucleophilic group of a linker or an amino group of the variable region (see U.S. Pat. Nos. 5,281,698 and 5,932,462). In a similar type of reaction, 1,1'-(dibenzotriazolyl)carbonate and di-(2-pyridyl)carbonate may be reacted with PEG to form PEG-benzotriazolyl and PEG-pyridyl mixed carbonate (U.S. Pat. No. 5,382, 657), respectively. Generation of a fusion protein comprising PEG can be performed according to the methods of the state of the art, for example by reaction of the variable region with electrophilically active PEGs (Shearwater Corp., USA, www.shearwatercorp.com). Preferred PEG reagents suitable for use in the methods disclosed herein are, e.g., N-hydroxysuccinimidyl propionates (PEG-SPA), butanoates (PEG-SBA), PEG-succinimidyl propionate or branched N-hydroxysuccinimides such as mPEG2-NHS (Monfardini, C, et al., Bioconjugate Chem. 6 (1995) 62-69).

[0237] In certain embodiments, PEG molecules may be coupled to sulfhydryl groups on the variable region (Sartore, L., et al., Appl. Biochem. Biotechnol., 27, 45 (1991); Morpurgo et al., Biocon. Chem., 7, 363-368 (1996); Goodson et al., Bio/Technology (1990) 8, 343; U.S. Pat. No. 5,766,897). U.S. Pat. Nos. 6,610,281 and 5,766,897 describe exemplary reactive PEG species that may be coupled to sulfhydryl groups.

[0238] In certain embodiments where PEG molecules are conjugated to cysteine residues native to the variable region, whereas in certain embodiments, one or more cysteine residues are engineered into the variable region. Mutations may be introduced into the coding sequence of the variable region to generate cysteine residues. This might be achieved, for example, by mutating one or more amino acid residues to cysteine. Preferred amino acids for mutating to a cysteine residue include serine, threonine, alanine and other hydrophilic residues. Preferably, the residue to be mutated to

cysteine is a surface-exposed residue. Algorithms are wellknown in the art for predicting surface accessibility of residues based on primary sequence or a protein.

[0239] In certain embodiments, the fusion protein comprising PEG comprises one or more PEG molecules covalently attached to a linker.

[0240] In certain embodiments, the variable region is pegylated at the C-terminus. In certain embodiments, a protein is pegylated at the C-terminus by the introduction of C-terminal azido-methionine and the subsequent conjugation of a methyl-PEG-triarylphosphine compound via the Staudinger reaction. This C-terminal conjugation method is described in Cazalis et al., C-Terminal Site-Specific PEGylation of a Truncated Thrombomodulin Mutant with Retention of Full Bioactivity, Bioconjug Chem. 2004; 15(5): 1005-1009. Monopegylation of the variable region can also be achieved according to the general methods described in WO 94/01451. WO 94/01451 describes a method for preparing a recombinant polypeptide with a modified terminal amino acid alpha-carbon reactive group. The steps of the method involve forming the recombinant polypeptide and protecting it with one or more biologically added protecting groups at the N-terminal alpha-amine and C-terminal alphacarboxyl. The polypeptide can then be reacted with chemical protecting agents to selectively protect reactive side chain groups and thereby prevent side chain groups from being modified. The polypeptide is then cleaved with a cleavage reagent specific for the biological protecting group to form an unprotected terminal amino acid alpha-carbon reactive group. The unprotected terminal amino acid alpha-carbon reactive group is modified with a chemical modifying agent. The side chain protected terminally modified single copy polypeptide is then deprotected at the side chain groups to form a terminally modified recombinant single copy polypeptide. The number and sequence of steps in the method can be varied to achieve selective modification at the Nand/or C-terminal amino acid of the polypeptide.

[0241] The ratio of variable region to activated PEG in the conjugation reaction can be from about 1:0.5 to 1:50, between from about 1:1 to 1:30, or from about 1:5 to 1:15. Various aqueous buffers can be used to catalyze the covalent addition of PEG to the variable region, or variants thereof. In certain embodiments, the pH of a buffer used is from about 7.0 to 9.0. In certain embodiments, the pH is in a slightly basic range, e.g., from about 7.5 to 8.5. Buffers having a pKa close to neutral pH range may be used, e.g., phosphate buffer.

[0242] Conventional separation and purification techniques known in the art can be used to purify the fusion protein comprising PEG, such as size exclusion (e.g. gel filtration) and ion exchange chromatography. Products may also be separated using SDS-PAGE. Products that may be separated include mono-, di-, tri- poly- and un-pegylated variable regions as well as free PEG. The percentage of mono-PEG conjugates can be controlled by pooling broader fractions around the elution peak to increase the percentage of mono-PEG in the composition.

[0243] In certain embodiments, the fusion protein comprising PEG contains one, two or more PEG moieties. In certain embodiments, the PEG moiety(ies) are bound to an amino acid residue which is on the surface of the protein and/or away from the surface that contacts the chemokine of interest. In certain embodiments, the combined or total molecular mass of PEG in the fusion protein comprising PEG is from about 3,000 Da to 60,000 Da, optionally from about 10,000 Da to 36,000 Da. In certain embodiments, PEG of the fusion protein is a substantially linear, straight-chain PEG.

[0244] In certain embodiments, the fusion protein comprising PEG will preferably retain at least 25%, 50%, 60%, 70%, 80%, 85%, 90%, 95% or 100% of the biological activity associated with the unmodified protein. In certain embodiments, biological activity refers to the ability to bind the chemokine(s) of interest. The serum clearance rate of the fusion protein comprising PEG may be decreased by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or even 90%, relative to the clearance rate of the variable region alone. The fusion protein comprising PEG may have a circulation half-life $(t^{\hat{}})$ which is enhanced relative to the half-life of the variable region alone. The half-life of the fusion protein comprising PEG, or variants thereof, may be enhanced by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400% or 500%, or even by 1000% relative to the half-life of the variable region alone. In certain embodiments, the protein half-life is determined in vitro, such as in a buffered saline solution or in serum. In certain embodiments, the protein half-life is an in vivo circulation half-life, such as the half-life of the protein in the serum or other bodily fluid of an animal.

Other Polymers

[0245] In certain embodiments, the fusion protein comprises transferrin, as disclosed in U.S. Pat. Nos. 7,176,278 and 8,158,579, which are herein incorporated by reference in their entirety.

[0246] In certain embodiments, the fusion protein comprises a serum immunoglobulin binding protein such as those disclosed in US2007/0178082, which is herein incorporated by reference in its entirety.

[0247] In certain embodiments, the fusion protein comprises a fibronectin (Fn)-based scaffold domain protein that binds to serum albumin, such as those disclosed in US2012/0094909, which is herein incorporated by reference in its entirety. Methods of making fibronectin-based scaffold domain proteins are also disclosed in US2012/0094909. A non-limiting example of a Fn3-based extended-PK group is Fn3(HSA), i.e., a Fn3 protein that binds to human serum albumin.

[0248] In some embodiments, the fusion protein comprises an XTEN moiety. An XTEN moiety comprises amino acid residues A, E, G, P, S and T. In some embodiments, an XTEN moiety ranges from 36 to 288 amino acid residues in length. Exemplary XTEN moieties are described in WO 2011/123830; Schellenberger V. et al., *Nat Biotechnol*. Vol. 27: 1186-90 (2009); and Geething N C. Et al *PLos One Vol*. 5: e10175 (2010), each of which is herein incorporated by reference in its entirety.

[0249] In some embodiments, the fusion protein comprises an ELP moiety. An ELP moiety is a repeating peptide unit containing sequences commonly found in elastin. The ELP sequence contains repeats of V-P-G-x-G, wherein x is any amino acid except proline. ELP moieties can be degraded over time by human elastases, thereby making them biologically degradable. Examples of ELP moieties are described in, Floss, D M. et al *Trends Biotechnol. Vol.* 26:

489-501 (2013); and Floss, D M. et al, Hoboken: Wiley, p. 372-98 (2013), each of which is herein incorporated by reference.

[0250] In some embodiments, the fusion protein comprises a polymer of repeating amino acids proline, alanine and serine (i.e., PAS moiety). In some embodiments, a PAS moiety comprise 100-20 repeats in length. Exemplary PAS moieties are described in Huang, C. *Curr Opin Biotechnol Vol.* 20: 692-9 (2009), herein incorporated by reference.

Linkers

[0251] In some embodiments, the multispecific variable region is operably coupled to a polymer (e.g., serum albumin) via a linker. In some embodiments, the fusion protein includes a plurality of linker domains. In some embodiments, the linker domain is a polypeptide linker. In some embodiments, it is desirable to employ a polypeptide linker to fuse a polymer (e.g., serum albumin) with a multispecific variable region to form a fusion protein described herein.

[0252] In some embodiments, the fusion proteins employ a polypeptide linker to join any two or more domains in frame in a single polypeptide chain. In some embodiments, the two or more domains may be independently selected from any of the polymers (e.g., serum albumin), or variants or fragments thereof, or multispecific variable regions discussed herein.

[0253] Linkers suitable for fusing the multispecific variable region to the polymer (e.g., serum albumin) are well known in the art, and are disclosed in, e.g., US2010/0210511 US2010/0179094, and US2012/0094909, which are herein incorporated by reference in its entirety. Exemplary linkers include gly- ser polypeptide linkers, glycine-proline polypeptide linkers, and proline-alanine polypeptide linkers, the Fc interlinker from human IgG1 C_{H2} residues 297-322: NSTYRVVSVLTVLHQDWLNGKEYKCK, and the HSA interlinker from the D3 domain of human serum albumin: FQNALLVRYTKKVPQVSTPTLVEVS. See Fang et al., Chines. Sci. Bull., 2003, 48:1912-1918, incorporated by reference in its entirety. Other linkers are provided, for example, in U.S. Pat. Nos. 5,525,491; Alfthan et al., Protein Eng., 1995, 8:725-731; Shan et al., J. Immunol., 1999, 162:6589-6595; Newton et al., Biochemistry, 1996, 35:545-553: Megeed et al.: Biomacromolecules, 2006, 7:999-1004: and Perisic et al., Structure, 1994, 12:1217-1226; each of which is incorporated by reference in its entirety. In certain embodiments, the linker is a gly-ser polypeptide linker, i.e., a peptide that consists of glycine and serine residues.

[0254] Exemplary gly-ser polypeptide linkers comprise the amino acid sequence Ser(Gly₄Ser)n. In certain embodiments, n=1. In certain embodiments, n=2. In certain embodiments, n=3, i.e., Ser(Gly₄Ser)3. In certain embodiments, n=4, i.e., Ser(Gly₄Ser)4. In certain embodiments, n=5. In certain embodiments, n=6. In certain embodiments, n=7. In certain embodiments, n=8. In certain embodiments, n=9. In certain embodiments, n=10. Another exemplary gly-ser polypeptide linker comprises the amino acid sequence Ser (Gly₄Ser)n. In certain embodiments, n=1. In certain embodiments, n=2. In certain embodiments, n=3. In certain embodiments, n=4. In certain embodiments, n=5. certain embodiments, n=6. Another exemplary gly-ser polypeptide linker comprises (Gly₃Ser)n. In certain embodiments, n=1. In certain embodiments, n=2. In certain embodiments, n=3. In certain embodiments, n=4. In certain embodiments, n=5. In certain embodiments n=6.

[0255] In some embodiments, the polypeptide linker is synthetic. As used herein, the term "synthetic" with respect to a polypeptide linker includes peptides (or polypeptides) which comprise an amino acid sequence (which may or may not be naturally occurring) that is linked in a linear sequence of amino acids to a sequence (which may or may not be naturally occurring) to which it is not naturally linked in nature. For example, the polypeptide linker may comprise non-naturally occurring polypeptides which are modified forms of naturally occurring polypeptides (e.g., comprising a mutation such as an addition, substitution or deletion) or which comprise a first amino acid sequence (which may or may not be naturally occurring). Polypeptide linkers may be employed, for instance, to ensure that the variable region, or a variant or fragment thereof, is juxtaposed to ensure proper folding and formation of a functional variable region, or a variant or fragment thereof. Polypeptide linkers may be employed, for instance, to ensure that the polymer (e.g., serum albumin moiety), or a variant or fragment thereof, is juxtaposed to ensure proper folding and formation of a functional polymer (e.g., serum albumin moiety), or a variant or fragment thereof. Preferably, a polypeptide linker will be relatively non-immunogenic and not inhibit any noncovalent association among monomer subunits of a binding protein.

[0256] In certain embodiments, the fusion protein comprising a multispecific variable region and a polymer employs a polypeptide linker to join any two or more domains in frame in a single polypeptide chain.

[0257] Other linkers that are suitable for use in a fusion protein are known in the art, for example, the serine-rich linkers disclosed in U.S. Pat. No. 5,525,491, the helix forming peptide linkers (e.g., A(EAAAK)nA (n=2-5)) disclosed in Arai et al. (*Protein Eng* 2001; 14:529-32), and the stable linkers disclosed in Chen et al. (*Mol Pharm* 2011; 8:457-65), i.e., the dipeptide linker LE, a thrombin-sensitive disulfide cyclopeptide linker, and the alpha-helix forming linker LEA(EAAAK)4ALEA(EAAAK)4ALE.

[0258] In some embodiments, a polypeptide linker for use in the fusion protein described herein, comprises a biologically relevant peptide sequence or a sequence portion thereof. For example, a biologically relevant peptide sequence may include, but is not limited to, sequences derived from an anti-rejection or anti-inflammatory peptide. Said anti-rejection or anti-inflammatory peptides may be selected from the group consisting of a cytokine inhibitory peptide, a cell adhesion inhibitory peptide, a thrombin inhibitory peptide, and a platelet inhibitory peptide. In some embodiments, a polypeptide linker comprises a peptide sequence selected from the group consisting of an IL-1 inhibitory or antagonist peptide sequence, an erythropoietin (EPO)-mimetic peptide sequence, a thrombopoietin (TPO)mimetic peptide sequence, G-CSF mimetic peptide sequence, a TNF-antagonist peptide sequence, an integrinbinding peptide sequence, a selectin antagonist peptide sequence, an anti-pathogenic peptide sequence, a vasoactive intestinal peptide (VIP) mimetic peptide sequence, a calmodulin antagonist peptide sequence, a mast cell antagonist, a SH3 antagonist peptide sequence, an urokinase receptor (UKR) antagonist peptide sequence, a somatostatin or cortistatin mimetic peptide sequence, and a macrophage and/or T-cell inhibiting peptide sequence. Exemplary peptide sequences, any one of which may be employed as a polypeptide linker, are disclosed in U.S. Pat. No. 6,660,843, which is incorporated by reference herein.

[0259] Other exemplary linkers include GS linkers (i.e., (GS)n), GGSG linkers (i.e., (GGSG)n), GSAT linkers, SEG linkers, and GGS linkers (i.e., (GGSGGS)n), wherein n is a positive integer (e.g., 1, 2, 3, 4, or 5). Other suitable linkers for use in fusion proteins can be found using publicly available databases, such as the Linker Database (ibi.vu.nl/ programs/linkerdbwww). The Linker Database is a database of inter-domain linkers in multi-functional enzymes which serve as potential linkers in novel fusion proteins (see, e.g., George et al., *Protein Engineering* 2002; 15:871-9).

[0260] It will be understood that variant forms of these exemplary polypeptide linkers can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence encoding a polypeptide linker such that one or more amino acid substitutions, additions or deletions are introduced into the polypeptide linker. Mutations may be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. [0261] Polypeptide linkers are at least one amino acid in length and can be of varying lengths. In one embodiment, a polypeptide linker is from about 1 to about 50 amino acids in length. As used in this context, the term "about" indicates +/- two amino acid residues. Since linker length must be a positive integer, the length of from about 1 to about 50 amino acids in length, means a length of from 1 to 48-52 amino acids in length. In another embodiment, a polypeptide linker is from about 10-20 amino acids in length. In another embodiment, a polypeptide linker is from about 15 to about 50 amino acids in length.

[0262] In another embodiment, a polypeptide linker is from about 20 to about 45 amino acids in length. In another embodiment, a polypeptide linker is from about 15 to about 25 amino acids in length. In another embodiment, a polypeptide linker is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, or 61 or more amino acids in length.

[0263] Polypeptide linkers can be introduced into polypeptide sequences using techniques known in the art. Modifications can be confirmed by DNA sequence analysis. Plasmid DNA can be used to transform host cells for stable production of the polypeptides produced.

Exemplary Fusion Proteins

[0264] The fusion proteins of the disclosure are modular and can be configured to incorporate various individual domains. For example, in some embodiments, the fusion protein includes a multispecific variable region comprising the heavy and light chain variable regions set forth in SEQ ID NOs: 1 and 2, respectively. In some embodiments, the fusion protein includes a multispecific variable region comprising the heavy and light chain variable regions set forth in SEQ ID NOs: 11 and 12, respectively. In some embodiments, the fusion protein includes a multispecific variable region comprising the heavy and light chain variable regions set forth in SEQ ID NOs: 21 and 22, respectively.

[0265] In some embodiments, the multispecific variable region comprises amino acid substitutions that result in the formation of a cysteine bridge, useful for stabilization of the fusion protein. In some embodiments, the multispecific variable region comprises a heavy chain variable region

comprising the amino acid substitutions G44C, E44C, or Q105C (Kabat numbering). In some embodiments, the multispecific variable region comprises a light chain variable region comprising the amino acid substitutions A43C or Q100C (Kabat numbering). In some embodiments, the multispecific variable region comprises a heavy chain variable region comprising amino acid substitution E44C, and a light chain variable region comprising amino acid substitution Q100C. In some embodiments, the multispecific variable region comprises a heavy chain variable region comprising amino acid substitution G44C, and a light chain variable region comprising amino acid substitution Q100C. In some embodiments, the multispecific variable region comprises a heavy chain variable region comprising amino acid substitution Q105C, and a light chain variable region comprising amino acid substitution A43C.

[0266] In some embodiments, the fusion protein includes the HSA set forth in SEQ ID NO: 171. In some embodiments, the fusion protein includes the MSA set forth in SEQ ID NO: 173. In some embodiments, the fusion protein includes the (Gly₄Ser)₃ linker domain set forth in SEQ ID NO: 178. In some embodiments, the fusion protein includes the secretory leader sequence set forth in SEQ ID NO: 179. In some embodiments, the fusion protein includes the His tag set forth in SEQ ID NO: 181. It will be understood to the skilled artisan that these individual domains can be operably coupled to each other in any order form a fusion protein that is active (e.g., reduces or inhibits the binding of an ELR+ CXC chemokine to its cognate receptor). For example, as detailed in the specific examples below, the multispecific variable region comprising the heavy and light chain variable regions set forth in SEQ ID NOs: 1 and 2, is operably coupled to MSA. In another example, the multispecific variable region is operably coupled to MSA via a (Gly₄Ser)₃ linker domain. In yet another example, the fusion protein comprises the secretory leader sequence set forth in SEQ ID NO: 179.

[0267] In some embodiments, a fusion protein comprises a multispecific variable region coupled to a wild-type albumin. In some embodiments, the fusion protein comprises a secretory leader sequence, followed by a wild-type MSA, operably coupled via a (Gly₄Ser)₃ linker domain to a multispecific variable region comprising heavy and light chain variable regions set forth in SEQ ID NOs: 1 and 2, respectively, operably coupled via a (Gly₄Ser) linker domain to a His-tag (e.g., SEQ ID NO: 95). In some embodiments, the multispecific variable region comprises the amino acid substitution Q100C within the light chain variable region, and the amino acid substitution G44C within the heavy chain variable region (SEQ ID NO: 98; Kabat numbering). In some embodiments, the multispecific variable region comprises the amino acid substitution A43C within the light chain variable region, and the amino acid substitution Q105C within the heavy chain variable region (SEQ ID NO: 99; Kabat numbering). In one embodiments, the fusion protein lacks the leader sequence and the His-tag (SEQ ID NOs: 160, 163 and 164).

[0268] In some embodiments, the fusion protein comprises a secretory leader sequence, followed by a wild-type MSA, operably coupled via a $(Gly_4Ser)_3$ linker domain to a multispecific variable region comprising heavy and light chain variable regions set forth in SEQ ID NOs: 11 and 12, respectively, operably coupled via a (Gly_4Ser) linker domain to a His-tag (e.g., SEQ ID NO: 96). In some embodiments,

the multispecific variable region comprises the amino acid substitution Q100C within the light chain variable region, and the amino acid substitution E44C within the heavy chain variable region (SEQ ID NO: 100; Kabat numbering). In some embodiments, the multispecific variable region comprises the amino acid substitution A43C within the light chain variable region, and the amino acid substitution Q105C within the heavy chain variable region (SEQ ID NO: 101; Kabat numbering). In one embodiments, the fusion protein lacks the leader sequence and the His-tag (SEQ ID NOs: 161, 165 and 166).

[0269] In some embodiments, the fusion protein comprises a secretory leader sequence, followed by a wild-type MSA, operably coupled via a (Gly₄Ser)₃ linker domain to a multispecific variable region comprising heavy and light chain variable regions set forth in SEQ ID NOs: 21 and 22, respectively, operably coupled via a (Gly₄Ser) linker domain to a His-tag (e.g., SEQ ID NO: 97). In some embodiments, the multispecific variable region comprises the amino acid substitution Q100C within the light chain variable region, and the amino acid substitution G44C within the heavy chain variable region (SEQ ID NO: 104; Kabat numbering). In some embodiments, the multispecific variable region comprises the amino acid substitution A43C within the light chain variable region, and the amino acid substitution Q105C within the heavy chain variable region (SEQ ID NO: 105; Kabat numbering). In one embodiments, the fusion protein lacks the leader sequence and the His-tag (SEQ ID NO: 162, 169 and 170).

[0270] In some embodiments, the fusion protein comprises the amino acid sequence set forth in SEQ ID NO: 95. In some embodiments, the fusion protein is encoded by the nucleic acid set forth in SEQ ID NO: 83. In some embodiments, the fusion protein comprises the amino acid sequence set forth in SEQ ID NO: 96. In some embodiments, the fusion protein is encoded by the nucleic acid set forth in SEQ ID NO: 84. In some embodiments, the fusion protein comprises the amino acid sequence set forth in SEQ ID NO: 84. In some embodiments, the fusion protein comprises the amino acid sequence set forth in SEQ ID NO: 97. In some embodiments, the fusion protein is encoded by the nucleic acid set forth in SEQ ID NO: 97. In some embodiments, the fusion protein is encoded by the nucleic acid set forth in SEQ ID NO: 86.

[0271] In some embodiments, the fusion protein comprises the amino acid sequence set forth in SEQ ID NO: 160. In some embodiments, the fusion protein is encoded by the nucleic acid set forth in SEQ ID NO: 149. In some embodiments, the fusion protein comprises the amino acid sequence set forth in SEQ ID NO: 161. In some embodiments, the fusion protein is encoded by the nucleic acid set forth in SEQ ID NO: 150. In some embodiments, the fusion protein acid sequence set forth in SEQ ID NO: 150. In some embodiments, the fusion protein is encoded by the nucleic acid set forth in SEQ ID NO: 162. In some embodiments, the fusion protein is encoded by the nucleic acid set forth in SEQ ID NO: 162. In some embodiments, the fusion protein is encoded by the nucleic acid set forth in SEQ ID NO: 151.

Methods of Making Multispecific Variable Regions and Antibodies

[0272] The disclosure also provides methods for producing any of the multispecific variable regions, and isolated monoclonal antibodies, or antigen binding fragments thereof, that bind more than one ELR+ CXC chemokine (e.g., at least two, at least three, at least four, at least five, at least six, at least seven), described herein. In some embodiments, the final processed and active form of an ELR+ CXC chemokine protein is used in the methods described herein. **[0273]** In some embodiments, the methods described herein can involve, or be used in conjunction with, e.g.,

phage display technologies, bacterial display, yeast surface display, eukaryotic viral display, mammalian cell display, and cell-free (e.g., ribosomal display) antibody screening techniques (see, e.g., Etz et al. (2001) *J Bacteriol* 183:6924-6935; Cornelis (2000) *Curr Opin Biotechnol* 11:450-454; Klemm et al. (2000) *Microbiology* 146:3025-3032; Kieke et al. (1997) *Protein Eng* 10:1303-1310; Yeung et al. (2002) *Biotechnol Prog* 18:212-220; Boder et al. (2000) *Methods Enzymology* 328:430-444; Grabherr et al. (2001) *Comb Chem High Throughput Screen* 4:185-192; Michael et al. (1995) *Gene Ther* 2:660-668; Pereboev et al. (2001) *J Virol* 75:7107-7113; Schaffitzel et al. (1999) *J Immunol Methods* 231:119-135; and Hanes et al. (2000) *Nat Biotechnol* 18:1287-1292).

[0274] Methods for identifying multispecific variable regions and/or antibodies using various phage display methods are known in the art. In phage display methods, functional variable region domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. Such phage can be utilized to display antigen-binding domains, such as Fab, Fv, or disulfide-bond stabilized Fv antibody fragments, expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Phage used in these methods are typically filamentous phage such as fd and M13. The antigen binding domains are expressed as a recombinantly fused protein to any of the phage coat proteins pIII, pVIII, or pIX. See, e.g., Shi et al. (2010) JMB 397:385-396. Examples of phage display methods that can be used to make the immunoglobulins, or fragments thereof, described herein include those disclosed in Brinkman et al. (1995) J Immunol Methods 182:41-50; Ames et al. (1995) J Immunol Methods 184:177-186; Kettleborough et al. (1994) Eur J Immunol 24:952-958; Persic et al. (1997) Gene 187:9-18; Burton et al. (1994) Advances in Immunology 57:191-280; and PCT publication nos. WO 90/02809, WO 91/10737, WO 92/01047, WO 92/18619, WO 93/11236, WO 95/15982, and WO 95/20401. Suitable methods are also described in, e.g., U.S. Pat. Nos. 5,698,426; 5,223,409; 5,403,484; 5,580,717; 5,427,908; 5,750,753; 5,821,047; 5,571,698; 5,427,908; 5,516,637; 5,780,225; 5,658,727; 5,733,743 and 5,969,108.

[0275] In some embodiments, the methods described herein further comprise prioritizing crossreactivity over affinity using directed co-evolution, described in further detail in the Examples. For example, using yeast surface display methods described above, output of each cycle of selection is exposed to a diverse array of antigens of interest (e.g., ELR+ CXC chemokines) in the following cycle. In some embodiments, methods that improve both the binding and affinity of variable regions and antibodies are used. Specifically, a high degree of genetic diversity in the antibody encoding genes can be created using error-prone PCR amplification. Binding affinity can be increased by allowing mutants to evolve through consecutive cycles of equilibrium-based selection using decreasing concentrations of the antigens of interest (e.g., ELR+ CXC chemokines). Concurrently, crossreactivity is increased by exposing the outputs of each cycle of affinity selection towards a different antigen of interest (e.g., different ELR+ CXC chemokine) in the following cycle of selection. Variants whose affinity and crossreactivity towards multiple antigens of interest (e.g., ELR+ CXC chemokines) that are higher than their respective parental clones are collected.

[0276] A subpopulation of multispecific variable regions and/or antibodies screened using the above methods can be characterized for their specificity and binding affinity for particular antigens (e.g., chemokines, e.g., ELR+ CXC chemokines) using any immunological or biochemical based method known in the art. For example, specific binding of a multispecific variable region or antibody to a chemokine, may be determined for example using immunological or biochemical based methods such as, but not limited to, an ELISA assay, SPR assays, immunoprecipitation assay, affinity chromatography, and equilibrium dialysis as described above. Immunoassays which can be used to analyze immunospecific binding and cross-reactivity of the antibodies include, but are not limited to, competitive and non-competitive assay systems using techniques such as Western blots, RIA, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoprecipitation assays, immunodiffusion assays, agglutination assays, complementfixation assays, immunoradiometric assays, fluorescent immunoassays, and protein A immunoassays. Such assays are routine and well known in the art.

[0277] In embodiments where the selected CDR amino acid sequences are short sequences (e.g., fewer than 10-15 amino acids in length), nucleic acids encoding the CDRs can be chemically synthesized as described in, e.g., Shiraishi et al. (2007) *Nucleic Acids Symposium Series* 51(1):129-130 and U.S. Pat. No. 6,995,259. For a given nucleic acid sequence encoding an acceptor antibody, the region of the nucleic acid sequence encoding the CDRs can be replaced with the chemically synthesized nucleic acids using standard molecular biology techniques. The 5' and 3' ends of the chemically synthesized nucleic acids can be synthesized to comprise sticky end restriction enzyme sites for use in cloning the nucleic acids into the nucleic acid encoding the variable region of the donor antibody.

[0278] In some embodiments, the antibodies described herein comprise an altered heavy chain constant region that has reduced (or no) effector function relative to its corresponding unaltered constant region. Effector functions involving the constant region of the antibody may be modulated by altering properties of the constant or Fc region. Altered effector functions include, for example, a modulation in one or more of the following activities: antibodydependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), apoptosis, binding to one or more Fc-receptors, and pro-inflammatory responses. Modulation refers to an increase, decrease, or elimination of an effector function activity exhibited by a subject antibody containing an altered constant region as compared to the activity of the unaltered form of the constant region. In particular embodiments, modulation includes situations in which an activity is abolished or completely absent.

[0279] An altered constant region with altered FcR binding affinity and/or ADCC activity and/or altered CDC activity is a polypeptide which has either an enhanced or diminished FcR binding activity and/or ADCC activity and/or CDC activity compared to the unaltered form of the constant region. An altered constant region which displays increased binding to an FcR binds at least one FcR with greater affinity than the unaltered polypeptide. An altered constant region which displays decreased binding to an FcR binds at least one FcR with lower affinity than the unaltered form of the constant region. Such variants which display decreased binding to an FcR may possess little or no appreciable binding to an FcR, e.g., 0 to 50% (e.g., less than 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1%) of the binding to the FcR as compared to the level of binding of a native sequence immunoglobulin constant or Fc region to the FcR. Similarly, an altered constant region that displays modulated ADCC and/or CDC activity may exhibit either increased or reduced ADCC and/or CDC activity compared to the unaltered constant region. For example, in some embodiments, the antibody comprising an altered constant region can exhibit approximately 0 to 50% (e.g., less than 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1%) of the ADCC and/or CDC activity of the unaltered form of the constant region. An antibody described herein comprising an altered constant region displaying reduced ADCC and/or CDC may exhibit reduced or no ADCC and/or CDC activity.

[0280] In some embodiments, an antibody described herein exhibits reduced or no effector function. In some embodiments, an antibody comprises a hybrid constant region, or a portion thereof, such as a G2/G4 hybrid constant region (see e.g., Burton et al. (1992) *Adv Immun* 51:1-18; Canfield et al. (1991) *J Exp Med* 173:1483-1491; and Mueller et al. (1997) *Mol Immunol* 34(6):441-452). See above.

[0281] In some embodiments, an antibody may contain an altered constant region exhibiting enhanced or reduced complement dependent cytotoxicity (CDC). Modulated CDC activity may be achieved by introducing one or more amino acid substitutions, insertions, or deletions in an Fc region of the antibody. See, e.g., U.S. Pat. No. 6,194,551. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved or reduced internalization capability and/or increased or decreased complement-mediated cell killing. See, e.g., Caron et al. (1992) J Exp Med 176:1191-1195 and Shopes (1992) Immunol 148:2918-2922; PCT publication nos. WO 99/51642 and WO 94/29351; Duncan and Winter (1988) Nature 322:738-40; and U.S. Pat. Nos. 5,648,260 and 5,624,821.

[0282] It is understood that the above methods can also be used to determine if, e.g., a multispecific variable region does not bind to full length chemokines, e.g., ELR+ CXC chemokines. The above methods can also be used to determine if a multispecific variable region or antibody that specifically binds to more than one ELR+ CXC chemokine also reduces or inhibits the interaction between the chemokines and their cognate receptors (e.g., CXCR1 and CXCR2).

Methods of Making Fusion Proteins

[0283] The fusion proteins described herein largely may be made in transformed or transfected host cells using recombinant DNA techniques. To do so, a recombinant DNA molecule coding for the polypeptide is prepared. Methods of preparing such DNA molecules are well known in the art. For instance, sequences coding for the polypeptides could be excised from DNA using suitable restriction enzymes. Alternatively, the DNA molecule could be synthesized using chemical synthesis techniques, such as the phosphoramidate method. Also, a combination of these techniques could be used.

[0284] The disclosure also provides a vector capable of expressing the polypeptides in an appropriate host. The vector comprises the DNA molecule that codes for the polypeptides operably coupled to appropriate expression control sequences. Methods of affecting this operative linking, either before or after the DNA molecule is inserted into the vector, are well known. Expression control sequences include promoters, activators, enhancers, operators, ribosomal nuclease domains, start signals, stop signals, cap signals, polyadenylation signals, and other signals involved with the control of transcription or translation. The nucleic acid molecules described above can be contained within a vector that is capable of directing their expression in, for example, a cell that has been transduced with the vector. Accordingly, in addition to polypeptide mutants, expression vectors containing a nucleic acid molecule encoding a mutant and cells transfected with these vectors are among the certain embodiments.

[0285] Vectors suitable for use include T7-based vectors for use in bacteria (see, for example, Rosenberg et al., Gene 56: 125, 1987), the pMSXND expression vector for use in mammalian cells (Lee and Nathans, J. Biol. Chem. 263: 3521, 1988), and baculovirus-derived vectors (for example the expression vector pBacPAKS from Clontech, Palo Alto, Calif.) for use in insect cells. The nucleic acid inserts, which encode the polypeptide of interest in such vectors, can be operably linked to a promoter, which is selected based on, for example, the cell type in which expression is sought. For example, a T7 promoter can be used in bacteria, a polyhedrin promoter can be used in insect cells, and a cytomegalovirus or metallothionein promoter can be used in mammalian cells. Also, in the case of higher eukaryotes, tissue-specific and cell type-specific promoters are widely available. These promoters are so named for their ability to direct expression of a nucleic acid molecule in a given tissue or cell type within the body. Skilled artisans are well aware of numerous promoters and other regulatory elements which can be used to direct expression of nucleic acids.

[0286] In addition to sequences that facilitate transcription of the inserted nucleic acid molecule, vectors can contain origins of replication, and other genes that encode a selectable marker. For example, the neomycin-resistance (neo') gene imparts G418 resistance to cells in which it is expressed, and thus permits phenotypic selection of the transfected cells. Those of skill in the art can readily determine whether a given regulatory element or selectable marker is suitable for use in a particular experimental context.

[0287] Viral vectors that are suitable for use include, for example, retroviral, adenoviral, and adeno-associated vectors, herpes virus, simian virus 40 (SV40), and bovine papilloma virus vectors (see, for example, Gluzman (Ed.), Eukaryotic Viral Vectors, CSH Laboratory Press, Cold Spring Harbor, N.Y.).

[0288] The resulting vector having the DNA molecule thereon is used to transform or transfect an appropriate host. This transformation or transfection may be performed using methods well known in the art.

[0289] Any of a large number of available and well-known host cells may be used. The selection of a particular host is dependent upon a number of factors recognized by the art.

These include, for example, compatibility with the chosen expression vector, toxicity of the peptides encoded by the DNA molecule, rate of transformation or transfection, ease of recovery of the peptides, expression characteristics, biosafety and costs. A balance of these factors must be struck with the understanding that not all hosts may be equally effective for the expression of a particular DNA sequence. Within these general guidelines, useful microbial hosts include bacteria (such as *E. coli*), yeast (such as *Saccharo-myces*) and other fungi, insects, plants, mammalian (including human) cells in culture, or other hosts known in the art.

[0290] Next, the transformed or transfected host is cultured and purified. Host cells may be cultured under conventional fermentation or culture conditions so that the desired compounds are expressed. Such fermentation and culture conditions are well known in the art. Finally, the peptides are purified from culture by methods well known in the art.

[0291] Prokaryotic or eukaryotic cells that contain and express a nucleic acid molecule that encodes a polypeptide mutant are also suitable for use. A cell is a transfected cell, i.e., a cell into which a nucleic acid molecule, for example a nucleic acid molecule encoding a mutant polypeptide, has been introduced by means of recombinant DNA techniques. The progeny of such a cell are also considered suitable for use in the methods disclosed herein.

[0292] The precise components of the expression system are not critical. For example, a polypeptide can be produced in a prokaryotic host, such as the bacterium *E. coli*, or in a eukaryotic host, such as an insect cell (e.g., an Sf21 cell), or mammalian cells (e.g., COS cells, NIH 3T3 cells, or HeLa cells). These cells are available from many sources, including the American Type Culture Collection (Manassas, Va.). In selecting an expression system, it matters only that the components are compatible with one another. Artisans or ordinary skill are able to make such a determination. Furthermore, if guidance is required in selecting an expression system, skilled artisans may consult Ausubel et al. (Current Protocols in Molecular Biology, John Wiley and Sons, New York, N.Y., 1993) and Pouwels et al. (Cloning Vectors: A Laboratory Manual, 1985 Suppl. 1987).

[0293] The expressed polypeptides can be purified from the expression system using routine biochemical procedures, and can be used, e.g., as therapeutic agents, as described herein.

[0294] The fusion proteins may also be made by synthetic methods. For example, solid phase synthesis techniques may be used. Suitable techniques are well known in the art, and include those described in Merrifield (1973), Chem. Polypeptides, pp. 335-61 (Katsoyannis and Panayotis eds.); Merrifield (1963), J. Am. Chem. Soc. 85: 2149; Davis et al., *Biochem Intl* 1985; 10: 394-414; Stewart and Young (1969), Solid Phase Peptide Synthesis; U.S. Pat. No. 3,941,763; Finn et al. (1976), The Proteins (3rd ed.) 2: 105-253; and Erickson et al. (1976), The Proteins (3rd ed.) 2: 257-527. Solid phase synthesis is the preferred technique of making individual peptides since it is the most cost-effective method of making small peptides. Compounds that contain derivatized peptides or which contain non-peptide groups may be synthesized by well-known organic chemistry techniques.

[0295] Other methods are of molecule expression/synthesis are generally known in the art to one of ordinary skill.

Modification of Polypeptides

[0296] The polypeptides described herein (e.g., fusion proteins, or antibodies or antigen-binding fragments thereof) can be modified following their expression and purification. The modifications can be covalent or non-covalent modifications. Such modifications can be introduced into the polypeptides by, e.g., reacting targeted amino acid residues of the polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues. Suitable sites for modification can be chosen using any of a variety of criteria including, e.g., structural analysis or amino acid sequence analysis of the antibodies or fragments.

[0297] In some embodiments, the polypeptides can be conjugated to a heterologous moiety. The heterologous moiety can be, e.g., a heterologous polypeptide, a therapeutic agent (e.g., a toxin or a drug), or a detectable label such as, but not limited to, a radioactive label, an enzymatic label, a fluorescent label, a heavy metal label, a luminescent label, or an affinity tag such as biotin or streptavidin. Suitable heterologous polypeptides include, e.g., an antigenic tag (e.g., FLAG (DYKDDDDK (SEQ ID NO: 180)), polyhistidine (6-His; HHHHHH (SEQ ID NO: 181), hemagglutinin (HA; YPYDVPDYA (SEQ ID NO: 182)), glutathione-Stransferase (GST), or maltose-binding protein (MBP)) for use in purifying the antibodies or fragments. Heterologous polypeptides also include polypeptides (e.g., enzymes) that are useful as diagnostic or detectable markers, for example, luciferase, a fluorescent protein (e.g., green fluorescent protein (GFP)), or chloramphenicol acetyl transferase (CAT). Suitable radioactive labels include, e.g., ³²P, ³³P ¹⁴C, ¹²⁵I, ¹³¹I, ³⁵S, and ³H. Suitable fluorescent labels include, without limitation, fluorescein, fluorescein isothiocvanate (FITC), green fluorescent protein (GFP), DyLight[™] 488, phycoerythrin (PE), propidium iodide (PI), PerCP, PE-Alexa Fluor® 700, Cy5, allophycocyanin, and Cy7. Luminescent labels include, e.g., any of a variety of luminescent lanthanide (e.g., europium or terbium) chelates. For example, suitable europium chelates include the europium chelate of diethylene triamine pentaacetic acid (DTPA) or tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Enzymatic labels include, e.g., alkaline phosphatase, CAT, luciferase, and horseradish peroxidase.

[0298] Two proteins (e.g., an antibody and a heterologous moiety) can be cross-linked using any of a number of known chemical cross linkers. Examples of such cross linkers are those which link two amino acid residues via a linkage that includes a "hindered" disulfide bond. In these linkages, a disulfide bond within the cross-linking unit is protected (by hindering groups on either side of the disulfide bond) from reduction by the action, for example, of reduced glutathione or the enzyme disulfide reductase. One suitable reagent, 4-succinimidyloxycarbonyl- α -methyl- α (2-pyridyldithio)

toluene (SMPT), forms such a linkage between two proteins utilizing a terminal lysine on one of the proteins and a terminal cysteine on the other. Heterobifunctional reagents that cross-link by a different coupling moiety on each protein can also be used. Other useful cross-linkers include, without limitation, reagents which link two amino groups (e.g., N-5-azido-2-nitrobenzoyloxysuccinimide), two sulfhydryl groups (e.g., 1,4-bis-maleimidobutane), an amino group and a sulfhydryl group (e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester), an amino group and a carboxyl group (e.g., 4-[p-azidosalicylamido]butylamine), and an amino group and a guanidinium group that is present in the side chain of arginine (e.g., p-azidophenyl glyoxal monohydrate).

[0299] In some embodiments, a radioactive label can be directly conjugated to the amino acid backbone of the polypeptide. Alternatively, the radioactive label can be included as part of a larger molecule (e.g., 125I in meta-[¹²⁵I]iodophenyl-N-hydroxysuccinimide ([¹²⁵I]mIPNHS) which binds to free amino groups to form meta-iodophenyl (mIP) derivatives of relevant proteins (see, e.g., Rogers et al. (1997) J Nucl Med 38:1221-1229) or chelate (e.g., to DOTA or DTPA) which is in turn bound to the protein backbone. Methods of conjugating the radioactive labels or larger molecules/chelates containing them to the polypeptides described herein are known in the art. Such methods involve incubating the proteins with the radioactive label under conditions (e.g., pH, salt concentration, and/or temperature) that facilitate binding of the radioactive label or chelate to the protein (see, e.g., U.S. Pat. No. 6,001,329).

[0300] Methods for conjugating a fluorescent label (sometimes referred to as a "fluorophore") to a protein (e.g., an antibody) are known in the art of protein chemistry. For example, fluorophores can be conjugated to free amino groups (e.g., of lysines) or sulfhydryl groups (e.g., cysteines) of proteins using succinimidyl (NHS) ester or tetrafluorophenyl (TFP) ester moieties attached to the fluorophores. In some embodiments, the fluorophores can be conjugated to a heterobifunctional cross-linker moiety such as sulfo-SMCC. Suitable conjugation methods involve incubating a polypeptide, with the fluorophore to the protein. See, e.g., Welch and Redvanly (2003) "Handbook of Radiopharmaceuticals: Radiochemistry and Applications," John Wiley and Sons (ISBN 0471495603).

[0301] In some embodiments, the polypeptides can be modified, e.g., with a moiety that improves the stabilization and/or retention of the polypeptides in circulation, e.g., in blood, serum, or other tissues. For example, the polypeptide can be PEGylated as described in, e.g., Lee et al. (1999) *Bioconjug Chem* 10(6): 973-8; Kinstler et al. (2002) *Advanced Drug Deliveries Reviews* 54:477-485; and Roberts et al. (2002) *Advanced Drug Deliveries Reviews* 54:479-476 or HESylated (Fresenius Kabi, Germany; see, e.g., Pavisié et al. (2010) *Int J Pharm* 387(1-2):110-119). The stabilization moiety can improve the stability, or retention of, the polypeptide by at least 1.5 (e.g., at least 2, 5, 10, 15, 20, 25, 30, 40, or 50 or more) fold.

[0302] In some embodiments, the polypeptides described herein can be glycosylated. In some embodiments, a polypeptide described herein can be subjected to enzymatic or chemical treatment, or produced from a cell, such that the polypeptide has reduced or absent glycosylation. Methods for producing polypeptides with reduced glycosylation are known in the art and described in, e.g., U.S. Pat. No. 6,933,368; Wright et al. (1991) *EMBO J* 10(10):2717-2723; and Co et al. (1993) *Mol Immunol* 30:1361.

Pharmaceutical Compositions and Modes of Administration

[0303] In certain embodiments, the invention provides for a pharmaceutical composition comprising a fusion protein, or an isolated monoclonal antibody, or antigen binding fragment thereof, described herein, with a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative and/or adjuvant.

[0304] In certain embodiments, acceptable formulation materials preferably are nontoxic to recipients at the dosages and concentrations employed. In certain embodiments, the formulation material(s) are for s.c. and/or I.V. administration. In certain embodiments, the pharmaceutical composition can contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolality, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition. In certain embodiments, suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates or other organic acids); bulking agents (such as mannitol or glycine); chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-betacyclodextrin); fillers; monosaccharides; disaccharides; and other carbohydrates (such as glucose, mannose or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins); coloring, flavoring and diluting agents; emulsifying agents; hydrophilic polymers (such as polyvinylpyrrolidone); low molecular weight polypeptides; salt-forming counterions (such as sodium); preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide); solvents (such as glycerin, propylene glycol or polyethylene glycol); sugar alcohols (such as mannitol or sorbitol); suspending agents; surfactants or wetting agents (such as pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate 80, triton, tromethamine, lecithin, cholesterol, tyloxapal); stability enhancing agents (such as sucrose or sorbitol); tonicity enhancing agents (such as alkali metal halides, preferably sodium or potassium chloride, mannitol sorbitol); delivery vehicles; diluents; excipients and/or pharmaceutical adjuvants. (Remington's Pharmaceutical Sciences, 18th Edition, A. R. Gennaro, ed., Mack Publishing Company (1995). In certain embodiments, the formulation comprises PBS; 20 mM NaOAC, pH 5.2, 50 mM NaCl; and/or 10 mM NAOAC, pH 5.2, 9% Sucrose. In certain embodiments, the optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format and desired dosage. See, for example, Remington's Pharmaceutical Sciences, supra. In certain embodiments, such compositions may influence the physical state, stability, rate of in vivo release and rate of in vivo clearance of the fusion protein, or isolated monoclonal antibody, or antigen binding fragment, described herein.

[0305] In certain embodiments, the primary vehicle or carrier in a pharmaceutical composition can be either aqueous or non-aqueous in nature. For example, in certain embodiments, a suitable vehicle or carrier can be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. In certain embodiments, the saline comprises isotonic phosphate-buffered saline. In certain embodiments, neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. In certain embodiments, pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5,

or acetate buffer of about pH 4.0-5.5, which can further include sorbitol or a suitable substitute therefore. In certain embodiments, a composition comprising a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, described herein, can be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (Remington's Pharmaceutical Sciences, supra) in the form of a lyophilized cake or an aqueous solution. Further, in certain embodiments, a composition comprising a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, described herein, can be formulated as a lyophilizate using appropriate excipients such as sucrose.

[0306] In certain embodiments, the pharmaceutical composition can be selected for parenteral delivery. In certain embodiments, the compositions can be selected for inhalation or for delivery through the digestive tract, such as orally. The preparation of such pharmaceutically acceptable compositions is within the ability of one skilled in the art.

[0307] In certain embodiments, the formulation components are present in concentrations that are acceptable to the site of administration. In certain embodiments, buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8.

[0308] In certain embodiments, when parenteral administration is contemplated, a therapeutic composition can be in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, described herein, in a pharmaceutically acceptable vehicle. In certain embodiments, a vehicle for parenteral injection is sterile distilled water in which a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, described herein, are formulated as a sterile, isotonic solution, properly preserved. In certain embodiments, the preparation can involve the formulation of the desired molecule with an agent, such as injectable micro spheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that can provide for the controlled or sustained release of the product which can then be delivered via a depot injection. In certain embodiments, hyaluronic acid can also be used, and can have the effect of promoting sustained duration in the circulation. In certain embodiments, implantable drug delivery devices can be used to introduce the desired molecule.

[0309] In certain embodiments, a pharmaceutical composition can be formulated for inhalation. In certain embodiments, a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, can be formulated as a dry powder for inhalation. In certain embodiments, an inhalation solution comprising a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, can be formulated with a propellant for aerosol delivery. In certain embodiments, solutions can be nebulized. Pulmonary administration is further described in PCT application No. PCT/US94/ 001875, which describes pulmonary delivery of chemically modified proteins.

[0310] In certain embodiments, it is contemplated that formulations can be administered orally. In certain embodiments, a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, that is administered in this fashion can be formulated with or without those carriers customarily used in the compounding of solid dosage forms such as

tablets and capsules. In certain embodiments, a capsule can be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized. In certain embodiments, at least one additional agent can be included to facilitate absorption of the fusion protein, or isolated monoclonal antibody, or antigen binding fragment. In certain embodiments, diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders can also be employed.

[0311] In certain embodiments, a pharmaceutical composition can involve an effective quantity of the fusion protein, or isolated monoclonal antibody, or antigen binding fragment, in a mixture with non-toxic excipients which are suitable for the manufacture of tablets. In certain embodiments, by dissolving the tablets in sterile water, or another appropriate vehicle, solutions can be prepared in unit-dose form. In certain embodiments, suitable excipients include, but are not limited to, inert diluents, such as calcium carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate; or binding agents, such as starch, gelatin, or acacia; or lubricating agents such as magnesium stearate, stearic acid, or talc.

[0312] Additional pharmaceutical compositions will be evident to those skilled in the art, including formulations involving a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, in sustained- or controlleddelivery formulations. In certain embodiments, techniques for formulating a variety of other sustained- or controlleddelivery means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See for example, PCT Application No. PCT/US93/00829 which describes the controlled release of porous polymeric microparticles for the delivery of pharmaceutical compositions. In certain embodiments, sustained-release preparations can include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices can include polyesters, hydrogels, polylactides (U.S. Pat. No. 3,773,919 and EP 058,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., Biopolymers, 22:547-556 (1983)), poly (2-hydroxyethyl-methacrylate) (Langer et al., J. Biomed. Mater. Res., 15: 167-277 (1981) and Langer, Chem. Tech., 12:98-105 (1982)), ethylene vinyl acetate (Langer et al., supra) or poly-D(-)-3-hydroxybutyric acid (EP 133,988). In certain embodiments, sustained release compositions can also include liposomes, which can be prepared by any of several methods known in the art. See, e.g., Eppstein et al, Proc. Natl. Acad. Sci. USA, 82:3688-3692 (1985); EP 036,676; EP 088,046 and EP 143,949.

[0313] The pharmaceutical composition to be used for in vivo administration typically is sterile. In certain embodiments, this can be accomplished by filtration through sterile filtration membranes. In certain embodiments, where the composition is lyophilized, sterilization using this method can be conducted either prior to or following lyophilization and reconstitution. In certain embodiments, the composition for parenteral administration can be stored in lyophilized form or in a solution. In certain embodiments, parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

[0314] In certain embodiments, once the pharmaceutical composition has been formulated, it can be stored in sterile vials as a solution, suspension, gel, emulsion, solid, or as a dehydrated or lyophilized powder. In certain embodiments, such formulations can be stored either in a ready-to-use form or in a form (e.g., lyophilized) that is reconstituted prior to administration.

[0315] In certain embodiments, kits are provided for producing a single-dose administration unit. In certain embodiments, the kit can contain both a first container having a dried protein and a second container having an aqueous formulation. In certain embodiments, kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes) are included.

[0316] In certain embodiments, the effective amount of a pharmaceutical composition comprising a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, to be employed therapeutically will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment, according to certain embodiments, will thus vary depending, in part, upon the molecule delivered, the indication for which a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, are being used, the route of administration, and the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient. In certain embodiments, the clinician can titer the dosage and modify the route of administration to obtain the optimal therapeutic effect.

[0317] In certain embodiments, the frequency of dosing will take into account the pharmacokinetic parameters of a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, in the formulation used. In certain embodiments, a clinician will administer the composition until a dosage is reached that achieves the desired effect. In certain embodiments, the composition can therefore be administered as a single dose, or as two or more doses (which may or may not contain the same amount of the desired molecule) over time, or as a continuous infusion via an implantation device or catheter. Further refinement of the appropriate dosage is routinely made by those of ordinary skill in the art and is within the ambit of tasks routinely performed by them. In certain embodiments, appropriate dosages can be ascertained through use of appropriate dose-response data.

[0318] In certain embodiments, the route of administration of the pharmaceutical composition is in accord with known methods, e.g. orally, through injection by intravenous, intraperitoneal, intracerebral (intra-parenchymal), intracerebroventricular, intranuscular, subcutaneously, intra-ocular, intraarterial, intraportal, or intralesional routes; by sustained release systems or by implantation devices. In certain embodiments, the compositions can be administered by bolus injection or continuously by infusion, or by implantation device. In certain embodiments, individual elements of the combination therapy may be administered by different routes.

[0319] In certain embodiments, the composition can be administered locally via implantation of a membrane, sponge or another appropriate material onto which the desired molecule has been absorbed or encapsulated. In certain embodiments, where an implantation device is used, the device can be implanted into any suitable tissue or organ, and delivery of the desired molecule can be via diffusion,

timed-release bolus, or continuous administration. In certain embodiments, it can be desirable to use a pharmaceutical composition comprising a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, in an ex vivo manner. In such instances, cells, tissues and/or organs that have been removed from the patient are exposed to a pharmaceutical composition comprising a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, after which the cells, tissues and/or organs are subsequently implanted back into the patient.

[0320] In certain embodiments, a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, can be delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein, to express and secrete the polypeptides. In certain embodiments, such cells can be animal or human cells, and can be autologous, heterologous, or xenogeneic. In certain embodiments, the cells can be immortalized. In certain embodiments, in order to decrease the chance of an immunological response, the cells can be encapsulated to avoid infiltration of surrounding tissues. In certain embodiments, the encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.

Kits

[0321] A kit can include a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, as disclosed herein, and instructions for use. The kits may comprise, in a suitable container, a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, one or more controls, and various buffers, reagents, enzymes and other standard ingredients well known in the art.

[0322] The container can include at least one vial, well, test tube, flask, bottle, syringe, or other container means, into which a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, may be placed, and in some instances, suitably aliquoted. Where an additional component is provided, the kit can contain additional containers into which this component may be placed. The kits can also include a means for containing a fusion protein, or isolated monoclonal antibody, or antigen binding fragment, and any other reagent containers in close confinement for commercial sale. Such containers may include injection or blow-molded plastic containers into which the desired vials are retained. Containers and/or kits can include labeling with instructions for use and/or warnings.

Methods of Treatment

[0323] The compositions described herein are useful in, inter alia, methods for treating or preventing a variety of autoimmune and related disorders, allergy, inflammation, and/or graft or transplant rejection in a subject. The compositions can be administered to a subject, e.g., a human subject, using a variety of methods that depend, in part, on the route of administration. The route can be, e.g., intravenous injection or infusion (IV), subcutaneous injection (SC), intraperitoneal (IP) injection, intramuscular injection (IM), or intrathecal injection (IT). The injection can be in a bolus or a continuous infusion.

[0324] Administration can be achieved by, e.g., local infusion, injection, or by means of an implant. The implant can be of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. The implant can be configured for sustained or periodic release of the composition to the subject. See, e.g., U.S. Patent Application Publication No. 20080241223; U.S. Pat. Nos. 5,501,856; 4,863,457; and 3,710,795; EP488401; and EP 430539, the disclosures of each of which are incorporated herein by reference in their entirety. The composition can be delivered to the subject by way of an implantable device based on, e.g., diffusive, erodible, or convective systems, e.g., osmotic pumps, biodegradable implants, electrodiffusion systems, electroosmosis systems, vapor pressure pumps, electrolytic pumps, effervescent pumps, piezoelectric pumps, erosion-based systems, or electromechanical systems.

[0325] In some embodiments, a fusion protein, or antibody or antigen-binding fragment thereof, is therapeutically delivered to a subject by way of local administration.

[0326] A suitable dose of a fusion protein, or antibody or antigen-binding fragment thereof described herein, which dose is capable of treating or preventing autoimmune and related disorders in a subject, can depend on a variety of factors including, e.g., the age, sex, and weight of a subject to be treated and the particular inducer compound used. For example, a different dose of a whole antibody may be required to treat a subject with autoimmune disease as compared to the dose of a fusion protein required to treat the same subject. Other factors affecting the dose administered to the subject include, e.g., the type or severity of the autoimmune disorder. For example, a subject having rheumatoid arthritis may require administration of a different dosage than a subject with Guillain-Barre syndrome. Other factors can include, e.g., other medical disorders concurrently or previously affecting the subject, the general health of the subject, the genetic disposition of the subject, diet, time of administration, rate of excretion, drug combination, and any other additional therapeutics that are administered to the subject. It should also be understood that a specific dosage and treatment regimen for any particular subject will also depend upon the judgment of the treating medical practitioner (e.g., doctor or nurse). Suitable dosages are described herein.

[0327] A pharmaceutical composition can include a therapeutically effective amount of a fusion protein, or antibody or antigen-binding fragment thereof described herein. Such effective amounts can be readily determined by one of ordinary skill in the art based, in part, on the effect of the administered antibody, or the combinatorial effect of the antibody and one or more additional active agents, if more than one agent is used. A therapeutically effective amount of an antibody or fragment thereof described herein can also vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody (and one or more additional active agents) to elicit a desired response in the individual, e.g., reduction in tumor growth. For example, a therapeutically effective amount of a fusion protein can inhibit (lessen the severity of or eliminate the occurrence of) and/or prevent a particular disorder, and/or any one of the symptoms of the particular disorder known in the art or described herein. A therapeutically effective amount is also one in which any toxic or detrimental effects of the composition are outweighed by the therapeutically beneficial effects.

[0328] Suitable human doses of any of the fusion proteins, or antibodies or fragments thereof described herein can further be evaluated in, e.g., Phase I dose escalation studies. See, e.g., van Gurp et al. (2008) *Am J Transplantation* 8(8):1711-1718; Hanouska et al. (2007) *Clin Cancer Res* 13(2, part 1):523-531; and Hetherington et al. (2006) *Antimicrobial Agents and Chemotherapy* 50(10): 3499-3500.

[0329] In some embodiments, the composition contains any of the fusion proteins, or antibodies or antigen-binding fragments thereof described herein and one or more (e.g., two, three, four, five, six, seven, eight, nine, 10, or 11 or more) additional therapeutic agents such that the composition as a whole is therapeutically effective. For example, a composition can contain a fusion protein described herein and an anti-inflammatory agent, wherein the fusion protein and agent are each at a concentration that when combined are therapeutically effective for treating or preventing autoimmune and related disorders (e.g., rheumatoid arthritis) in a subject.

[0330] Toxicity and therapeutic efficacy of such compositions can be determined by known pharmaceutical procedures in cell cultures or experimental animals (e.g., animal models of any of the cancers described herein). These procedures can be used, e.g., for determining the LD_{50} (the dose lethal to 50% of the population) and the ED_{50} (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD_{50}/ED_{50} . A fusion protein, or antibody or antigen-binding fragment thereof that exhibits a high therapeutic index is preferred. While compositions that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue and to minimize potential damage to normal cells and, thereby, reduce side effects.

[0331] The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such fusion proteins, or antibodies or antigen-binding fragments thereof lies generally within a range of circulating concentrations of the antibodies or fragments that include the ED_{50} with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For a fusion protein described herein, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the fusion protein which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography. In some embodiments, e.g., where local administration (e.g., to the eye or a joint) is desired, cell culture or animal modeling can be used to determine a dose required to achieve a therapeutically effective concentration within the local site.

[0332] In some embodiments, the methods can be performed in conjunction with other therapies for autoimmune and related diseases. For example, the composition can be administered to a subject at the same time, prior to, or after, radiation, surgery, targeted or cytotoxic chemotherapy, antiinflammatory therapy, steroid therapy, chemoradiotherapy, hormone therapy, immunotherapy, immunosuppressive therapy, antithyroid therapy, antibiotic therapy, gene therapy, cell transplant therapy, precision medicine, genome editing therapy, or other pharmacotherapy.

[0333] The compositions described herein (e.g., fusion protein compositions) can be used to treat graft rejection and/or a variety of allergy or autoimmune disorders such as, but not limited to, Crohn's disease, multiple sclerosis, myasthenia gravis, rheumatoid arthritis, Goodpasture's syndrome, T-cell mediated hepatitis, graft vs. host disease, autoimmune uveitis, and/or autoimmune diabetes.

[0334] In some embodiments, a fusion protein, or an antibody or an antigen-binding fragment thereof described herein can be administered to a subject as a monotherapy. Alternatively, as described above, the fusion protein, or the antibody or fragment thereof can be administered to a subject as a combination therapy with another treatment, e.g., another treatment for an autoimmune or related disease. For example, the combination therapy can include administering to the subject (e.g., a human patient) one or more additional agents that provide a therapeutic benefit to a subject who has, or is at risk of developing, an autoimmune or related diseases. In some embodiments, a fusion protein, or an antibody and the one or more additional active agents are administered at the same time. In other embodiments, the fusion protein, or antibody or antigen binding fragment thereof is administered first in time and the one or more additional active agents are administered second in time. In some embodiments, the one or more additional active agents are administered first in time and the fusion protein, or antibody or antigen binding fragment thereof is administered second in time.

[0335] A fusion protein, or an antibody or an antigenbinding fragment thereof described herein can replace or augment a previously or currently administered therapy. For example, upon treating with a fusion protein, or an antibody or antigen-binding fragment thereof, administration of the one or more additional active agents can cease or diminish, e.g., be administered at lower levels. In some embodiments, administration of the previous therapy can be maintained. In some embodiments, a previous therapy will be maintained until the level of the fusion protein, or the antibody reaches a level sufficient to provide a therapeutic effect. The two therapies can be administered in combination.

[0336] Monitoring a subject (e.g., a human patient) for an improvement in an autoimmune or related disease, as defined herein, means evaluating the subject for a change in a disease parameter, e.g., a reduction in inflammation. In some embodiments, the evaluation is performed at least one (1) hour, e.g., at least 2, 4, 6, 8, 12, 24, or 48 hours, or at least 1 day, 2 days, 4 days, 10 days, 13 days, 20 days or more, or at least 1 week, 2 weeks, 4 weeks, 10 weeks, 13 weeks, 20 weeks or more, after an administration. The subject can be evaluated in one or more of the following periods: prior to beginning of treatment; during the treatment; or after one or more elements of the treatment have been administered. Evaluation can include evaluating the need for further treatment, e.g., evaluating whether a dosage, frequency of administration, or duration of treatment should be altered. It can also include evaluating the need to add or drop a selected

therapeutic modality, e.g., adding or dropping any of the treatments for an autoimmune ore related disease described herein.

[0337] As ELR+ CXC chemokines are responsible for inducing neutrophil infiltration to sites of inflammation, in some embodiments a fusion protein or an antibody or an antigen-binding fragment thereof described herein, is administered to prevent or block neutrophil infiltration in a subject with an autoimmune disorder. In some embodiments, the fusion protein or antibody, or antigen-binding fragment thereof, prevents or blocks infiltration of neutrophils into the synovial fluid of arthritic joints. Methods of measuring neutrophil infiltration are known in the art. For example, bodily fluid from a subject (e.g., synovial fluid) is collected, cells are isolated and stained with a neutrophil cell marker (e.g., Ly6G), and assessed via flow cytometry. Exemplary methods are described in Mivabe, Y., Kim, N. D., Miyabe, C. & Luster, A. D. Studying Chemokine Control of Neutrophil Migration In Vivo in a Murine Model of Inflammatory Arthritis. Methods in enzymology 570, 207-231 (2016), herein incorporated by reference.

EXAMPLES

[0338] While the present disclosure has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the disclosure. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the disclosure.

Materials and Methods

Cloning of CXC Chemokines for Mammalian Cell Line Expression

[0339] Human and murine CXC chemokines undergo proteolysis in vivo resulting in molecules with altered structure and tuned activity. To avoid that in vitro engineered crossreactive binders might not be able to block the mature form in vivo, the final processed and active form of the protein was cloned and produced. The CXC chemokines were produced in mammalian cell lines thus avoiding refolding procedures while preserving their native structure and activity. CXCL chemokines were cloned as C-terminal fusion of the immunoglobulin fragment crystallizable (Fc) domain (^NFc-CXCL^C) and as N-terminal fusion of the murine serum albumin (SA) protein (^NCXCL-SA^C). All mammalian expression vectors were based on gWiz (Genlantis) containing an optimized human cytomegalovirus (CMV) promoter and a Kanamycin antibiotic resistance gene (Kan).

[0340] Constructs for expression of ^{*N*}Fc-CXCL^{*C*} fusion proteins were generated by using a modified Pfu DNA polymerase-mediated site-directed mutagenesis protocol (Geiser, M., Cebe, R., Drewello, D. & Schmitz, R. Integration of PCR fragments at any specific site within cloning vectors without the use of restriction enzymes and DNA ligase. *Biotechniques* 31, 88-90, 92 (2001)). PfuUltra II Fusion HS DNA Polymerase was obtained from Agilent Technologies, DpnI enzyme from New England BioLabs and the oligonucleotide primers from Integrated DNA Tech-

nologies. The synthetic DNA coding for the active form of three highly diverse human and murine ELR+ CXC chemokines were obtained from GeneArt Gene Synthesis (Thermo Fisher Scientific). Genes were codon-optimized for expression in mammalian cells. A sequence encoding for Gly-Gly dipeptide spacer (G2, ^NGG^C) followed by a 15 amino acid peptide sequence (AviTag) containing a defined lysine for site-specific biotinylation (^NGLNDIFEAQKIEWHE^C) were inserted at the C-terminus of the ELR+ CXC chemokine to obtain ^NCXCL-G2-AviTag^C synthetic genes. The AviTag sequence for enzymatically biotinylation was placed at the well tolerated C-terminus of the ELR+ CXC chemokines to (i) preserve unaltered the functional N-terminus region, (ii) avoid loss of epitope recognition and (iii) prevent additional structural heterogeneity that could be triggered by performing a chemistry-based amine-reactive succinimidyl esters based biotinylation. The de novo synthesized ^NCXCL-G2- $AviTag^{C}$ synthetic sequences were subsequently inserted into a previously modified gWiz expression vector containing a DNA sequence encoding for a secretory leader peptide sequence (N MRVPAQLLGLLLLWLPGARC C), a Fc domain derived from murine IgG2 heavy-chain constant regions CH2 and CH3, followed by a sequence encoding a hexa-histidine tag (His6; ^NHHHHHHC), an eight amino-acid flexible linker (^NSSGVDLGT^C) and a Tobacco Etch Virus proteolytic cleavage site (TEV; N ENLYFQ:A/V^C) to obtain the final ^NFc-His6-linker-TEV-CXCL-G2-AviTag^C fusion proteins (FIG. 1). The His6-tag was inserted between the Fc domain and the TEV cleavage site for further purification steps. The sequence TEV proteolytic cleavage site allowed for a precisely processed N-terminus of the chemokines that was crucial for their activity. All constructs were verified by DNA sequencing (Macrogen) and termed Fc-CXCL fusion proteins (see Table 1 for information about protein accession number SEQ ID NOs: 31-42 for DNA and amino acid sequences).

TABLE 1

CXCL protein (residues/ accession No.)	Construct for expression	Fusion protein
Groa/hCXCL1 (38-107/P09341) ENA-78/hCXCL5 (43-114/P42830) IL-8/hCXCL8 (29-99/P10145) KC/mCXCL1 (28-96/P12850) MIP-2/mCXCL2 (31-100/P10889) LIX/mCXCL5 (48-118/P50228)	$\begin{array}{l} gWiz-LS-Fc(mlgG2)-His_6-linker-TEV-\\ hCXCL1^{38-107}-G_2-AviTag\\ gWiz-LS-Fc(mlgG2)-His_6-linker-TEV-\\ hCXCL5^{43-114}-G_2-AviTag\\ gWiz-LS-Fc(mlgG2)-His_6-linker-TEV-\\ hCXCL8^{29-99}-G_2-AviTag\\ gWiz-LS-Fc(mlgG2)-His_6-linker-TEV-\\ mCXCL1^{28-96}-G_2-AviTag\\ gWiz-LS-Fc(mlgG2)-His_6-linker-TEV-\\ mCXCL2^{31-100}-G_2-AviTag\\ gWiz-LS-Fc(mlgG2)-His_6-linker-TEV-\\ mCXCL5^{48-118}-G_2-AviTag\\ gWiz-LS-Fc(mlgG2)-His_6-linker-TEV-\\ gWiz-LS-Fc(mlgG2)-His_6-linker-TEV-\\ mCXCL5^{48-118}-G_2-AviTag\\ gWiz-LS-Fc(mlgG2)-His_6-linker-TEV-\\ gWiz-LS-Fc(mlgG2)-Fc(m$	^N Fc- hCXCL1 ^C ^N Fc- hCXCL5 ^C ^N Fc- mCXCL2 ^C ^N Fc- mCXCL2 ^C ^N Fc- mCXCL2 ^C ^N Fc- mCXCL2 ^C

[0341] Constructs for expression of ^NCXCL-SA^C fusion proteins were generated by using DNA assembly methods such as Gibson Assembly (New England BioLabs) and In-Fusion Cloning (Clontech Laboratories, Takara Bio) technologies. PfuUltra II Fusion HS DNA Polymerase (Agilent Technologies) and Herculase II Fusion DNA Polymerase (Agilent Technologies) were used for the PCR amplification of the insert and the vector, respectively. DpnI enzyme was obtained from New England Biolabs and the oligonucleotide primers from Integrated DNA Technologies.

[0342] The synthetic DNA coding for the active protein form of twelve human and murine (ELR+) CXC chemokines and eight human and murine (ELR-) CXC chemokines were obtained from GeneArt Gene Synthesis (Thermo Fisher Scientific). Genes were codon-optimized for expression in mammalian cells. The de novo synthesized $^{N}CXCL^{C}$ synthetic sequences were subsequently inserted into a previously modified gWiz expression vector containing a DNA sequence encoding for a secretory leader sequence (^NMRVPAQLLGLLLWLPGARC^C), a ten amino-acid flexible linker (^NGGGGSGGGGS^C), sequence encoding for mouse serum albumin (SA) followed by a sequence encoding for a five amino-acid flexible spacer ($^{N}GGGGS^{C}$) and a hexa-histidine tag (His6; ^NHHHHHH^C) to obtain ^NCXCL- $(G_4G)_2$ -SA- G_4 S-His₆^C fusion proteins. The process of the leader sequence during the secretory pathway allows for a precisely cleaved N-terminus that is crucial for the activity of the chemokines. Genes encoding ^NCXCL(G₄G)₂-SA-G4S-His₆^C fusion proteins were further sub-cloned into a new gWiz expression vector via Sail-HF (New England BioLabs) and MauBI (Thermo Fisher Scientific) restriction enzymes. All constructs were verified by DNA sequencing (Macrogen) and termed ^NCXCL-SA^C fusion proteins (see Table 2 for information about protein accession number and SEQ ID NOs: 43-82 for DNA and amino-acid sequences).

TABLE 2

Expression and Purification of Fc Fusion Proteins

[0343] Fc fusion proteins N Fc-CXCL^C were expressed by transient transfection of suspension-adapted human embryonic kidney (HEK-293) cells. Protein production was performed either in house using FreeStyle 293 Expression System (Thermo Fisher Scientific) or outsourced to the Protein Expression Core Facility (PECF) of the Life Science Faculty of the EPFL, as described previously (Angelini, A. et al. Bicyclic peptide inhibitor reveals large contact interface with a protease target. ACS Chem Biol 7, 817-821 (2012); Angelini, A. et al. Chemical macrocyclization of peptides fused to antibody Fc fragments. Bioconjug Chem 23, 1856-1863 (2012); Zhu, E. F. et al. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2. Cancer Cell 27, 489-501 (2015)). At the end of the 7-day phase production, cells were harvested by centrifugation at 15,000×g for 30 minutes at 4° C. on an Avanti JXN-26 Centrifuge (Beckman Coulter). Any additional cell debris was removed from the medium by filtration through 0.22-µm PES membrane filters (Thermo Fisher Scientific) and the clarified medium diluted with 1/10 volume 10× PBS pH 7.4.

CXCL protein (residues/		Fusion
accession No.)	Construct for expression	protein
Groa/hCXCL1 (35-107/P09341)	gWiz-LS-hCXCL1 ³⁵⁻¹⁰⁷ -(Gly ₄ Ser) ₂ -mouse SA- (Gly ₄ Ser)-His ₆	N hCXCL1-SA C
Groß/hCXCL2 (35-107/P19875)	gWiz-LS-hCXCL2 ³⁵⁻¹⁰⁷ -(Gly ₄ Ser) ₂ -mouse SA- (Gly ₄ Ser)-His ₆	$^{N}\mathrm{hCXCL2}\text{-}\mathrm{SA}^{C}$
Groy/hCXCL3 (35-107/P19876)	gWiz-LS-hCXCL3 ³⁵⁻¹⁰⁷ -(Gly ₄ Ser) ₂ -mouse SA- (Gly ₄ Ser)-His ₆	$^{N}hCXCL3-SA^{C}$
PF-4/hCXCL4 (32-101/P02776)	gWiz-LS-hCXCL4 ³²⁻¹⁰¹ -(Gly ₄ Ser) ₂ -mouse SA- (Gly ₄ Ser)-His ₆	N hCXCL4-SA C
ENA-78/hCXCL5 (44-114/ P42830)	gWiz-LS-hCXCL5 ⁴⁴⁻¹¹⁴ -(Gly ₄ Ser) ₂ -mouse SA- (Gly ₄ Ser)-His ₆	N hCXCL5-SA C
GCP-2/hCXCL6 (43-114/P80162)	gWiz-LS-hCXCL6 ⁴³⁻¹¹⁴ -(Gly ₄ Ser) ₂ -mouse SA- (Gly ₄ Ser)-His ₆	N hCXCL6-SA C
NAP-2/hCXCL7 (59-121/P02775)	gWiz-LS-hCXCL7 ⁵⁹⁻¹²¹ -(Gly ₄ Ser) ₂ -mouse SA- (Gly ₄ Ser)-His ₆	N hCXCL7-SA C
IL-8/hCXCL8 (28-99/P10145)	gWiz-LS-hCXCL8 ²⁸⁻⁹⁹ -(Gly ₄ Ser) ₂ -mouse SA- (Gly ₄ Ser)-His ₆	N hCXCL8-SA C
MIG/hCXCL9 (23-125/Q07325)	gWiz-LS-hCXCL9 ²³⁻¹²⁵ -(Gly ₄ Ser) ₂ -mouse SA- (Gly ₄ Ser)-His ₆	N hCXCL9-SA C
IP-10/hCXCL10-SA (22-98/	gWiz-LS-hCXCL10 ²²⁻⁹⁸ -(Gly ₄ Ser) ₂ -mouse SA-	NhCXCL10-
P02778)	(Gly ₄ Ser)-His ₆	SA^{C}
I-TAC/hCXCL11-SA (22-94/	gWiz-LS-hCXCL11 ²²⁻⁹⁴ -(Gly ₄ Ser) ₂ -mouse SA-	^N hCXCL11-
O14625)	(Gly ₄ Ser)-His ₆	SA^C
KC/mCXCL1-SA (25-96/P12850)	gWiz-LS-mCXCL1 ²⁵⁻⁹⁶ -(Gly ₄ Ser) ₂ -mouse SA-(Gly ₄ Ser)-His ₆	^N mCXCL1- SA ^C
MIP-2/mCXCL2-SA (28-100/ P10889)	gWiz-LS-mCXCL2 ²⁸⁻¹⁰⁰ -(Gly ₄ Ser) ₂ -mouse SA-(Gly ₄ Ser)-His ₆	^N mCXCL2- SA ^C
DCIP-1/mCXCL3-SA (28-100/ Q6W5C0)	gWiz-LS-mCXCL3 ²⁸⁻¹⁰⁰ -(Gly ₄ Ser) ₂ -mouse SA-(Gly ₄ Ser)-His ₆	^N mCXCL3- SA ^C
Pf-4/mCXCL4-SA (30-105/ Q9Z126)	gWiz-LS-mCXCL4 ³⁰⁻¹⁰⁵ -(Gly ₄ Ser) ₂ -mouse SA-(Gly ₄ Ser)-His ₆	^N mCXCL4- SA ^C
LIX/mCXCL5-SA (48-118/ P50228)	gWiz-LS-mCXCL5 ⁴⁸⁻¹¹⁸ -(Gly ₄ Ser) ₂ -mouse SA-(Gly ₄ Ser)-His ₆	^N mCXCL5- SA ^C
Nap-2/mCXCL7-SA (48-113/ Q9EQI5)	gWiz-LS-mCXCL7 ⁴⁸⁻¹¹³ -(Gly ₄ Ser) ₂ -mouse SA-(Gly ₄ Ser)-His ₆	^N mCXCL7- SA ^C
Mig/mCXCL9-SA (22-126/ Pl8340)	gWiz-LS-mCXCL9 ²²⁻¹²⁶ -(Gly ₄ Ser) ₂ -mouse SA-(Gly ₄ Ser)-His ₆	^N mCXCL9- SA ^C
Ip-10/mCXCL10-SA (22-98/ P17515)	$gWiz-LS-mCXCL10^{22-98}-(Gly_4Ser)_2$ -mouse SA-(Gly_4Ser)-His ₆	^N mCXCL10- SA ^C
I-Tac/mCXCL11-SA (22-100/ Q9JHH5)	gWiz-LS-mCXCL11 ²²⁻¹⁰⁰ -(Gly ₄ Ser) ₂ -mouse SA- (Gly ₄ Ser)-His ₆	^N mCXCL11- SA ^C

[0344] Recombinant Fc fusions were captured on a rProtein A Sepharose Fast Flow resin (GE Healthcare), packed on a glass Econo-Column Chromatography column (Bio-Rad), that was previously equilibrated with 10 column volumes (CVs) of 1×PBS pH 7.4. The filter culture media was passed through the resin at a flow rate of approximately 2.5 mL/min at room temperature. The resin was then extensively washed with 10 CVs of 1×PBS pH 7.4 and the recombinant Fc fusions eluted in a single peak by applying 10 CVs of elution Buffer E (50 mM Glycine-HCl, pH 2.7). 2 CVs of neutralizing Buffer N (1 M Tris-HCl pH 8.5) were then immediately added to the eluted Fc fusion proteins to prevent protein denaturation. Eluted Fc fusions were diluted twice with 1×PBS pH 7.4 and concentrated by using 10000 NMWL Amicon Ultra-15 ultrafiltration devices (Millipore) at 4000× g and 4° C. on a Allegra X14R centrifuge (Beckman Coulter). The concentrated Fc fusion proteins were further subjected to size-exclusion chromatography (SEC) by using a Hiprep 26/10 desalting column (GE Healthcare) connected to an AKTApurifier system (GE Healthcare) equilibrated with Buffer T (50 mM Tris-HCl, 100 mM NaCl, 0.5 mM EDTA, pH 8.0). Purified Fc fusion proteins ^NFc- $CXCL^{C}$ in Buffer T were further concentrated to 2 mg/mL by using 10000 NMWL Amicon Ultra-15 ultrafiltration devices (Millipore) at 4000×g and 4° C. on a Allegra X-14R centrifuge (Beckman Coulter) and cleaved by using recombinant TEV protease (0.5 mg/mL). Fc fusion:TEV at a molar ratio of 100:1 were incubated at 4° C. for up to 24 hours in a cleavage Buffer T supplemented with a 10:1 ratio of reduced (GSH) to oxidized (GSSG) L-glutathione (50 mM Tris-HCl, 100 mM NaCl, 0.5 mM EDTA, 3 mM GSH, 0.3 mM GSSG, pH 8.0) and complete protease inhibitor cocktail (Roche).

[0345] The further separation of matured cleaved CXC chemokines from the (i) Fc domain, (ii) un-cleaved Fc-CXCL fusion and (iii) recombinant TEV-His6 protease was performed by loading the cleavage mixture on a Ni Sepharose excel affinity resin (GE Healthcare), packed on a glass Econo-Column Chromatography column (Bio-Rad), that was previously equilibrated with 10 CVs of Buffer X (50 mM sodium phosphate, 500 M NaCl, pH 8.0). The mixture was passed through the resin at a flow rate of approximately 1 mL/min at room temperature and the flow-through containing cleaved ^NCXCL-G2-AviTag^C proteins collected. The purified ^NCXCL-G2-AviTag^C proteins were further concentrated by using a 3000 NMWL Amicon Ultra-15 ultrafiltration devices (Millipore) at 4000x g and 4° C. on a Allegra X-14R centrifuge (Beckman Coulter) and subjected to SEC by using a HiLoad 16/600 Superdex 75 prep-grade column (GE Healthcare) equilibrated with biotinylation Buffer R (50 mM Bicine, pH 8.3) on an AKTApurifier system (GE Healthcare). Purified ^NCXCL-G2-AviTag^C proteins in Buffer R were then concentrated to approximately 100 µM by using 3000 NMWL Amicon Ultra-4 ultrafiltration devices (Millipore) at 4000× g and 4° C. on a Allegra X-14R centrifuge (Beckman Coulter).

[0346] Biotinylation of ^{*N*}CXCL-G2-AviTag^{*C*} proteins was performed by using BirA enzyme (Avidity) according to manufacturer's guidelines. Briefly, enzymatic reaction included 50 nmol ^{*N*}CXCL-G2-AviTag^{*C*} protein in Buffer R, 12 μ g of recombinant BirA enzyme (3 mg/mL; Avidity), 50 μ M d-biotin, 10 mM ATP pH 7.2 and 10 mM MgOAc for a total volume of 1 mL. To ensure complete biotinylation, the reaction was incubated at 4° C. for 48 hours with gentle

shacking and jumped started every 12 hours by adding $50 \,\mu\text{L}$ of Biomix-A (500 mM Bicine, pH 8.3; Avidity) and $50 \,\mu\text{L}$ of Biomix-B (100 mM ATP, 100 mM MgOAc, 500 μM d-biotin; Avidity) to the reaction mix. These conditions were sufficient for complete quantitative reaction yielding one product with expected molecular mass (Δ mass=226 Da).

[0347] Biotinylated ^NCXCL-G2-AviTag^C proteins were further purified by using either reversed-phase high performance liquid chromatography (RP-HPLC) or SEC. RP-HPLC was performed on a Vydac C18 column (Grace & Co.) connected to a Waters HPLC system (Waters). A flow rate of 1 mL/min and a linear gradient was applied with a mobile phase composed of eluant A (99.9% v/v H2O and 0.1% v/v TFA) and eluant B (99.9% v/v ACN and 0.1% v/v TFA). This step efficiently removed unbound small molecules such as free biotin and ATP along with the BirA enzyme. Purified and biotinylated ^NCXCL-G2-AviTag^C proteins were lyophilized, dissolved in 1×PBS pH 7.4 to a final protein concentration of approximately 100 µM, flash frozen in liquid nitrogen and stored at -80° C. Alternatively, biotinylated ^NCXCL-G2-AviTag^C proteins were purified by SEC using a Superdex 75 10/300 GL column (GE Healthcare) equilibrated with 1×PBS pH 7.4 and connected to an AKTApurifier system (GE Healthcare).

[0348] The final purified and biotinylated proteins were further concentrated by using 3000 NMWL Amicon Ultra-0.5 centrifugal filter units (Millipore) at 14000× g and 4° C. on a Eppendorf 5702R centrifuge (Eppendorf) to a final protein concentration of approximately 100 µM, flash frozen in liquid nitrogen and stored at -80° C. After purification, the yield of pure and biotinylated ^NCXCL-G2-AviTag^C proteins ranged from 1 to 5 mg/L of culture. Molecular weights were confirmed by reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using NuPAGE 4-12% Bis-Tris Gels (Thermo Fisher Scientific) in 2-(N-morpholino)ethanesulfonic acid (MES) buffer followed by SimplyBlue SafeStain (Thermo Fisher Scientific) and imaged on the Typhoon Trio imager (GE Healthcare). Biotinylated ^NCXCL-G2-AviTag^C proteins migrated a single band in SDS-PAGE, with apparent molecular masses of about 8-10 kDa.

Mass Spectrometric Analysis

[0349] The molecular mass of each ELR+ CXC chemokine before and after biotinylation was determined with electrospray ionization mass spectrometry (ESI-MS) performed on a quadrupole time-of-flight mass spectrometer (Q-TOF) coupled to a C^3 or C^8 reversed phase HPLC column for desalting of protein samples. Both LC-MS Agilent 6520 ESI-Q-TOF (Agilent Technologies) and Waters LCT ESI-Q-TOF (Waters) systems, operated in a positive ionization mode, were used. Data were acquired, processed, and analyzed using the Agilent MassHunter (Agilent Technologies) or the MassLynx (Waters) software package. Mass spectrometry (i) confirmed the corrected mass of the purified biotinylated chemokines and (ii) showed that no un-biotinylated protein remains in the final sample.

Selection of Crossreactive Binders from a Naïve Library of Synthetic scFv Displayed on the Surface of Yeast

[0350] Crossreactive protein binders to human and murine ELR+ CXC chemokines based on the synthetic antibody single-chain variable fragment scaffold (scFv) were isolated using standard yeast surface display technology as previ-

ously described (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. *Methods Mol Biol* 1319, 3-36 (2015)). The yeast-displayed synthetic antibody naïve library "G" was constructed using homologous recombination-based methods as previously described (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. *Methods Mol Biol* 1319, 3-36 (2015); Van Deventer, J. A., Kelly, R. L., Rajan, S., Wittrup, K. D. & Sidhu, S. S. A switchable yeast display/secretion system. *Protein Eng Des Sel* 28, 317-325 (2015)). The library was constructed to display the synthetic scFv variants on the surface of yeast as C-terminal fusion of the a-agglutinin Aga2 protein ($_{N}CXCL$ -Aga2p^C).

[0351] Yeast surface display vectors were based on pCT-CON backbone and included a secretory leader sequence (^NMQLLRCFSIFSVIASVLA^C), a sequence encoding for the Aga2p protein, a sequence encoding for the influenza hemagglutinin epitope tag (HA; ^NYPYDVPDYA^C), a fifteen amino-acid flexible linker (^NGGGGSGGGGGGGGGGGGGC^C), a sequence encoding for the synthetic scFv in the light (V_L) to heavy (V_H) chain orientation, separated by another fifteen amino-acid flexible linker (^NGTTAASGSSGGSSSGA^C). A sequence encoding for c-myc epitope tag (c-myc; ^NEQKLI-SEEDLQ^C) was inserted at the C-terminus of the gene encoding the scFv to obtain^NAga2p-HA-(G₄S)3-V_L-linker-V_H⁻c-myc^C fusion proteins.

[0352] Yeast display selection was performed by using an amount of yeast cells at least ten-fold larger than (i) the initial estimated naïve library size (1×109 unique clones) or (ii) the number of cells isolated from the previous round of either magnetic bead screening or flow cytometry sorting. The yeast cells display naïve library were grown in SD-CAA medium at 30° C. with shacking (250 rpm) and surface protein expression induced in galactose-containing SG-CAA media for 20 hours at 20° C. with shacking (250 rpm) as previously described (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. Methods Mol Biol 1319, 3-36 (2015)). Before positive selection, yeast populations (1×10^{10}) underwent three sequential cycles of "negative" selection using uncoated Dynabeads biotin binder magnetic beads (Thermo Fisher Scientific). Ten-fold diversity library depleted of streptavidin-coated beads binders was screened against highly diverse human (hCXCL1, hCXCL5 and hCXCL8) and murine (mCXCL1, mCXCL1 and mCXCL5) biotinylated ELR+ CXC chemokines captured on magnetic beads. Two iterative cycles of magnetic bead selections followed by four cycles of fluorescence-activated cell sorting (FACS) were applied (FIG. 2B).

[0353] Complex positive selection schemes, in which tenfold of the cell output isolated from a pathway was incubated with a diverse ELR+ CXC chemokine target in the following pathway, were performed to force crossreactivity and thus enhance the probabilities of isolating crossreactive protein binders. Each cycle comprised growth of yeast cells, expression of the synthetic antibodies on the surface, binding to the immobilized CXC ELR+ chemokine ligands, washing and expansion of the isolated bound yeast cells as previously described (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. *Methods Mol* Biol 1319, 3-36 (2015)). Cells were washed using ice-cold PBSA buffer (1× PBS pH 7.4 supplemented with 0.1% w/v bovine serum albumin fraction V). For FACS, highly crossreactive protein binders were selected using a two-color labeling scheme based on fluorescent-conjugated detection reagents for expression (anti-c-myc epitope tag) and binding to ELR+ CXC chemokine (anti-biotin) at recommended dilutions. Notably, highly avidity magnetic and fluorescently labeled reagents (e.g. streptavidin and neutravidin) saturated with diverse biotinylated ELR+ CXC chemokines were used during the all the six selection cycles.

[0354] The use of highly avid reagents increased the likelihood of isolating crossreactive low affinity binders from the naïve library by exploiting the multivalent interaction between yeast cells and the preloaded target. Sorting was performed on BD FACSAria I and III sorter instruments (BD Biosciences) and data evaluated using FlowJo v.10.0.7 software (Tree Star). After six cycles of iterative selections, DNA plasmid was extracted from isolated yeast cells using Zymoprep Yeast Plasmid Miniprep II Kit (Zymo Research). Extracted DNA plasmids were further amplified in Escherichia coli, purified and used (i) to reveal the amino acid sequence of each selected protein binder by DNA sequencing (Macrogen), (ii) to transform new yeast cells to determine the binding affinity of single protein binder using yeast cell surface titrations, and (iii) as template to prepare mutagenized DNA for further library generation and co-evolution of both binding affinity and crossreactivity, as described below.

Single Antibody Clone Binding Affinity Characterization Using Yeast Surface Titrations

[0355] The equilibrium dissociation constant (K_D) of each individual selected protein binder towards single CXC chemokines was determined by using yeast surface display titrations as described previously (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. Methods Mol Biol 1319, 3-36 (2015)). Yeast surface display combined to flow cytometry allowed measurement of K_D directly on the surface of yeast cells without the need for additional sub-cloning, expression and purification steps that were instead necessary to characterize protein binders clones isolated using alternative display technologies (VanAntwerp, J. J. & Wittrup, K. D. Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16, 31-37 (2000)). Importantly, the K_D values measured using such method have been shown to be consistent with values obtained using alternative techniques for examining binding affinities such as Surface Plasmon Resonance (SPR), Bio-Layer Interferometry (BLI) and Kinetic Exclusion Assay (KinExA flow fluorimeter) (Razai, A. et al. Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J Mol Biol 351, 158-169 (2005); Traxlmayr, M. W. et al. Strong Enrichment of Aromatic Residues in Binding Sites from a Charge-Neutralized Hyperthermostable Sso7d Scaffold Library. J Biol Chem (2016)).

[0356] In brief, DNA plasmids encoding single protein binder clones were transformed into genetically modified *Saccharomyces cerevisiae* yeast cells (EBY100 strain) using Frozen-EZ Yeast Transformation II Kit (Zymo Research) and plated on selective SD-CAA solid agar media. Individual colonies were inoculated in 5 mL SD-SCAA cultures, grown to mid-log phase (0D600=2-5) in SD-CAA media at 30° C. with shacking (250 rpm). Cells were induced in galactose-containing SG-CAA media for 20 hours at 20° C. with shacking (250 rpm) as previously described (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. Methods Mol Biol 1319, 3-36 (2015)). The binding assays were conducted in 96-well plates (Corning) containing 1×10^4 induced cells per well. Non-displaying yeast cells (1×10^5) were added to each well and mixed to induced cells to ensure (i) proper cell pelleting and (ii) an excess of soluble CXC chemokine target over total number of yeast displayed protein binders (5×10⁴ copies of protein/ yeast cell) in solution (Hackel, B. J., Kapila, A. & Wittrup, K. D. Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. Journal of molecular biology 381, 1238-1252 (2008)). Yeast cells displaying protein binders were incubated with varying concentration of soluble CXC chemokine fusions (^NCXCL-SA^S) bearing the His6 tag and the primary chicken anti-c-myc epitope tag (1:1000) antibody (Gallus Immunotech) overnight at 4° C. with shaking (150 rpm). Twelve to sixteen different concentrations of pure ^NCXCL- SA^{C} fusion proteins, ranging from 10 pM to 10 μ M, were applied spanning a range of concentrations ten times both above and below the expected K_D value. After primary incubation, cells were pelleted (2500× g for 5 min at 4° C.) and washed twice with 200 µL ice-cold PBSA buffer. Secondary labeling was performed with goat anti-chicken and mouse anti-His6 epitope tag antibodies conjugated to Alexa Fluor dyes at recommended dilutions.

[0357] The 96-well plates were run on a high-throughput plate sampler iQue Screener (IntelliCyt) or individually analyzed on an Accuri C6 Flow Cytometer (BD Accuri Cytometers). Data were evaluated using FlowJo v.10.0.7 software (Tree Star). To ensure that the differences in binding were not due to variations of number of proteins expressed on the surface of yeast cell, the median fluorescence intensity (MFI_{*DISP*}) from binding signal (His6 tag) was normalized to the median fluorescence intensity (MFI_{*DISP*}) from display signal (c-myc tag). The normalized (binding/display=MFI_{*BIND*/MFI_{*DISP*}) median fluorescence intensity as a function of CXC chemokine concentration was used to determine the K_D values for all clones of interest. Values reported here are the results of three independent experiments and are presented as mean (dots)±SE (bars).}

Co-Evolution of Protein Binding Affinity and Crossreactivity by Yeast Surface Display

[0358] Two series of random mutagenesis and FACSbased selections (namely I and II) were applied to improve both the binding affinity and crossreactivity of three crossreactive clones: CK1, CK2 and CK4. Random mutagenesis libraries were generated by error-prone PCR as previously described (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. Methods Mol Biol 1319, 3-36 (2015)). To ensure a mutagenesis rate of approximately 1-2 amino acid mutated residues distributed randomly throughout the entire gene, 1 ng of DNA template encoding the CK1, CK2 and CK4 binders were PCR amplified for 15 cycles using Taq DNA polymerase (New England BioLabs), analogue nucleotides (2 µM 8-oxo-dGTP and 2 µM dPTP) and flanking oligonucleotide primers (forward: 5'-GGAGGCGGTAGCGGAGGCG-

5'-GTCCTCTTCAGAAATAAGCTTTTGTTCGGAT-3'; Integrated DNA Technologies).

reverse:

[0359] The mutagenized PCR products were further purified, re-amplified for additional 30 cycles in the absence of analogue nucleotides and combined with SalI-HF, NheI-HF

and BamHI-HI (New England BioLabs) digested pCT-CON vector at a molar ratio of 2.5:1. Pre-mixed DNA linearized vector and PCR insert (1 µm/µL) was electroporated into freshly prepared Saccharomyces cerevisiae EBY100 competent cells, where the full constructs are reassembled via homologous recombination (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. Methods Mol Biol 1319, 3-36 (2015)). Transformed cultures were recovered and expanded in SD-SCAA. Small portions of transformed cells were serially diluted and titrated on SD-SCAA plates to confirm the final reported library sizes (Table 3). Library quality and diversity was further assessed by sequencing twenty colonies of each library. All clones sequenced from the mutagenized libraries were found to be in the expected format. The yeast cells display mutagenized libraries were grown in SD-CAA medium at 30° C. with shacking (250 rpm) and surface protein expression induced in galactose-containing SG-CAA media for 20 hours at 20° C. with shacking (250 rpm) as previously described (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. Methods Mol Biol 1319, 3-36 (2015)).

TABLE 3

Library name	Template	Library size
CK1-lib I	CK1	1.0×10^{8}
CK2-lib I	CK2	2.0×10^{8}
CK4-lib I	CK4	8.0×10^{7}
CK1-lib II	CK19	3.0×10^{8}
CK2-lib II	CK41	5.0×10^{8}
CK4-lib II	CK50	4.0×10^{8}

[0360] An amount of yeast cells at least ten-fold larger than the estimated mutagenized libraries size were screened against human (hCXCL1, hCXCL5 and hCXCL8) and murine (hCXCL1, hCXCL2 and hCXCL5) biotinylated ELR+ CXC chemokines using equilibrium-based selection strategies. Six sequential cycles of FACS were applied. Each cycle comprised growth of yeast cells, expression of the binders on the surface, binding to the immobilized CXC ELR+ chemokine ligands, washing and expansion of the isolated bound yeast cells as previously described (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. Methods Mol Biol 1319, 3-36 (2015)). Complex selection schemes, in which ten-fold of the cell output isolated from a pathway was incubated with a diverse ELR+ CXC chemokine target in the following pathway, were performed to force crossreactivity and thus enhance the probabilities of isolating crossreactive protein binders. Decreasing concentrations [C] of biotinylated CXC ELR+ chemokines up to ten-fold below the measured K_D were used for each round of selection ([C]= $0.1 \times K_D$) in order to select for crossreactive clones with improved affinity. Secondary fluorescent-conjugated detection reagents for FACS were constantly alternated to avoid enrichments of clones that could bind to them. Sorting was performed on BD FACSAria I and III sorter instruments (BD Biosciences) and data evaluated using FlowJo v.10.0.7 software (Tree Star). After six cycles of iterative selections, DNA plasmid was extracted from isolated yeast cells and used for further DNA sequencing and single clone characterization as described above.

GAGGGTCGGCTAGC-3';

Combination of Individual Mutations by Site-Directed Mutagenesis

[0361] Individual mutations from different protein binders were combined to further enhance affinity and specificity. A third step of site directed mutagenesis (namely III) was applied to combine mutations derived from different CK1 and CK2 lineage-derived clones. Site-directed mutagenesis was performed by whole plasmid PCR using QuikChange site directed mutagenesis kit (Agilent Technologies) and pairs of complementary primers carrying single point mutations (Integrated DNA Technologies). The DNA sequences encoding CK63, CK66 and CK72 (CK1 lineage) and CK108, CK111 and CK119 (CK2 lineage) were used as templates to generate fifteen (CK131-CK145) and thirteen (CK146-CK158) variants, respectively, each including different combinations of CDR and FWR mutations. All constructs were verified by DNA sequencing (Macrogen).

[0362] Single mutants were displayed on the surface of *Saccharomyces cerevisiae* strain EBY100 using Frozen-EZ Yeast Transformation II Kit (Zymo Research) and plated on selective SD-CAA solid agar media. Individual colonies were inoculated in 5 mL SD-SCAA cultures, grown to mid-log phase (0D600=2-5) in SD-CAA media at 30° C. with shacking (250 rpm). Cells were induced in galactose-containing SG-CAA media for 20 hours at 20° C. with shacking (250 rpm) as previously described (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. *Methods Mol* Biol 1319, 3-36 (2015)). The equilibrium dissociation constant (K_D) of each individual clone towards single CXC chemokines was determined by using yeast surface display titrations combined to flow cytometry as described above.

Cloning of Selected Synthetic scFv Fused to Mouse Serum Albumin Protein for Mammalian Cell Line Expression [0363] Selected crossreactive synthetic single light (V_L)

and heavy (V_H) chain antibody variable fragments (scFv) were cloned and expressed in mammalian cells as C-terminal fusion of the murine serum albumin (SA) protein (^NSA $scFv^{C}$). Mammalian expression vectors were based on gWiz (Genlantis). Constructs for expression of N SA-scFv^C fusion proteins were generated by using DNA assembly methods such as Gibson Assembly (New England BioLabs) or In-Fusion Cloning (Clontech Laboratories, Takara Bio) technologies. PfuUltra II Fusion HS DNA Polymerase (Agilent Technologies) and Herculase II Fusion DNA Polymerase (Agilent Technologies) were used for the PCR amplification of the insert and the vector, respectively. DpnI enzyme was obtained from New England Biolabs and oligonucleotide primers from Integrated DNA Technologies. The DNA sequences encoding the scFv (V_L - V_H orientation) CK129, CK138 and CK157 as well as separate V_L and V_H domains of CK157 were amplified in a PCR reaction by using the pCT-CON vector as template and following inserted into a previously modified gWiz expression vector containing a DNA sequence encoding for a secretory leader peptide sequence (^NMDMRVPAQLLGLLLLWLPGARC^C) followed by a sequence encoding the mouse serum albumin а fifteen amino-acid flexible (SA). linker (N GGGGSGGGGGGGGGGGGC). A sequence encoding for a five amino-acid flexible linker (^NGGGGS^C) followed by a hexa-histidine tag (His6; ^NHHHHHHC) was inserted at the C-terminus of the gene encoding the scFv to obtain the final N SA-(G₄S)₃-scFv-G₄S-His6^{*C*}, $^{-N}$ SA-(G₄S)₃V_{*L*}-G₄S-His6^{*C*} and ${}^{N}SA(G_{4}S)_{3}-V_{H}-His_{6}{}^{C}$ fusion proteins (FIG. 6). In a similar fashion, the control scFv (V_H-V_L orientation) targeting the human carcinoembryonic antigen (CEA) (Graff, C. P., Chester, K., Begent, R. & Wittrup, K. D. Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37 degrees C. Protein Eng Des Sel 17, 293-304 (2004)) was fused at the C-terminus of mouse serum albumin. The stability of the each scFv was further improved by connecting the V_L and V_H domains via an intermolecular disulfide bond (ds). The addition of stabilizing intermolecular disulfide bridges is reported to increase the percent of monomeric forms by permanently fixing monomer:dimer ratios during the purification steps. Two of the most favorable locations were selected for the introduction of pairs of cysteine residues into each single scFv (dsl: VL100 and VH44; ds2: VL43 and VH105; Kabat numbering system) (Reiter, Y. et al. Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry 33, 5451-5459 (1994); Jung, S. H., Pastan, I. & Lee, B. Design of interchain disulfide bonds in the framework region of the Fv fragment of the monoclonal antibody B3. Proteins 19, 35-47 (1994); Weatherill, E. E. et al. Towards a universal disulphide stabilised single chain Fv format: importance of interchain disulphide bond location and vL-vH orientation. Protein Eng Des Sel 25, 321-329 (2012); Kabat, E. A., Wu, T. T., Perry, H., Gottesman, K. and Foeller, C. Sequences of Proteins of Immunological Interest, Edn. Fifth Edition. (1991)) and their relative effects on expression, percent monomer formation and retention of antigen binding compared. Cysteine residues were introduced into each scFv by site-directed mutagenesis using DNA assembly methods such as Gibson-Assembly (New England BioLabs) or In-Fusion Cloning (Clontech Laboratories, Takara Bio) technologies and standard oligonucleotide primers carrying single point mutations (Integrated DNA Technologies). Final genes encoding ^NSA-(G₄S)₃scFv-G₄S-His6^{*C*}, ^{*N*}SA-(G₄S)₃-scFv-ds1-G₄S-His6^{*C*}, ^{*N*}SA-(G₄S)₃-scFv-ds2-G₄S-His6^{*C*}, ^{*N*}SA-(G₄S)₃-scFv-ds2-G₄S-His6^{*C*}, ^{*N*}SA(G₄S)₃-V_{*L*}-G₄S-His6^{*C*} and ^{*N*}SA-(G₄S)₃-V_{*L*}-G₄S-His6^{*C*} fusion proteins were further subcloned into a new gWiz expression vector via NotI-HF and XbaI (New England BioLabs) restriction enzymes. All constructs were verified by DNA sequencing (Macrogen, Cambridge, Mass.) and termed ^NCXCL-SA^C fusion proteins (see Table 4 for information about protein accession number and SEQ ID NOs: 83-106 for DNA and amino-acid sequences). The serum albumin-antibody fusion formats were used for all in vitro and in vivo studies.

TABLE 4

Fusion protein (code name)	Construct for expression
^N SA-CK138 ^C (SA138) ^N SA-CK157 ^C (SA157)	gWiz-LS-mouse SA-(Gly ₄ Ser) ₃ -scFv (V _L -V _H) CK138-(Gly ₄ Ser)-His ₆ gWiz-LS-mouse SA-(Gly ₄ Ser) ₃ -scFv (V _L -V _H) CK157-(Gly ₄ Ser)-His ₆

Fusion protein (code name)	Construct for expression
^N SA-CK129 ^C (SA129) ^N SA-CK138-ds1 ^C (SA138- ds1) ^N SA-CK138-ds2 ^C (SA138- ds2) ^N SA-CK157-ds1 ^C (SA157- ds1) ^N SA-CK157-ds2 ^C (SA157- ds2) ^N SA-CK157-VL ^C (SA157- VL) ^N SA-CK157-VL ^C (SA157- VL)	gWiz-LS-mouse SA-(Gly ₄ Ser) ₃ -scFv (V _L -V _H) CK129-(Gly ₄ Ser)-His ₆ gWiz-LS-mouse SA-(Gly ₄ Ser) ₃ -scFv (V _L -V _H) CK138-ds1 (V _L 100 ^{Q>C} / V _H 44 ^{G>C})-(Gly ₄ Ser)-His ₆ gWiz-LS-mouse SA-(Gly ₄ Ser) ₃ -scFv (V _L -V _H) CK138-ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})-(Gly ₄ Ser)-His ₆ gWiz-LS-mouse SA-(Gly ₄ Ser) ₃ -scFv (V _L -V _H) CK157-ds1 (V _L 100 ^{Q>C} / V _H 44 ^{E>C})-(Gly ₄ Ser)-His ₆ gWiz-LS-mouse SA-(Gly ₄ Ser) ₃ -scFv (V _L -V _H) CK157-ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})-(Gly ₄ Ser)-His ₆ gWiz-LS-mouse SA-(Gly ₄ Ser)-V _L CK157-HiS ₆
^N SA-CK157-VH ^C (SA157- VH) ^N SA-CK129-ds1 ^C (SA129- ds1) ^N SA-CK129-ds2 ^C (SA129- ds2) ^N SA-sm3e-ds ^C (SActr)	$\begin{array}{l} \label{eq:gwiz-LS-mouse SA-(Gly_4Ser)-V_H CK157-HiS_6} \\ \mbox{gwiz-LS-mouse SA-(Gly_4Ser)_3-scFv} \ (V_L-V_H) \ CK129-ds1 \ (V_L100^{Q>C/} V_H44^{Q>C})-(Gly_4Ser)-His_6} \\ \mbox{gwiz-LS-mouse SA-(Gly_4Ser)_3-scFv} \ (V_L-V_H) \ CK129-ds2 \ (V_L43^{A>C/} V_H105^{Q>C})-(Gly_4Ser)-His_6} \\ \mbox{gwiz-LS-mouse SA-(Gly_4Ser)_3-scFv} \ (V_H V_L) \ \mbox{sm3E-ds} \ (V_H44^{R>C/} V_L100^{Q>C})-(Gly_4Ser)-His_6} \\ \mbox{gwiz-LS-mouse SA-(Gly_4Ser)-His_6} \\ \mbox{gwiz-LS-mouse SA-(Gly_4Ser)-His_6} \\ \mbox{Wiz-LS-mouse SA-(Gly_4Ser)-His_6} \\ \mbox{gwiz-LS-mouse SA-(Gly_4Ser)-His_6} \\ gwiz-LS-mouse SA-(Gly_4Ser)-His_6$

Expression and Purification of Serum Albumin Fusion Proteins

[0364] Serum albumin (SA) fusion proteins ^NCXCL-SA^C and ^{N}SA -scFv^C were expressed by transient transfection of suspension-adapted human embryonic kidney (HEK-293) cells. Protein production was performed either in house using FreeStyle 293 Expression System (Thermo Fisher Scientific) or outsourced to the Protein Expression Core Facility (PECF) of the Life Science Faculty of the EPFL, as described previously (Angelini, A. et al. Bicyclic peptide inhibitor reveals large contact interface with a protease target. ACS Chem Biol 7, 817-821 (2012); Angelini, A. et al. Chemical macrocyclization of peptides fused to antibody Fc fragments. Bioconjug Chem 23, 1856-1863 (2012); Zhu, E. F. et al. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2. Cancer Cell 27, 489-501 (2015)). At the end of the 7-day phase production, cells were harvested by centrifugation at 15,000×g for 30 minutes at 4° C. on an Avanti JXN-26 Centrifuge (Beckman Coulter). Any additional cell debris was removed from the medium by filtration through 0.22-um PES membrane filters (Thermo Fisher Scientific) and the clarified medium diluted with 1/10 volume Buffer A (500 mM sodium phosphate, 5 M NaCl, pH 8.0). Recombinant SA fusions were captured on a Ni Sepharose excel affinity resin (GE Healthcare), packed on a glass Econo-Column chromatography column (Bio-Rad), that was previously equilibrated with 10 CVs of Buffer B (50 mM sodium phosphate, 500 M NaCl, pH 8.0). The medium was passed through the resin at a flow rate of approximately 2.5 mL/min at room temperature. The resin was then extensively washed with 10 CVs of Buffer B and the recombinant SA fusions eluted in a single peak by applying 10 CVs of Buffer C (50 mM sodium phosphate, 500 M NaCl, 500 mM Imidazole, pH 8.0). Eluted SA fusions were following diluted with 10 CVs of Buffer B and concentrated by using 10000 NMWL Amicon Ultra-15 ultrafiltration devices (Millipore) at 4000× g and 4° C. on a Allegra X-14R centrifuge (Beckman Coulter). The concentrated SA fusion proteins were further purified by size exclusion chromatography using a HiLoad 16/600 Superdex 200 prep-grade column (GE Healthcare) equilibrated with 1×PBS pH 7.4 on an AKTApurifier system (GE Healthcare). Purified SA fusion proteins in 1×PBS pH 7.4 were following concentrated to 5 mg/ml (N CXCL-SA C) and 2 mg/mL (N SA-scFv C) final concentration by using 10000 NMWL Amicon Ultra-15 ultrafiltration devices (Millipore) at 4000× g and 4° C. on a Allegra X-14R centrifuge (Beckman Coulter).

[0365] Protein concentrations were determined by measuring absorbance at 280 nm using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). Molecular weights were confirmed by reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using NuPAGE 4-12% Bis-Tris Gels (Life Technologies) in 3-(Nmorpholino) propanesulfonic acid (MOPS) buffer followed by SimplyBlue SafeStain (Life Technologies) and imaged on the Typhoon Trio imager (GE Healthcare). All purified SA fusion proteins migrated a single band in SDS-PAGE with an apparent molecular mass of approximately 75 kDa (for ^NCXCL-SA^C), 80 kDa (^NSA-V_L^C or (^NSA-V_H^C) and 95 kDa (^{N}SA -scFv^C). The monodisperse state of concentrated SA fusion proteins was confirmed by size-exclusion chromatography using a Superdex 200 10/300 GL column (GE Healthcare) connected to an AKTApurifier system and equilibrated with 1×PBS pH 7.4. Purified SA fusion proteins were eluted as a single peak at elution volumes (V_e) that corresponds to apparent molecular masses ranging between 150 kDa (dimer) and 300 kDa (tetramer) in the case of ^NSA-CXCL^C fusions while ^NSA-scFv^C fusions were eluted with Ve that corresponds to apparent molecular masses of about 95 kDa (monomer). Size exclusion chromatography columns and the FPLC system used for purifi-cation of ^{N}SA -scFv^C fusions for animal studies were pretreated with 1M NaOH to remove endotoxins. Purified ^NSA-scFv^C fusions were further filtered sterile by passing them through a 0.2 µm syringe filters (Pall Life Sciences) and confirmed to contain minimal levels of endotoxin (<0.1 EU/mL) using the QCL-1000 Limulus Amebocyte Lysate (LAL) chromogenic test following the manufacturer's instructions (Lonza).

Biotinylation of Serum Albumin Fusion Proteins and Commercial Antibodies

[0366] Reactive EZ-link sulfo-NHS-LC-biotin (Thermo Fisher Scientific) was dissolved in 1×PBS pH 7.4 to obtain

a final concentration of 10 mM. Protein conjugates containing biotin were prepared by incubating serum albumin fusion proteins (at concentrations of 2 mg/mL in 1×PBS pH 7.4) with ten-fold molar excess of EZ-link sulfo-NHS-LCbiotin for 30 minutes at room temperature. Excess of unreacted or hydrolyzed biotinylation reagent was removed using size-exclusion chromatography with Superdex 200 10/300 GL (GE Healthcare) connected to an AKTApurifier system (GE Healthcare) and equilibrated with buffer 1×PBS pH 7.4. Fractions corresponded to the expected protein pick were pulled and concentrated to a final concentration of 2 mg/mL using 10000 NMWL Amicon Ultra-4 ultrafiltration devices (Millipore) at 4000× g and 4° C. on a Allegra X-14R centrifuge (Beckman Coulter). Final protein concentrations were measured using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific).

Display of CXC Chemokine on Surface of Yeast Cells

[0367] The ELR+ and (ELR-) CXC chemokines were displayed on the surface of yeast as N-terminal fusion of the a-agglutinin Aga2 protein (^NCXCL-Aga2p^C). Yeast surface display vectors were based on pCT backbone (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. *Methods Mol Biol* 1319, 3-36 (2015)). Constructs for surface display of ^NCXCL-Aga2^C fusion proteins were generated by using Gibson Assembly (New England BioLabs) or In-Fusion Cloning (Clontech Laboratories, Takara Bio) technologies. PfuUltra II Fusion HS DNA Polymerase (Agilent Technologies) and Herculase II Fusion DNA Polymerase (Agilent Technologies) were used for the PCR

amplification of the insert and the vector, respectively. DpnI enzyme was obtained from New England Biolabs and oligonucleotide primers from Integrated DNA Technologies. The synthetic DNA coding for the active protein form of twelve human and murine ELR+ CXC chemokines and eight human and murine (ELR-) CXC chemokines were obtained from GeneArt Gene Synthesis (Thermo Fisher Scientific). The de novo synthesized genes encoding for the active processed form of each CXC chemokine were subsequently inserted into a previously modified yeast display pCT vector containing a DNA sequence encoding for a secretory leader sequence (^NMKVLIVLLAIFAALPLA-LAQPVISTTVGSAAEGSLDKR^C), a three amino-acid flexible spacer (^NGGG^C), a sequence encoding for c-myc epitope tag (c-myc; ^NEQKLISEEDLQ^C) followed by a sequence encoding for the Aga2p protein to obtain ^NCXCL- (G_3) -c-myc-Aga2p^C fusion proteins. The process of the leader sequence during the secretory pathway allows for a precisely cleaved N-terminus that is crucial for the activity of the mature chemokines. Genes encoding ^NCXCL-(G₃)c-myc-Aga $2p^{C}$ fusion proteins were further sub-cloned into a new pCT vector via Bpu10I and XhoI (New England BioLabs) restriction enzymes except for MIP-2 for which PstI-HF and XhoI (New England BioLabs) restriction enzymes were used. All constructs were verified by DNA sequencing (Macrogen) and termed N CXCL-Aga2p^C fusion proteins (see Table 5 for information about protein accession number and SEQ ID NOs: 107-146 for DNA and amino-acid sequences).

TABLE 5

CXCL protein (residues/		Fusion
accession No.)	Construct for expression	protein
Groα/hCXCL1 (38-107/P09341)	pCHA-LS-hCXCL1 ³⁸⁻¹⁰⁷ -G ₃ -c-myc- Aga2	^N hCXCL1-Aga2 ^C
Groβ/hCXCL2 (38-107/P19875)	pCHA-LS-hCXCL2 ³⁸⁻¹⁰⁷ -G ₃ -c-myc- Aga2	^N hCXCL2-Aga2 ^C
Groy/hCXCL3 (38-107/P19876)	pCHA-LS-hCXCL3 ³⁸⁻¹⁰⁷ -G ₃ -c-myc- Aga2	^N hCXCL3-Aga2 ^C
PF-4/hCXCL4 (32-101/P02776)	pCHA-LS-hCXCL4 ³²⁻¹⁰¹ -G ₃ -c-myc- Aga2	^N hCXCL4-Aga2 ^C
ENA-78/hCXCL5 (44-114/P42830)	pCHA-LS-hCXCL5 ⁴⁴⁻¹¹⁴ -G ₃ -c-myc- Aga2	^N hCXCL5-Aga2 ^C
GCP-2/hCXCL6 (44-114/P80162)	pCHA-LS-hCXCL6 ⁴⁴⁻¹¹⁴ -G ₃ -c-myc- Aga2	^N hCXCL6-Aga2 ^C
NAP-2/hCXCL7 (59-121/P02775)	pCHA-LS-hCXCL7 ⁵⁹⁻¹²¹ -G ₃ -c-myc- Aga2	N hCXCL7-Aga2 C
IL-8/hCXCL8 (29-99/P10145)	pCHA-LS-hCXCL8 ²⁹⁻⁹⁹ -G ₃ -c-myc- Aga2	^N hCXCL8-Aga2 ^C
MIG/hCXCL9 (23-125/Q07325)	pCHA-LS-hCXCL9 ²³⁻¹²⁵ -G ₃ -c-myc- Aga2	N hCXCL9-Aga2 C
IP-10/hCXCL10-SA (22-98/P02778)	pCHA-LS-hCXCL10 ²²⁻⁹⁸ -G ₃ -c-myc- Aga2	N hCXCL10-Aga2 C
I-TAC/hCXCL11-SA (22-94/O14625)	pCHA-LS-hCXCL11 ²²⁻⁹⁴ -G ₃ -c-myc- Aga2	N hCXCL11-Aga2 C
KC/mCXCL1-SA (28-96/P12850)	Aga2 pCHA-LS-mCXCL1 ²⁸⁻⁹⁶ -G ₃ -c-myc- Aga2	^N mCXCL1-Aga2 ^C
MIP-2/mCXCL2-SA (31-100/P10889)	pCHA-LS-mCXCL2 ³¹⁻¹⁰⁰ -G ₃ -c-myc- Aga2	^N mCXCL2-Aga2 ^C
DCIP-1/mCXCL3-SA (31-100/Q6W5C0)	pCHA-LS-mCXCL3 ³¹⁻¹⁰⁰ -G ₃ -c-myc- Aga2	^N mCXCL3-Aga2 ^C
Pf-4/mCXCL4-SA (30-105/Q9Z126)	Aga2 pCHA-LS-mCXCL4 ³⁰⁻¹⁰⁵ -G ₃ -c-myc- Aga2	^N mCXCL4-Aga2 ^C
LIX/mCXCL5-SA (48-118/P50228)	Aga2 pCHA-LS-mCXCL5 ⁴⁸⁻¹¹⁸ -G ₃ -c-myc- Aga2	^N mCXCL5-Aga2 ^C
Nap-2/mCXCL7-SA (48-113/Q9EQI5)	Aga2 pCHA-LS-mCXCL7 ⁴⁸⁻¹¹³ -G ₃ -c-myc- Aga2	^N mCXCL7-Aga2 ^C

TABLE 5-continued

CXCL protein (residues/ accession No.)	Construct for expression	Fusion protein
Mig/mCXCL9-SA (22-126/P18340)	pCHA-LS-mCXCL9 ²²⁻¹²⁶ -G ₃ -c-myc- Aga2	N mCXCL9-Aga 2^{C}
Ip-10/mCXCL10-SA (22-98/P17515)	pCHA-LS-mCXCL10 ²²⁻⁹⁸ -G ₃ -c-myc- Aga2	^N mCXCL10-Aga2 ^C
I-Tac/mCXCL11-SA (22-100/Q9JHH5)	pCHA-LS-mCXCL11 ²²⁻¹⁰⁰ -G ₃ -c-myc-Aga2	^N mCXCL11-Aga2 ^C

[0368] The N CXCL-Aga2p^C fusion proteins were displayed on the surface of Saccharomyces cerevisiae strain EBY100 using a standard protocol as described previously (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. Methods Mol Biol 1319, 3-36 (2015)). Briefly, EBY100 yeast cells were transformed with pCT vectors encoding N CXCL-Aga2p^C fusion proteins using Frozen-EZ Yeast Transformation II Kit (Zymo Research). Cells were grown to mid-log phase in SD-CAA media at 30° C. and induced in galactose-containing media SG-CAA for 20 hours at 2° C. Staining of C-terminus c-myc epitope tag indicated that all the CXC chemokines are expressed well on the surface of yeast (approximately 105 copies per cell, a standard for yeast surface display). The proper folding of yeast displayed CXC chemokines was assessed by measuring binding of some displayed CXC chemokines to a panel of commercial neutralizing antibodies.

Epitope Mapping by Alanine-Scanning Mutagenesis

[0369] Functional binding residues were identified by alanine-scanning mutagenesis using yeast surface display technology combined to flow cytometry. Yeast surface display has been shown to provide a simple, flexible and robust method for fine resolution epitope mapping of both fulllength or single-domain protein (Chao, G., Cochran, J. R. & Wittrup, K. D. Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342, 539-550 (2004); Cochran, J. R., Kim, Y. S., Olsen, M. J., Bhandari, R. & Wittrup, K. D. Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J Immunol Methods 287, 147-158 (2004); Levy, R. et al. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J Mol Biol 365, 196-210 (2007); Mata-Fink, J. et al. Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol 425, 444-456 (2013)). Alanine was chosen as a standard replacement residue for the identification of functional epitopes because it is found commonly in both buried and exposed positions, and it is present in all type of secondary structures. Moreover, alanine does not impose new hydrogen bonding, or lead to stearic problems, and is therefore less likely to cause misfolding of the protein (Wells, J. A. Systematic mutational analyses of protein-protein interfaces. Methods Enzymol 202, 390-411 (1991); Morrison, K. L. & Weiss, G. A. Combinatorial alanine-scanning. Curr Opin Chem Biol 5, 302-307 (2001)). The commonly bound human ELR+ CXC chemokine hCXCL1 (Groa) was selected for alanine-scanning experiments.

[0370] Tridimensional structural analysis and literature data were combined to identify Groa residues suitable for mutagenesis (Fairbrother, W. J., Reilly, D., Colby, T. J., Hesselgesser, J. & Horuk, R. The solution structure of melanoma growth stimulating activity. J Mol Biol 242, 252-270 (1994); Kim, K. S., Clark-Lewis, I. & Sykes, B. D. Solution structure of GRO/melanoma growth stimulatory activity determined by 1H NMR spectroscopy. J Biol Chem 269, 32909-32915 (1994); Poluri, K. M., Joseph, P. R., Sawant, K. V. & Rajarathnam, K. Molecular basis of glycosaminoglycan heparin binding to the chemokine CXCL1 dimer. J Biol Chem 288, 25143-25153 (2013); Ravindran, A., Sawant, K. V., Sarmiento, J., Navarro, J. & Rajarathnam, K. Chemokine CXCL1 dimer is a potent agonist for the CXCR2 receptor. J Biol Chem 288, 12244-12252 (2013); Sepuru, K. M. & Rajarathnam, K. CXCL1/MGSA Is a Novel Glycosaminoglycan (GAG)-binding Chemokine: STRUC-TURAL EVIDENCE FOR TWO DISTINCT NON-OVER-LAPPING BINDING DOMAINS. J Biol Chem 291, 4247-4255 (2016)). Solvent accessibility of hCXCL1 amino acid residues was determined by using both ASAView (Ahmad, S., Gromiha, M., Fawareh, H. & Sarai, A. ASAView: database and tool for solvent accessibility representation in proteins. BMC Bioinformatics 5, 51 (2004)) and PyMOL (PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC) tools. Structurally buried hydrophobic amino acids (I23, V40, A42, L52, V59, I62 and I63) as well as proline (P20, P31, P33, P54 and P57) and cysteine (C9, C11, C35 and C52) residues that are crucial for overall folding and stability of the chemokine were left unaltered. The wild-type hCXCL1 was displayed on the surface of yeast as the amino terminus fusion of the a-agglutinin Aga2 (^{*N*}hCXCL1^{*WT*}-Aga2p^{*C*}). Gene protein encoding N hCXCL1 WT -(G₃)-c-myc-Aga2p^C fusion protein was subcloned into a new pCT vector via Bpu10I and XhoI (New England BioLabs) restriction enzymes. The obtained pCThCXCL1^{WT}-Aga2 vector was used as the template for the site-directed mutagenesis. Mutagenic oligonucleotides were designed to introduce single point mutations at the desired sites and generate fifty-four hCXCL1 variants (pCT-hCXCL1^{ALAn}-Aga2, ^NhCXCL1^{ALAn-Aga2}p^C; see SEQ ID NOs: 147 and 148 for DNA and amino acid sequences).

[0371] Binding of wild-type (hCXCL1^{WT}) and single alanine mutants (hCXCL1^{ALAn}) displayed on the surface of yeast toward soluble SA129, SA138 and SA157* serum albumin-antibody fusions and two commercial neutralizing antibodies targeting Groa was assessed by using flow cytometry. The wild-type (^NhCXCL1^{WT}-Aga2p^C) and single alanine mutant (NhCXCL1^{ALAn}-Aga2p^C) fusion proteins were displayed on the surface of *Saccharomyces cerevisiae* strain EBY100 using Frozen-EZ Yeast Transformation II Kit (Zymo Research) as described previously (Angelini, A. et al. Protein Engineering and Selection Using Yeast Surface Display. *Methods Mol Biol* 1319, 3-36 (2015)). Individual colonies were inoculated in 5 mL SD-SCAA cultures, grown to mid-log phase ($OD_{600}=2-5$) in SD-CAA media at 30° C. with shacking (250 rpm) and induced in galactose-containing SG-CAA media for 20 hours at 20° C. with shacking (250 rpm). The binding assays were conducted in 96-well plates (Corning) containing 1×10^4 induced cells per well pre-mixed with 1×10^5 non-displaying yeast cells.

[0372] The level of expression of single wild-type (hCXCL1^{WT}) and alanine mutants (hCXCL1^{ALAn}) displayed on the surface of yeast was assessed by staining the C-terminus c-myc epitope tag. Yeast cells displaying wild-type $(hCXCL1^{WT})$ and single alanine mutants $(hCXCL1^{ALAn})$ were then incubated with soluble serum albumin-antibody fusions SA129, SA138 and SA157* bearing the His6 tag and the primary chicken anti-c-myc epitope tag (1:1000) antibody (Gallus Immunotech) overnight at 4° C. with shaking (150 rpm). The binding epitopes of two commercial mouse derived monoclonal antibodies targeting hCXCL1: Ab275 (clone 20326) and Ab276 (clone 31716) were also determined. High quality epitope maps were achieved by performing the assays at concentrations of soluble serum albumin-antibody fusions and antibodies that were equivalent to their K_D binding values for the wild-type hCXCL1: 2.5 nM for SA129, 100 nM for SA138, 1.5 µM for SA157*, 0.1 nM for Ab275 and 0.25 nM for Ab276. Concentrations higher or lower than that diminished the sensitivity of the assay and made it difficult to differentiate strong from weak binding signals derived from different mutants. At too high concentrations, all the signals were saturated and showed similar binding whereas at too low concentrations, the noise made it difficult to distinguish strong from weak mutants. After primary incubation, cells were pelleted (2500× g for 5 minutes at 4° C.) and washed twice with 200 µL of ice-cold PBSA buffer. Secondary labeling was performed with goat anti-chicken and either mouse anti-His6 epitope tag or goat anti-mouse antibodies conjugated to Alexa Fluor dyes at recommended dilutions. The 96-well plates were run on a high-throughput plate sampler iQue Screener (IntelliCyt). Data were evaluated using FlowJo v.10.0.7 software (Tree Star).

[0373] To ensure that the differences in binding were not due to variations of number of proteins expressed on the surface of yeast cell, the median fluorescence intensity (MFI_{BIND}) from binding signal (His6 tag or goat anti-mouse antibodies) measured for single wild-type (hCXCL1^{WT}) and alanine mutants (hCXCL1^{ALAn}) was normalized to the median fluorescence intensity (MFI_{DISP}) from display signal (c-myc tag). The normalized (binding/display=MFI_{BIND}/ MFI_{DISP} values obtained for each hCXCL1 variant (hCXCL1^{ALAn}) were further normalized for the normalized value obtained for the wild-type (hCXCL1^{WT}) and plotted as $(MFI_{BIND}^{ALAn}/MFI_{DISP}^{ALAn})/(MFI_{BIND}^{WT}/MFI_{DISP}^{WT})$ providing a value, ranging from 0.0 to 1.0, that corresponded to the contribution of each amino acid residues upon binding with the corresponding serum albumin fusion or neutralizing antibody (Table 6). Alanine mutants V26, V28, E39, 141 and L44 exhibited an intense loss of binding when incubated with all soluble serum albumin fusion proteins SA129, SA138, SA157* and neutralizing antibodies Ab275 and Ab276 indicating possible misfolding of the displayed hCXCL1 variants and were therefore excluded. Values reported here are the results of three independent experiments and are presented as mean (dots) \pm SE (bars).

TABLE 6

Epitope mapping interactions							
	Ab275	Ab276	SA129	SA138	SA157		
strong (0.0-0.25)	G17	L15	Q13	L12	N46		
	T43	G17	L15	N46			
	N46	I18	I18	G47			
	G47	H19	N46	R48			
	R48	N46	G47				
	K49	K61	R48				
		K65					
moderate (0.25-0.5)	R8	Q16	T14	R8	I18		
	L12	K21	G17	T14	H19		
	T14	K45	G32	L15	K21		
	L15	G47	T43	G32	K29		
	Q16	K71	A50	A50	K45		
	I18			L67	G47		
	G32				158		
	K45				K65		
	A50				K71		
weak (0.5-0.75)	Q10	T14	N22	Q13	N22		
	Q13	N22	K45	I18			
	N22	R48	E64	M66			
	N53	A50					
		158					
		K 60					
Total residues	19	18	14	13	11		

Yeast Display and Competitive Fluorescent-Based Binding Assay

[0374] A competitive flow cytometry-based binding assay was performed to further validate the identified hCXCL1 binding epitopes in different ELR+ CXC chemokines. The assays were conducted in 96-well plates (Corning) containing 1×10^4 induced cells per well pre-mixed with 1×10^5 non-displaying yeast cells. Yeast cells displaying the ELR+ CXC chemokines hCXCL1, hCXCL5, hCXCL8, mCXCL1 and mCXCL2 were pre-incubated at 4° C. with concentration of soluble un-biotinylated protein serum albumin fusions and neutralizing antibodies ("blocking reagents") that are equals to 100-times their K_D values (C_B =100 K_D). After 90 minutes, soluble biotinylated protein serum albumin fusions and neutralizing antibodies ("detection reagents") were added at concentrations that are equals to their K_D values (C_D = K_D).

[0375] The incubation time was 30 minutes at 4° C. with shacking (150 rpm). The cells were then pelleted at 2500× g for 5 minutes and 4° C. on an Allegra X-14R centrifuge (Beckman Coulter), and washed twice with 200 µL ice-cold PBSA buffer. Secondary labeling was performed at 4° C. by using goat anti-chicken and either streptavidin or goat anti-mouse and anti-rat antibodies conjugated to Alexa Fluor 647 at recommended dilutions. After 30 minutes, the cells were pelleted at 2500× g for 5 minutes and 4° C. on an Allegra X-14R centrifuge (Beckman Coulter), and washed twice with 200 µL ice-cold PBSA buffer. The 96-well plates were run on a high-throughput flow cytometry plate sampler iQue Screener (IntelliCyt). Data were evaluated using FlowJo v.10.0.7 software (Tree Star). To ensure that the differences in binding were not due to variations of number of proteins expressed on the surface of yeast cell, the determined median binding fluorescence intensities (MFI-

 $_{BIND}$) were normalized to the median display fluorescence intensities (MFI_{DISP}). The obtained normalized binding/ display (MFI_{BIND}/MFI_{DISP}) values were further normalized to the value obtained in the absence of "blocking reagent" providing a percentage value, ranging from 0 to 100%, that corresponded to the residual binding observed upon blocking with the corresponding un-biotinylated serum albumin fusion or neutralizing antibody. Values reported here are the results of two independent experiments and are presented as mean (dots) ±SE (bars).

Mammalian Cell Culture and Competitive Fluorescence-Based Binding Assay

[0376] The binding of two biotinylated human ELR+ CXC chemokines (hCXCL1 and hCXCL8) to the human CXCR1 and CXCR2 receptors was assessed by using flow cytometry-based binding assay. Human embryonic kidney 293 (HEK293) cells that stably express the human CXCR1 (HEK293-IL8RA) and CXCR2 (HEK293-IL8RB) receptors were used (National Cancer Institute at Frederick, Md.) (Ben-Baruch, A. et al. IL-8 and NAP-2 differ in their capacities to bind and chemoattract 293 cells transfected with either IL-8 receptor type A or type B. Cytokine 9, 37-45 (1997)). Transfected HEK293 cells were maintained in DMEM (Thermo Fisher Scientific) supplemented with 10% v/v FBS (Thermo Fisher Scientific), 1% v/v penicillinstreptomycin (Thermo Fisher Scientific), and 0.8 mg/mL G418 (Thermo Fisher Scientific), and grown to approximately 80% confluence in 75 cm² flasks in a humidified incubator and an atmosphere of 95% air, 5% CO₂ at 37° C. Receptor expression levels were determined by flow cytometry using fluorescently labeled monoclonal antibodies against human CXCR1 and CXCR2 receptors on an Accuri C6 Flow Cytometer (BD Accuri Cytometers). Cells were treated with Cell Dissociation Buffer Enzyme Free PBS based buffer (Gibcon), washed twice with cold 1× PBS pH 7.4 and resuspended in cold Cell Binding Assay (CBA) buffer (1× PBS pH 7.4 supplemented with 1% w/v BSA and 0.1% w/v NaN₃) to a final density of 1×10^6 cells/mL. Cells were then aliquoted (100 µL) in 96-well plates (Corning) and individual wells $(1 \times 10^5$ cells each) were incubated with various concentrations of biotinvlated human ELR+ CXC chemokines (hCXCL1 and hCXCL8) ranging from 0.03 to 300 nM. The incubation time was 30 minutes at 4° C. with shacking (150 rpm). The cells were then pelleted at 600× g for 5 minutes and 4° C. on an Allegra X-14R centrifuge (Beckman Coulter) and washed once with 200 µL ice-cold CBA buffer.

[0377] Specific binding of biotinylated ELR+ CXC chemokines to CXCR receptors was detected by incubating the cells with Alexa Fluor 647-labeled Streptavidin (1:200; Thermo Fisher Scientific) for 30 minutes at 4° C. with shaking. Cells were then pelleted at 600x g for 5 minutes and 4° C. on an Allegra X-14R centrifuge (Beckman Coulter), and washed twice with 200 µL ice-cold CBA buffer. Cells were resuspended in 50 µL (2×103 cell/µL final concentration) of cold CBA buffer and analyzed by flow cytometry on an iQue Screener (IntelliCyt). Data were evaluated using FlowJo v.10.0.7 software (Tree Star). Median fluorescence intensities (MFI) were normalized to the maximal value obtained, expressed as a percentage and plotted as a function of varying ELR+ CXC chemokine concentration. The maximal effective concentrations (EC₅₀) were determined by fitting a sigmoidal dose-response curve on GraphPad Prism (GraphPad Software). The same assay was used to assess the ability of crossreactive serum albumin-antibody fusions (SA129, SA138 and SA157*) and commercial neutralizing antibodies (Ab208 and Ab275, R&D Systems) to compete for binding of biotinylated ELR+ CXC chemokines (hCXCL1 and hCXCL8) to their cognate CXCR1 and CXCR2 receptors.

[0378] HEK293 cell lines expressing human CXCR1 and CXCR2 receptors were incubated with biotinylated hCXCL1 and hCXCL8 chemokines as "agonist", at final concentration equal to EC50 values, in the presence of varying concentrations of "antagonists" (SA129, SA138, SA157*, Ab208 and Ab275), followed by staining with fluorescently labeled streptavidin. Antagonists were serially diluted in 1×PBS pH 7.4 to obtain final concentrations that cover the range from 0.3 nM to 300 nM. Concentrations ranging from 0.03 μ M to 30 μ M were used for the antagonist SA157*. Median fluorescence intensities (MFI) were normalized to the maximal value obtained, expressed as a percentage and plotted as a function of varying concentrations of "antagonists". The half maximal inhibitory concentration (IC₅₀) values were determined by fitting a sigmoidal dose-response curve on GraphPad Prism (GraphPad Software). The IC_{50} values were further converted to inhibition constants K_i by using the Cheng-Prusoff equation $K_i = IC_{50}/I$ $([L]/EC_{50}+1)$ where [L] is the fixed concentration of "agonist" biotinylated ELR+ CXC chemokine and EC_{50} is the concentration of "agonist" that results in half maximal activation of the receptor. Values reported here are the results of three independent experiments. The K_i and K_D values, specified in units of molar concentration (mol/L or M) were converted to the pK_i and pK_D scale using pK_i=- $\log_{10}(K_i)$ and $pK_D = -\log_{10}(K_D)$, respectively. Higher values of pK_i and pK_D indicate exponentially greater potency. Data are presented as mean (dots) \pm SE (bars).

Isolation of Neutrophils from Human and Murine Fresh Whole Blood

[0379] Human neutrophils were purified directly from human whole blood by immunomagnetic negative selection using EasySep Direct Human Neutrophil Isolation Kit (STEMCELL Technologies). Whole blood from healthy human volunteers was obtained from Research Blood Components, LLC. Blood was collected in sodium-citrate anticoagulant and provided in EDTA vacutainer collection tubes. Murine neutrophils were isolated directly from mouse bone marrow by immunomagnetic negative selection using EasySep Mouse Neutrophils Enrichment Kit (STEMCELL Technologies). The ends of femur and tibia derived from female C57BL/6 mice (Taconic) were cut and the bone marrow cells flushed using a syringe equipped with a 23-gauge needle. Cell clumps and debris were removed by gently passing the cell suspension through a 70 µm mesh nylon strainer.

[0380] Both human and murine neutrophils were then pelleted at 1000× g for 5 minutes at 4° C. on a Allegra X-14R centrifuge (Beckman Coulter), the supernatant discarded and the cells washed by adding ice-cold PBE buffer (1× PBS pH 7.4 supplemented with 2 mM EDTA, 0.5% w/v BSA, Ca^{2+} and Mg^{2+} free) to obtain a final cell density of 10^6 cells/mL. The washing step was repeated one time more and the washed cells resuspended at 10^7 cells/mL in ice-cold PBE buffer. Purity of human neutrophils was assessed by using APC-conjugated anti-human CD16 (clone 3G8, BioLegend), FITC-conjugated anti-human CD66b antibody

(clone G10F5; BioLegend) and PE-conjugated anti-human CD45 antibody (clone HI30, BioLegend). Purity of mouse neutrophils was assessed by using APC-conjugated anti-mouse CD11b (clone M1/70; BioLegend) and PE-conjugated anti-mouse Ly-6G/Ly-6C (Gr-1) (clone RB6-8C5; BioLegend). Purified and labeled human and murine neutrophils were further used for calcium signaling experiments.

Competitive Flow Cytometry-Based Intracellular Free Calcium Mobilization Assay

[0381] The ability of engineered serum albumin fusion antibody to block the capacity of human and murine ELR+ CXC chemokines to signal through CXCR1 and CXCR2 receptors resulting in an increase of the intracellular calcium concentration was tested on both human and murine freshly purified neutrophils, respectively (June, C. H. & Moore, J. S. Measurement of intracellular ions by flow cytometry. Curr Protoc Immunol Chapter 5, Unit 5 5 (2004)). Purified human and murine neutrophils in sterile ice-cold PBE buffer were loaded for 30 minutes at 37° C. in the dark with 2 mM cell permeable ratiometric fluorescent dye Indo-1 AM (Thermo Fisher Scientific) resuspended in 100% v/v dry DMSO to obtain a final concentration of 4 μ M. Samples of 10⁶ cells each were kept aside for autofluorescence measurements and single stained. Indo-1 loaded neutrophils were then pelleted at 1000× g for 5 minutes at 4° C. on a Allegra X-14R centrifuge (Beckman Coulter), the supernatant discarded and the cells washed by adding ice-cold Cell Loading (CL) buffer (1× HBSS, pH 7.4, 0.5% w/v BSA, 1 mM Ca²⁺ and 1 mM Mg²⁺) to obtain a final cell density of 10^7 cells/mL. The washing step was repeated one time more and the washed cells were resuspended at 5×10^6 cells/mL in ice-cold CL buffer. Aliquots of 10^6 cells/tube (200 µL) were prepared, individually pre-warmed at 37° C. for 10 minutes and stimulated with varying concentrations of "agonist" ELR+ CXC chemokines ranging from 0.03 to 300 nM.

[0382] Samples were analyzed on a BD LSR II flow cytometer (BD Biosciences). Intracellular calcium levels were measured at 405/30 nm (Indo-1 low) and 485/20 nm (Indo-1 high) emission fluorescence after excitation at 355 nm. Baseline fluorescence was recorded for 60 seconds before the addition of "agonist" ELR+ CXC chemokines and fluorescence measured for an additional 240 seconds. The median fluorescence intensities (MFI) at 405/30 nm and 485/20 nm were recorded, the ratio of two wavelengths calculated (Indo-1 ratio) and plotted as a function of time (seconds). Area under the curve (AUC), calculated as an integral over time, was determined using FlowJo v.10.0.7 software (Tree Star). The obtained values were normalized to the maximal response acquired, expressed as percentage of activity. The maximal effective concentrations (EC_{50}) were determined by fitting a sigmoidal dose-response curve on GraphPad Prism (GraphPad Software).

[0383] The same assay was used to assess the ability of "antagonist" serum albumin-antibody fusions SA129, SA138 and SA157* to antagonize the ELR+ CXC chemokine-mediated receptors activation and downstream intracellular calcium mobilization. Commercial neutralizing antibodies targeting human CXCL1 (Ab275), CXCL5 (Ab654), CXCL8 (Ab208) and murine CXCL1 (Ab453) and CXCL2 (Ab452) were included as positive controls. Indo-1 loaded neutrophils were incubated with hCXCL1, hCXCL5, hCXCL8, mCXCL1 and mCXCL1 chemokines as "agonist", at final concentration equal to EC50 values, in the presence of varying concentrations of "antagonist" serum albumin-antibody fusions and neutralizing antibodies. Antagonists were serially diluted in ice-cold CL buffer to obtain final concentrations that cover the range from 10 pM to 10 µM. Intracellular calcium levels were measured as described above. The obtained values were normalized to the maximal response acquired and expressed as percentage of activity plotted as a function of varying concentrations of "antagonists". Values reported here are the results of three independent experiments. Data are presented as mean (dots) ±SE (bars). The half maximal inhibitory concentration (IC₅₀) values were determined by fitting a sigmoidal doseresponse curve on GraphPad Prism (GraphPad Software). The IC₅₀ values were further converted to inhibition constants K_i by using the Cheng-Prusoff equation and both pK_i and pK_D values determined as described above.

Fluorescent Labeling of Serum Albumin Fusion Proteins

[0384] Reactive Alexa Fluor 647 succinimidyl ester (Thermo Fisher Scientific) was dissolved in anhydrous dimethylsulfoxide (DMSO, Sigma-Aldrich) to obtain a final concentration of 10 mg/mL. Protein conjugates containing Alexa Fluor 647 were prepared by incubating proteins (at concentrations of 2 mg/mL in 1×PBS pH 7.4 with 1/10 volume 1 M K₂HPO₄, pH 9.0) with two-fold molar excess of Alexa Fluor 647 NHS ester (at 10 mg/mL in DMSO) for 20 minutes at room temperature in the dark. Free dye was removed using size-exclusion chromatography with Superdex 200 10/300 GL (GE Healthcare) connected to an AKTApurifier system (GE Healthcare) and equilibrated with buffer 1× PBS pH 7.4. Fractions corresponded to the expected protein pick were pulled and concentrated to a final concentration of 2 mg/mL using 10000 NMWL Amicon Ultra-4 ultrafiltration devices (Millipore) at 4000× g and 4° C. on a Allegra X-14R centrifuge (Beckman Coulter). Final protein concentrations and degrees of labeling were measured using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific). Dye-to-protein ratios ranged from 1.0 to 1.5.

Pharmacokinetic Studies in Mice of Serum Albumin-Antibody Fusions

[0385] All animal studies were approved by the Massachusetts Institute of Technology Division of Comparative Medicine and carried out according to the federal, state, and local regulations. Female C57BL/6 mice (Taconic) were maintained under specific pathogen-free conditions and used at 6-8 weeks of age. A single bolus/dose (1 mg) of each Alexa Fluor 647-labeled $^{N}SA-scF^{C}$ fusions (2 mg/mL) were injected intraperitoneally (i.p.) at 50 mg/kg into 3 mice. At various time points (immediately after injection and at 0.5, 1, 2, 3, 5, 8, 24, 48, 72, 96, 120, 168 hours post injection) blood was collected into heparin-coated capillary tubes (VWR International) and stored at 4° C. in the dark until sample collection was complete. Plasma was obtained after centrifugation (900×g for 5 minutes) and transferred to new capillary tubes. Standard samples were diluted in plasma collected from untreated mice. Serial dilutions (100 µL/well) of the standards (ranging from 0.3 $pg/\mu L$ to 300 $pg/\mu L)$ and plasma samples were prepared. Protein fusion concentration was determined by measurement of fluorescent intensity using a Typhoon imager (GE Healthcare) after degree of labeling correction. Fluorescence intensity was quantified using ImageJ software (NIH).

[0386] To calculate N SA-scFv^C half-lives, fluorescent measurements were quantified by normalization to a standard curve for each antibody. Starting at the max concentration time point (3 hours for all cases), pharmacokinetic profiles were fit in Graphpad Prism using a two phase non-compartmental model of the following format: MFI(t) =Ae^{- αt}+Be^{- $\beta \alpha$}. Where A, B, α and β represent the systemic clearance rates of a given fusion protein. Fast and slow half-lives, $t_{1/2,\alpha}$ and $t_{1/2,\beta}$ were calculated as $ln(2)/\alpha$ and $\ln(2)/\beta$, respectively. The total clearance (CL) was calculated by dividing the total dose by the AUC from 0 to infinity. Fits for the three mice in each group were averaged to obtain a single pharmacokinetic curve for each ^NSA $scFv^{C}$ fusion, from which total clearance rate and standard error were calculated. Values reported here are the results of triplicate and data are presented as mean (dots) ±SE (bars).

Arthritis Induction and Treatment

[0387] All animal studies were approved by the Center for Comparative Medicine (CCM) of the Massachusetts General Hospital (MGH) and carried out according to the federal, state, and local regulations. The inflammatory arthritis serum transfer K/B×N mice model was used (Kouskoff, V. et al. Organ-specific disease provoked by systemic autoimmunity. Cell 87, 811-822 (1996). Mice carrying the KRN T-cell receptor transgene on the C57BL/6 genetic background were mated with NOD mice (Jackson Laboratory) to obtain transgene-positive arthritic K/B×N mice. The presence of the transgene was determined by allele-specific PCR and confirmed by phenotypic assessment. Serum was collected from K/B×N arthritic mice as described (Miyabe, Y., Kim, N. D., Miyabe, C. & Luster, A. D. Studying Chemokine Control of Neutrophil Migration In Vivo in a Murine Model of Inflammatory Arthritis. Methods in enzymology 570, 207-231 (2016)). Experimental arthritis was induced in recipient C57BL/6 by transferring arthritogenic serum containing autoantibodies to the ubiquitous anti-glucose 6-phosphate isomerase (GPI) protein from transgenic 8- to 10-weeks old K/B×N mice to healthy C57BL/6 resulting in synovial pannus formation and both bone and cartilage erosions that mimics the disease that develop spontaneously in transgenic mice. Arthritogenic K/B×N serum (150 μL) was injected intraperitoneally (i.p.) using 26-gauge needle syringe on days 0 and 2 on healthy wild-type C57BL/6 mice (Jackson Laboratory) and disease progress was monitored every other day for 2 weeks as described in the next section.

[0388] For the preventative treatment experiments, $500 \,\mu\text{L}$ of 2 mg/mL serum albumin fusions were injected i.p. daily starting on day 0 and treated every day for a total of 14 continuative days as follows: group 1 (n=10), mice were treated with SA129 (50 mg/Kg in PBS); group 2 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with control serum-albumin fusion (SA^{CTR}; 50 mg/Kg in PBS); group 4 (n=10), mice were treated with PBS. For therapeutic treatment, mice were placed into 4 experimental groups so that each group had the same overall clinical score and treated every day for a total of 10 days as follows; Group 1 (n=10), mice were treated with SA129 (50 mg/Kg in PBS); group 2 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with SA138 (50 mg/Kg in PBS); group 3 (n=10), mice were treated with control serum-albumin fusion (fusion fusion fusion

(SA^{CTR}; 50 mg/Kg in PBS); group 4 (n=10), mice were treated with PBS. Paw thickness and clinical scores were determined every other day as described previously (Miyabe, Y., Kim, N. D., Miyabe, C. & Luster, A. D. Studying Chemokine Control of Neutrophil Migration In Vivo in a Murine Model of Inflammatory Arthritis. *Methods in enzy-mology* 570, 207-231 (2016)). The clinical arthritis score was calculated for each mouse by summing the scores for the four paws: 0=normal; 1=erythema and swelling of one digit; 2=erythema and swelling of two digits or erythema and swelling of ankle joint; 3=erythema and swelling of more than three digits or swelling of two digits and ankle joint; 4=erythema and severe swelling of the ankle, foot and digits with deformity.

Flow Cytometry Analysis and Quantification of Neutrophils in Synovial Fluid

[0389] The number of neutrophils that accumulated in the synovial fluid were determined using flow cytometry as previously described (Miyabe, Y., Kim, N. D., Miyabe, C. & Luster, A. D. Studying Chemokine Control of Neutrophil Migration In Vivo in a Murine Model of Inflammatory Arthritis. Methods in enzymology 570, 207-231 (2016)). Synovial fluid was obtained from ankle joints of 8- to 10-weeks old C57BL/6 mice (Jackson Laboratory) on day 8 after K/B×N serum injection for all groups. Retrieved synovial fluid cells were resuspended in sterile 1% v/v FCS/ PBS to obtain a final concentration of 1×10^4 cells/µL. For flow cvtometry analysis, cells were incubated with anti-FcyRIII/II antibody (clone 2.4G2; BD Bioscience), and following stained with APC-conjugated anti-murine Ly6G antibody (clone 1A8; BioLegend). Flow cytometry was performed with BD LSRFortessa (BD Bioscience) and analyzed with FlowJo v.10.0.7 software (Tree Star). Neutrophils were identified as Ly6G-positive cells in the granulocyte gate of forward and side scatter plots. Values reported here are the results of triplicate and are presented as mean (dots) ±SE (bars).

Histology Analysis

[0390] Preventative treated mice (n=3 per group) were sacrificed at day 8 after K/B×N serum injection and paws collected for histology as previously described (Miyabe, Y., Kim, N. D., Miyabe, C. & Luster, A. D. Studying Chemokine Control of Neutrophil Migration In Vivo in a Murine Model of Inflammatory Arthritis. Methods in enzymology 570, 207-231 (2016)). Briefly, paws were fixed in 4% v/v formalin solution overnight and decalcified by treatment with 20% EDTA solution for 2 weeks. Samples were then washed with H₂O mQ for at least 10 minutes and embedded in paraffin. Sections of 4 µm thickness were stained with Hematoxylin and Eosin (H&E) staining kit (Wako Pure Chemical Industries), mounted by using Mount-Quick mounting medium (Daido Sangyo Co.) and examined by light microscopy. Values reported here are the results of triplicate and are presented as mean (dots) ±SE (bars). Histopathological scoring was performed on H&E stained ankle sections by evaluating both inflammatory cell infiltration and pannus formation as follows. Inflammatory cell infiltration: 0=no change, 1=focal inflammatory cell infiltration, 2=severe and diffuse inflammatory cell infiltration. Pannus formation: 0=no change, 1=pannus formation at one site, 2=pannus formation at two sites, 3=pannus formation at more than three sites. The score of inflammatory cell infiltration and pannus formation were summed to determine a total histopathological score. Visible clinical signs were scored blinded for the origin and treatment of the mice. Because different batches of serum with different potency have been used in different experiments, the measured clinical score values of each experiment were normalized to the maximal value obtained and expressed as a percentage (clinical score %). Values reported here are the results of two independent experiments and are presented as mean (dots) \pm SE (bars).

Protein Structure Homology Modeling

[0391] The protein structure homology models of selected yeast-displayed antibody single-chain variable fragments CK129, CK138 and CK157 have been generated by using protein structure modeling program MODELLER (Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. *J Mol Biol* 234, 779-815 (1993)) and the three-dimensional structure of a highly homologue synthetic antibody fragment as template (PDB ID: 2KH2) (Wilkinson, I. C. et al. High resolution NMR-based model for the structure of a scFv-IL-1beta complex: potential for NMR as a key tool in therapeutic antibody design and development. *J Biol Chem* 284, 31928-31935 (2009)). Protein structures and models were rendered using PyMOL (PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC).

Statistical Analysis

[0392] All data are presented as mean (dots) \pm SE (bars). Statistical comparisons were made between each group using one-way analysis of variance (ANOVA) and Graph-Pad Prism (GraphPad Software). P values: *P<0.05, ** P<0.01, *** P<0.001; **** P<0.0001. ns: non-significant.

Example 1: Generation of Crossreactive Antibodies that Bind a Diverse Array of ELR+ CXC Chemokines

[0393] To evolve highly crossreactive protein binders toward multiple pro-inflammatory ELR+ CXC chemokines,

synthetic single chain variable antibody fragment (scFv) libraries displayed on the surface of yeast were used. Yeast surface display combined with fluorescence-activated cell sorting (FACS) allowed for quantitative selection of protein binders based on both binding affinity and specificity. The synthetic scFv libraries had qualities making them powerful scaffolds for the development of crossreactive binders. Three human (hCXCL1, hCXCL5, and hCXCL8) and three murine (mCXCL1, mCXCL2 and mCXCL5) chemokines were chosen as targets based on their (i) low sequence identity and (ii) proven therapeutic relevance (FIG. 1 and FIG. 2A).

[0394] Initially, only one selection pressure was applied, and crossreactivity was prioritized over affinity. To encourage the development of crossreactivity, combinatorial approaches were implemented, in which the output of each cycle of selection was exposed to a diverse array of ELR+CXC chemokines in the following cycle selection (FIG. 2B). The use of highly avid reagents preloaded with ELR+CXC chemokines and constant alternation of the detection reagents favored the isolation of weak crossreactive binders while discouraging the enrichment of clones that recognized detection reagents. Subsequent DNA sequences of individual clones revealed eighteen unique antibody clones with varying amino acid compositions and loop lengths within the complementarity-determining regions (CDRs).

[0395] Selected antibodies exhibited diverse affinities and specificities for soluble ELR+ CXC chemokines (FIG. 2C, Table 7). Of these clones, only four (CK1-CK4) recognized at least three different ELR+ CXC chemokines. The most abundant and crossreactive of these antibodies, CK3, recognized the biotinylation sequence located at the C-terminus of each chemokine, thus explaining its crossreactivity and similar binding affinities (FIG. 2C). In addition to the generation of crossreactive binders, six bi-specific and eight mono-specific antibody clones were isolated (FIG. 2C). The presence of numerous mono- and bi-specific antibodies can be explained by the use of highly avid reagents during the selection process. Taken together, these data showed that crossreactive antibodies generally occurred at lower frequency and with weaker binding affinities compared with the mono- and bi-specific antibodies (FIG. 2C).

TABLE 7

	Binding affinities - $K_D \pm SE (nM)$							
	Groα	ENA-78	IL-8	KC	MIP-2	LIX	MBP	
CK1	>2000	>2000	>2000	N.B.	N.B.	N.B.	N.B.	
CK2	>2000	605 ± 79	N.B.	481 ± 80	505 ± 86	>2000	N.B.	
CK3	N.B.	N.B.	N.B.	N.B.	N.B.	N.B.	N.B.	
CK3*	562 ± 88	448 ± 73	410 ± 61	589 ± 75	445 ± 69	594 ± 81	522 ± 79	
CK4	39.4 ± 7.4	>2000	N.B.	744 ± 93	N.B.	>2000	N.B.	
CK5	>2000	N.B.	>2000	N.B.	N.B.	N.B.	N.B.	
CK6	1675 ± 191	1987 ± 228	N.B.	N.B.	N.B.	N.B.	N.B.	
CK7	N.B.	344 ± 68	N.B.	N.B.	N.B.	>2000	N.B.	
CK8	382 ± 73	N.B.	N.B.	825 ± 98	N.B.	N.B.	N.B.	
CK9	N.B.	N.B.	N.B.	221 ± 49	278 ± 41	N.B.	N.B.	
CK10	28.9 ± 4.5	N.B.	N.B.	801 ± 107	N.B.	N.B.	N.B.	
CK11	425 ± 58	N.B.	N.B.	N.B.	N.B.	N.B.	N.B.	
CK12	N.B.	N.B.	N.B.	N.B.	332 ± 57	N.B.	N.B.	
CK13	N.B.	297 ± 98	N.B.	N.B.	N.B.	N.B.	N.B.	
CK14	N.B.	N.B.	N.B.	N.B.	N.B.	269 ± 57	N.B.	
CK15	N.B.	N.B.	N.B.	251 ± 25	N.B.	N.B.	N.B.	

TABLE	7-continued
IADLE.	/-commucu

	Binding affinities - $K_D \pm SE$ (nM)							
	Groa	ENA-78	IL-8	KC	MIP-2	LIX	MBP	
CK16 CK17 CK18	N.B. N.B. N.B.	102 ± 12 N.B. N.B.	N.B. N.B. 65 ± 6.1	N.B. N.B. N.B.	N.B. N.B. N.B.	N.B. 106 ± 11 N.B.	N.B. N.B. N.B.	

*= binding affinities measured using biotinylated ELR + CXC chemokines bearing AviTag at C-terminus. N.B. = no binding

N.B. = no binding

Example 2: Use of Two-Pressure Selection Strategies for Molecular Co-Evolution of Antibody Binding Affinity and Crossreactivity

[0396] To further improve both the binding affinity and crossreactivity of CK1, CK2 and CK4 clones, two-pressure selection strategies that encouraged the co-evolution of higher affinity and crossreactivity simultaneously were utilized. Specifically, a high degree of genetic diversity in the antibody-encoding genes was created using error-prone PCR amplification. Then, binding affinity was increased by allowing the mutants to evolve through six consecutive cycles of equilibrium-based selection using decreasing concentrations of ELR+ CXC chemokines. Concomitantly, the development of crossreactivity was forced by exposing the outputs of each cycle of affinity selection towards a different ELR+ CXC chemokine in the following cycle of selection. During this iterative process, variants whose affinity and crossreactivity towards ELR+ CXC chemokines was higher than that of their respective parental clones were exclusively collected.

[0397] After two iterative evolutionary processes, each comprising six consecutive cycles of selection, the isolated clones were sequenced and assessed for binding affinity and crossreactivity towards ELR+ CXC chemokines. In addition, when distinct mutations were found scattered across

clones and showed improvement, mutations were combined to investigate the possibility of even further crossreactivity and higher affinity. A summary of the overall co-evolutionary approach, including two iterative evolutionary processes of selection for crossreactivity and affinity (I and II), and a third cycle of combinatorial mutagenesis (III), is shown in FIGS. **2D-2**F.

[0398] Implementing these evolutionary processes in this fashion yielded antibodies with significant improvements in affinity and, in most cases, increased crossreactivity toward multiple ELR+ CXC chemokines. For example, the engineered CK138 clone doubled the number of chemokines recognized (i.e., from three to six) and achieved roughly a 30 to 340-fold improvement in affinity toward these chemokines (K_D values ranging from $\frac{5}{8}$ to 193 nM) relative to the parental CK1 clones (FIG. 2D; Table 8). Similarly, the CK157 clone retained its crossreactivity toward five targets and added a 20 to 55-fold improvement in affinity (K_D) values ranging from 16.9 to 57.1 nM) as compared to the initial CK2 clone (FIG. 2E, Table 9). Finally, while CK129 only retained minimal crossreactivity towards two targets, there was a considerable increase in affinity of 50 and 800-fold toward human Groa (K_D =0.79 nM) and its mouse homologue KC (K_D=0.93 nM), respectively (FIG. 2F; Table 10).

TABLE 8

		Binding af	finities - K_D	± SE (nM)		
	Groa	ENA-78	IL-8	KC	MIP-2	LIX
CK1	>2000	>2000	>2000	N.B.	N.B.	N.B.
CK19	1262 ± 219	895 ± 72	212 ± 21	931 ± 81	>2000	>2000
CK21	>2000	273 ± 17	144 ± 8.4	280 ± 37	>2000	>2000
CK23	>2000	76.4 ± 5.8	104 ± 8.2	98.3 ± 33.4	>2000	>2000
CK63	>2000	42.9 ± 8.2	15.2 ± 3.3	53.5 ± 9.8	>2000	>2000
CK66	594 ± 39	19.1 ± 1.6	21.5 ± 3.6	52.5 ± 8.1	>2000	>2000
CK72	120 ± 10	35.1 ± 2.3	25.8 ± 3.9	107 ± 15	63.6 ± 9.8	>2000
CK138	61.9 ± 4.1	5.8 ± 0.9	7.4 ± 1.1	34.8 ± 3.2	36.2 ± 6.5	193 ± 22
CK140	64.6 ± 13	4.9 ± 0.6	8.2 ± 2.1	32.9 ± 2.8	33.2 ± 7.4	197 ± 10

TABLE 9

		Binding affin	ities - K	$D \pm SE (nM)$		
	Groa	ENA-78	IL-8	KC	MIP-2	LIX
CK2	>2000	605 ± 79	N.B.	481 ± 8 0	505 ± 86	>2000
CK41	304 ± 44	220 ± 65	N.B.	143 ± 14	75.4 ± 19	429 ± 24
CK43	368 ± 59	154 ± 31	N.B.	137 ± 11	213 ± 27	762 ± 98
CK108	110 ± 24	40.9 ± 6.4	N.B.	39.8 ± 7.5	40.6 ± 6.2	136 ± 19
CK111	62.9 ± 8.4	35.3 ± 2.1	N.B.	30.5 ± 2.8	23.8 ± 2.9	97.8 ± 11
CK119	56.7 ± 7.2	39.3 ± 6.4	N.B.	29.8 ± 2.1	27.5 ± 3.8	116 ± 20

TABLE 9-continued

		Binding affin	ities - K	$L_D \pm SE (nM)$		
	Groα	ENA-78	IL-8	KC	MIP-2	LIX
CK152 CK155 CK157	$48.4 \pm 6.5 \\24.1 \pm 2.2 \\36.2 \pm 4.3$	25.4 ± 2.8 18.9 ± 2.5 16.9 ± 1.7		17.4 ± 2.8 15.9 ± 2.4 20.6 ± 4.1		53.7 ± 8.9

TABLE 10

	Bind	ling affinitio	es - K _D	± SE (nM)		
	Groa	ENA-78	IL-8	KC	MIP-2	LIX
CK4 CK50 CK56 CK125 CK129	$39.4 \pm 7.4 3.1 \pm 0.5 12.6 \pm 2.5 1.23 \pm 0.2 0.79 \pm 0.1$	>2000 >2000 >2000 >2000 >2000	N.B. N.B. N.B. N.B. N.B.	$744 \pm 93 \\53.8 \pm 3.5 \\108 \pm 4.5 \\1.31 \pm 0.1 \\0.93 \pm 0.1$	N.B. >2000 >2000 >2000 >2000	>2000 >2000 >2000 >2000

[0399] Importantly, the sequential order in which the ELR+ CXC chemokine targets were exposed to the antibody mutant libraries was critical to the success of the selection process. Among all the possible selection pathways, improvements in both affinity and crossreactivity were observed only when recombinant genetic libraries were screened in order from lowest to highest affinity chemokines (data not shown). However, this was not applicable to the development of CK129, as its parental clone (CK4) already possessed high initial affinity toward hCXCL1 and mCXCL1, but negligible affinity towards the others.

[0400] Although reaction conditions that allowed, on average, one to two amino-acid mutations per gene were applied, selected clones from each round of sorting showed higher mutation rates (data not shown). The total number of accumulated mutations within both CDRs and framework regions (FWRs) of variable light (V_L) and heavy (V_H) chains correlated well with the extent of crossreactivity (data not shown). While the crossreactive antibody CK138 predominantly gathered mutations within the CDRs during the engineering process, CK157 collected numerous mutations within the FWRs (FIGS. 2G and 2H). Both types of mutations were shown to be critical, as reversion of either CDR or FWR mutations to the wild-type amino acids resulted in loss of affinity of CK138 and CK157, respectively, toward ELR+ CXC chemokines (data not shown). Moreover, the FWR mutations were found throughout different clones and cycles of engineering, suggesting strong selection pressure for these residues in conferring high binding crossreactivity and affinity.

[0401] Overall, the two-pressure selection approach promoted the evolution of crossreactive binders with improved affinity and revealed the importance of the selection pathway for the achievement of crossreactivity.

Example 3: Engineered Antibodies Bind a Larger Array of Human and Murine CXC Chemokines

[0402] To assess the extent of crossreactivity of the engineered antibodies, their binding affinity towards all human and murine CXC chemokines were characterized. The chemokine panel included twelve human and mouse ELR+CXC chemokines (which share 32-90% sequence identity), and eight human and mouse (ELR-) CXC chemokines

(which share 18-70% sequence identity). The ELR+ CXC chemokines share 20-51% sequence identity with the (ELR-) CXC chemokines.

[0403] To accurately determine the K_D values of the antibodies for the different chemokines, two complementary configurations of chemokines and antibodies in the context of yeast surface display were utilized. Specifically, titrations using (i) soluble CXC chemokines with yeast-displayed antibodies, and (ii) soluble antibodies with yeast-displayed CXC chemokines, were performed. Exploring both orientations was necessary as some CXC chemokines are known to form oligomers when present in high concentration in solution, leading to undesired multivalent binding phenomena (Wang, X., Sharp, J. S., Handel, T. M. & Prestegard, J. H. Chemokine oligomerization in cell signaling and migration. Prog Mol Biol Transl Sci 117, 531-578 (2013)). The CXC chemokines were expressed as fusions to the N-terminus of mouse serum albumin (SA), and the engineered CK129, CK138 and CK157 binders as single-chain variable fragments (scFv) fused to the C-terminus of SA, which are referred to as SA129, SA138 and SA157*. SA157* is denoted with an asterisk as it was produced as separate VL and VH domains and then mixed in equimolar amounts, instead of a single chain with a linker.

[0404] In both orientations, similar crossreactivity of the engineered binders towards CXC chemokines that were not included in the selection cycles was observed (FIG. 3A). Importantly, this was not merely due to non-specific polyreactivity of the engineered binders, as no binding was detected toward a panel of unrelated proteins (data not shown). Yeast-displayed CK129, CK138 and CK157 bind 7, 12 and 16 soluble CXC chemokines, respectively (FIG. 3A). Similarly, the soluble SA129, SA138 and SA157* bind 4, 11 and 14 yeast-displayed CXC chemokines, respectively (FIG. **3**A). With a few exceptions, the K_D values determined using SA129, SA138 and SA157* antibody-fusions with yeastdisplayed CXC chemokines were on average 2- to 5-fold higher than those measured in the opposite arrangement (Table 11). The discrepancy in measured K_D values and extent of crossreactivity between the two specular orientations was not surprising and may reflect oligomeric CXC chemokines interacting with multiple yeast-displayed antibodies and therefore, mistaking avidity effects as seemingly higher affinity. This phenomenon appeared to be pronounced for (ELR-) CXC chemokines, such as hCXCL10 and hCXCL4, which are known to form highly avid oligomers in solution (Wang, X., Sharp, J. S., Handel, T. M. & Prestegard, J. H. Chemokine oligomerization in cell signaling and migration. Prog Mol Biol Transl Sci 117, 531-578 (2013); Swaminathan, G. J. et al. Crystal structures of oligomeric forms of the IP-10/CXCL10 chemokine. Structure 11, 521-532 (2003); Zhang, X., Chen, L., Bancroft, D. P., Lai, C. K. & Maione, T. E. Crystal structure of recombinant human platelet factor 4. Biochemistry 33, 8361-8366 (1994)).

[0405] These data showed that the extent of crossreactivity appeared to correlate both linearly and inversely with binding affinity (FIG. **3**C). SA129, which only recognized four chemokines that share significant sequence identity, displayed relatively high affinity for those targets. In contrast, highly crossreactive SA138 and SA157* had overall lower binding affinities toward a larger array of targets.

determination of residues that were likely critical for the interaction (FIGS. 4A and 4B).

[0408] Identification of the epitopes of two commercially available neutralizing antibodies: highly specific Ab275 (binds only hCXCL1) and the crossreactive Ab276 (binds hCXCL1, hCXCL2 and hCXCL3), were also identified. These epitope maps were then compared to the maps

TABLE 11

				-		
		Binding	affinities - K _r	± SE (nM)		
	CK129/SA	129	CK13	8/SA138	CK157	/SA157*
			Disp	olay		
	CK129	CXCL	CK138 Solı	CXCL ible	CK157	CXCL
	CXCL	SA129	CXCL	SA138	CXCL	SA157*
Groa	1.0 ± 0.1	2.7 ± 0.3	41.5 ± 4.5	96.7 ± 2.4	61.1 ± 5.6	1433 ± 108
Groβ	13.9 ± 1.1	43.6 ± 4.1	267 ± 38	1591 ± 315	57.9 ± 4.8	853 ± 67
Groy	5.7 ± 0.5	9.2 ± 0.9	349 ± 41	836 ± 130	53.9 ± 2.1	1034 ± 87
ENA-78	>2000	N.B.	5.8 ± 0.5	33.7 ± 2.2	26.3 ± 2.3	2125 ± 269
GCP-2	N.B.	N.B.	153 ± 15	>2000	46.6 ± 3.1	751 ± 88
NAP-2	N.B.	N.B.	N.B.	40.6 ± 1.6	N.B.	N.B.
IL-8	N.B.	N.B.	6.9 ± 0.5	12.7 ± 0.9	N.B.	N.B.
KC	1.1 ± 0.1	2.9 ± 0.3	35.7 ± 3.3	29.4 ± 2.8	24.3 ± 1.9	666 ± 47
MIP-2	>2000	N.B.	29.1 ± 4.1	14.7 ± 0.5	19.9 ± 1.7	591 ± 62
DCIP-1	N.B.	N.B.	10.9 ± 1.1	31.4 ± 3.1	17.4 ± 1.4	2647 ± 264
LIX	>2000	N.B.	176 ± 21	357 ± 33	96.9 ± 6.9	2018 ± 169
Nap-2	N.B.	N.B.	N.B.	N.B.	13.6 ± 0.8	528 ± 53
PF-4	N.B.	N.B.	167 ± 28	N.B.	112 ± 5.1	>20000
MIG	N.B.	N.B.	N.B.	N.B.	N.B.	N.B.
IP-10	N.B.	N.B.	N.B.	N.B.	45.5 ± 3.8	>20000
I-TAC	N.B.	N.B.	N.B.	N.B.	131 ± 11	>20000
Pf-4	N.B.	N.B.	N.B.	N.B.	17.1 ± 1.2	1770 ± 119
Mig	N.B.	N.B.	N.B.	N.B.	N.B.	N.B.
Ip-10	N.B.	N.B.	500 ± 55	N.B.	44.4 ± 3.7	N.B.
I-Tac	N.B.	N.B.	N.B.	N.B.	124 ± 13	N.B.

Example 4: Recognition of Functional Epitopes by Crossreactive Antibodies

[0406] Next, fine epitope mapping using alanine-scanning mutagenesis was performed to identify the residues that were directly involved in the interactions. hCXCL1 was chosen as the model chemokine over other ELR+ CXC chemokines because (i) it is recognized by all the engineered crossreactive binders and (ii) it is well-characterized biochemically. First, three-dimensional structural analysis and literate data was combined to identify hCXCL1 amino acid suitable to mutagenesis. Structurally buried hydrophobic amino acids, proline and cysteine residues were left unaltered, as they are crucial for overall folding and stability of the chemokine.

[0407] Fifty-four predicted solvent-exposed hCXCL1 residues were selected, individually mutated to alanine, expressed on the surface of yeast, and screened for decreased binding affinity to the soluble SA129, SA138 and SA157* serum-albumin antibody fusions. Five mutants that exhibited an intense loss of binding upon incubation with all the binders were excluded as this phenomenon was likely due to protein misfolding and destabilization of the displayed variants. Next, the binding of the remaining forty-nine hCXCL1 mutants towards soluble SA129, SA138 and SA157* serum albumin antibody-fusions was assessed. Solvent exposed mutations that eliminated or significantly reduced binding affinity were identified, which allowed for

assigned to the engineered binders. Similarly to Ab275 and Ab276, SA129 and SA138 bind motifs along the functional N- and 40s-loops that are known to be crucial for the binding of hCXCL1 to its cognate receptor, CXCR2. In contrast, SA157* recognized a distinctive epitope and engaged binding with hCXCL1 residues that are more important for the interaction with the glycosaminoglycans (GAGs). These epitope maps were also consistent with the results from a competitive assay (data not shown).

[0409] The residues recognized by the highly crossreactive SA138 and SA157* are conserved among many different chemokines, thus explaining their wide extent of binding crossreactivity. The epitope-mapping data suggested that the degree of crossreactivity inversely correlated with the number of bound residues. The relatively more specific Ab275, Ab276 and SA129 engaged binding with a larger number of hCXCL1 residues than the more crossreactive SA138 and SA157* binders. (FIG. 4C). In contrast, the binding specificity of SA138 and SA157* appeared to be achieved through mostly peripheral long-range weak interactions, and interactions with a few preserved prominent structural conserved residues, such as the hot-spot motif NGF. In contrast, Ab275, Ab276 and SA129 appeared to engage chemokines with much stronger interactions (FIG. 4D).

Example 5: Analysis of Binding of Soluble ELR+ CXC Chemokine Ligands to their Cognate Receptors

[0410] To measure the potential therapeutic efficacy of the crossreactive binders, the ability of SA129, SA138 and SA157* fusions were tested for their ability to inhibit binding of ELR+ CXC chemokines to their cognate CXCR1 and CXCR2. HEK293 cell lines expressing human CXCR1 and CXCR2 were utilized. Cells were incubated with various concentrations of hCXCL1 and hCXCL8 ligands to determine the half-maximal effective concentrations (EC50) of the interaction. Next, the ability of SA129, SA138 and SA157* to antagonize the interactions between hCXCL1 and hCXCL8 ligands and their cognate receptors was examined. The engineered binders inhibited the ability of hCXCL1 and hCXCL8 chemokines to bind CXCR1 and CXCR2 receptors in a dose dependent manner to various extents (data not shown). Further, the determined inhibitory constants (Ki) correlated well with the previously reported K_D values (FIG. 5A). These results show that crossreactive SA129, SA138 and SA157* fusions can markedly interfere with the binding of ELR+ CXC chemokines to both human CXCR1 and CXCR2 in vitro.

[0411] Next, the ability of the SA129, SA138 and SA157* fusions to antagonize the activation of ELR+ CXC chemokine receptors was assessed. An intracellular calcium mobilization assay was utilized, wherein the assay was in the presence of human and mouse derived neutrophils activated with human (hCXCL1, hCXCL5, and hCXCL8) and murine (mCXCL1 and mCXCL2) ELR+ CXC chemokines, respectively. First, the EC50 of the chemokines on the neutrophils was determined (0.94±0.2 for hCXCL1; 4.8±0.8 for hCXCL5; 1.29±0.4 for hCXCL8; 0.81±0.9 for mCXCL1; 2.5±0.7 for mCXCL2). Then, changes in intracellular calcium levels were monitored upon pre-incubation of ELR+ CXC chemokines with varying concentrations of SA129, SA138 and SA157* as antagonists. Commercially available neutralizing monoclonal antibodies were used as a positive control. The assays revealed that the engineered binders exhibited inhibitory activity by preventing binding of the human and murine ligands to the receptor in a dose dependent manner (FIGS. 5B and 5C). Again, the calculated K, values correlated well with the previously determined K_{D} affinities (FIG. 5D). Taken together, these data provided strong evidence that engineered crossreactive antibodies are potent inhibitors of ELR+ CXC chemokine signaling in vitro and ex vivo, and have the potential to suppress CXCR1 and CXCR2 activation in vivo.

Example 6: Effect of Crossreactive Serum Albumin-Antibody Fusions on Neutrophil Infiltration In Vivo and Inflammatory Arthritis in Mice

[0412] Given the promising results from the inhibitory assays, the inhibitory potency of the engineered fusions in the murine serum transfer K/B×N model of autoantibody-induced arthritis was tested. This model displays clinical and histopathological similarities to human rheumatoid arthritis (Christensen, A. D., Haase, C., Cook, A. D. & Hamilton, J. A. K/B×N Serum-Transfer Arthritis as a Model for Human Inflammatory Arthritis. *Front Immunol* 7, 213 (2016); Ditzel, H. J. The K/B×N mouse: a model of human inflammatory arthritis. *Trends Mol Med* 10, 40-45 (2004); Kouskoff,

V. et al. Organ-specific disease provoked by systemic autoimmunity. Cell 87, 811-822 (1996); Matsumoto, I. et al. How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nat Immunol 3, 360-365 (2002); Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157-168 (2002)). The levels of ELR+ CXC chemokines are markedly upregulated in the joints of these arthritic mice and neutrophils, that have upregulated CXCR2 in the joint, are the main effector cells, making K/B×N serum transfer-induced arthritis mice an excellent model to test the therapeutic efficacy of the engineered binders (Chou, R. C. et al. Lipid-cytokine-chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity 33, 266-278 (2010); Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol 167, 1601-1608 (2001); Jacobs, J. P. et al. Deficiency of CXCR2, but not other chemokine receptors, attenuates autoantibodymediated arthritis in a murine model. Arthritis and rheumatism 62, 1921-1932 (2010)).

[0413] Serum albumin-antibody fusions were generated to antagonize circulating small ELR+ CXC chemokines in vivo (FIG. 6). In addition to the SA129 and SA138 fusions described above, an irrelevant SA-fusion (SA^{CTR}) was used. The negative control SACTR encodes SA fused to an antibody fragment that targets the human carcinoembryonic anigen (CEA), a protein that does not exist in mice. To ensure complete inhibition of all ELR+ CXC chemokines present in circulation, relatively high doses of the engineered fusion proteins was administered (i.e., 50 mg/kg). When injected into mice, SA129, SA138 and SACTR displayed plasma half-lives between 42-47 hours, considerably longer than small synthetic compounds or antibody fragments, but shorter than full length monoclonal antibodies. Despite the high doses of SA129, SA138 and SA^{CTR}, the molecules were well tolerated. Treated mice gained weight and exhibited good body condition. Moreover, no signs of splenomegaly as a consequence of neutropenia were detected.

[0414] Initially the ability of crossreactive SA fusions to prevent the manifestation of the inflammatory arthritis in the K/B×N serum transfer model was assessed. Specifically, mice were treated on the same day as the arthritogenic serum was injected and the progression of the disease evaluated by both blinded clinical scores and measurements of ankle thickness. Mice treated with the more crossreactive SA138, which binds all four murine ELR+ CXC chemokines (mCXCL1, mCXCL2, mCXCL3, and mCXCL5), were protected from developing arthritis, with an approximately 80% reduction of clinical score compared with negative controls at the peak of the disease (day 8 after arthritogenic K/B×N serum transfer and disease initiation; FIGS. 7A and 7B). In contrast, the more specific SA129 that recognizes just one murine ELR+ CXC chemokine (mCXCL1) only moderately reduced joint inflammation, with an approximately 30% reduction of clinical score at day 8 (FIGS. 7A and 7B). Mice treated with SA^{CTR} showed typical clinical signs of untreated mice that received arthritogenic serum and developed inflammatory arthritis with pronounced joint swelling. There were no differences between mice treated with SACTR or with vehicle (PBS) only (FIGS. 7A and 7B).

[0415] Next, the number of synovial fluid neutrophils isolated from the arthritic joints of mice treated with SA129,

SA138 and SACTR fusions was determined. Synovial tissues were harvested at the peak of the disease (day 8 after disease initiation). Mice treated with arthritogenic serum and the broadly crossreactive SA138 had 50- and 70-fold lower levels of infiltrated neutrophils than mice treated with the more specific SA129 and the irrelevant SA^{TR} , respectively (FIG. 7C). These data were consistent with previous clinical score measurements and resembled those observed using mice deficient in CXCR2 (CXCR2-/-) injected with arthritogenic serum (Chou, R. C. et al. Lipid-cytokine-chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity 33, 266-278 (2010); Jacobs, J. P. et al. Deficiency of CXCR2, but not other chemokine receptors, attenuates autoantibody-mediated arthritis in a murine model. Arthritis and rheumatism 62, 1921-1932 (2010)).

[0416] Histological analysis and scoring of inflamed ankle sections were also performed. Inflammatory cell infiltration and pannus formation were absent or minimally present in mice treated with the broadly crossreactive SA138 (FIGS. 7D and 7E). Consistent with previous clinical findings, the joints of mice treated with arthritogenic serum and control

SA^{CrR} displayed abundant inflammatory cell infiltration and pannus formation. These pathological changes were present, though less pronounced, in mice treated with the more specific SA129 fusion.

[0417] Further, the therapeutic efficacy of crossreactive SA fusion in mice with established arthritis was tested. Arthritic mice were treated 4 days after arthritogenic serum transfer, when joint inflammation had developed. The highly crossreactive SA138 reversed inflammation very quickly and provided a remarkable complete resolution of the disease with an approximately 60% reduction of clinical score and 0.3 mm of ankle thickness over control at the peak of the disease (day 8 after disease initiation; FIGS. 7F and 7G). The specific SA129-treated mice exhibited only a modest reduction of both clinical scores (~25%) and ankle thickness (0.1 mm) at day 8 (FIGS. 7F and 7G). The SA^{CrR} and vehicle-treated mice showed no difference in the rate of disease development (FIGS. 7F and 7G). Taken together, these data show that highly crossreactive SA138 fusion efficiently blocked neutrophil infiltration in the synovial tissues, thus preventing and even reversing inflammatory arthritis.

Table 12: Sequence Summary

SEQ ID NO	Description	Sequence
NO	CK138 V _H	EVQLVESDGGLVQPGGSLRLSCAASGFNLSYYGMHWVRQA
	amino acid	PGKGLEWVAYIASYPGYTSYADSVKGRFTISADTSKNTAYL
	sequence	QMNSLRAEDTAVYYCARSGYSYSPYYSWFSAGMNYWGQG
		ALVTVSS
2	CK138 V _L	AIQMTRSPSSLSASVGDRVTITCRASQYHDGSAAWYQQKPG
	amino acid	KAPKLLIYGASYLYSGVPSRFSGSRSGTDFTLTISSLQPEDFA
	sequence	TYYCQQSSYSLITFGQGTKVEIK
3	CK138 V _H	GAGGTTCAGCTGGTGGAGTCTGACGGTGGCCTGGTGCAGCCAGGG
	nucleic acid	GGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTTCAACCTCTCT
	sequence	TACTACGGTATGCACTGGGTGCGTCAGGCCCCGGGTAAGGGCCTG
		GAATGGGTTGCATACATTGCTTCTTACCCTGGCTACACTTCTTAT
		GCCGATAGCGTCAAGGGCCGTTTCACTATAAGCGCAGACACATCC
		AAAAACACAGCCTACCTACAAATGAACAGCTTAAGAGCTGAGGAC
		ACTGCCGTCTACTATTGTGCTCGCTCTGGTTACAGTTACTCTCCG
		TATTATTCTTGGTTCTCTGCTGGTATGAACTACTGGGGTCAAGGA
		GCCCTGGTCACCGTCTCCTCG
4	CK138 V _L	GCTATCCAGATGACCCGGTCCCCGAGCTCCCTGTCCGCCTCTGTG
	nucleic acid	GGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGTACCACGAC
	sequence	GGTTCTGCAGCCTGGTATCAACAGAAACCAGGAAAAGCTCCGAAG
		CTTCTGATTTACGGTGCATCCTACCTCTACTCTGGAGTCCCTTCC
		CGCTTCTCTGGTAGCCGTTCCGGGACGGATTTCACTCTGACCATC
		AGCAGTCTGCAGCCGGAAGACTTCGCAACTTATTACTGTCAGCAA
		TCTTCTTATTCTCTGATCACGTTCGGACAGGGTACCAAGGTGGAG
		АТСААА
5	CK138 V _H	NLSYYGMH
	CDR1	
6	CK138 V _H	AYIASYPGYTSY
	CDR2	
7	CK138 V _H	RSGYSYSPYYSWFSAGMN
	CDR3	
8	CK138 V _L	QYHDGSA
	CDR1	
9	CK138 V _L	YGASYL
	CDR2	
10	CK138 V _L	QSSYSLIT
	CDR3	
11	CK157 V _{II}	EVQLVESGGGLVQPGGSLRLSCAASGSNPYYYGGTHWVRQ
	amino acid	APGEELEWVASIGSYPGYTDYADSVKGRFTISADTSKNTAY
	sequence	LQMNSLRAEDTAVYYCARHYYWYDATDYWGQGTLVTVS
		S
12	CK157 V _L	DIQMTQSPSSLSASVGDRVTITCRASQSYGGVAWYQQKPGK
	amino acid	APKLLIYSASYLYSGVPSRFSGSRSGTDFTLTISSLQPEDFAT

	sequence	YYCQQPSHLITFGQGTEVEIK
13	CK157 V _{II}	GAGGTTCAGCTGGTGGAGTCTGGCGGTGGCCTGGTGCAGCCAGG
	nucleic acid	GGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTCCAACCCCTA
	sequence	TACTACGGTGGTACGCACTGGGTGCGTCAGGCCCCGGGTGAGGA
	1	CTGGAATGGGTTGCATCTATTGGTTCTTACCCTGGCTACACTGA
		TATGCCGATAGCGTCAAGGGCCGTTTCACTATAAGCGCAGACACA
		TCCAAAAACACAGCCTACCTACAAATGAACAGCTTAAGAGCTGAG
		GACACTGCCGTCTATTATTGTGCTCGCCATTACTACTGGTACGA
		GCTACTGACTACTGGGGTCAAGGAACCCTGGTCACCGTCTCCTC
14	CK157 VL	GATATCCAGATGACCCAGTCCCCGAGCTCCCTGTCCGCCTCTGT
11	nucleic acid	GGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGTCTTACGG
	sequence	GGTGTAGCCTGGTATCAACAGAAACCAGGAAAAGCCCCGAAGCT
	sequence	CTGATTTACTCTGCATCCTACCTCTACTCTGGAGTCCCTTCTCG
		TTCTCTGGTAGCCGTTCCGGGACGGATTTCACTCTGACCATCAG
		AGTCTGCAGCCGGAAGACTTCGCAACTTATTACTGTCAGCAACC
15		
15	CK157 V _H	NPYYYGGTH
17	CDR1	
16	CK157 V _H	ASIGSYPGYTDY
	CDR2	
17	CK157 V _H	RHYYWYDATD
	CDR3	
18	CK157 V _L	QSYGGV
	CDR1	
19	CK157 V _L	YSASYL
	CDR2	
20	CK157 V _L	QPSHLIT
	CDR3	
21	CK129 V _H	EVQLVESGGGLVQPGGSLRLSCAASGFNISSYGSMHWVRQ
	amino acid	APGKGLEWVASIYPYSSSTYYADSVKGRFTISADTSKNTAY
	sequence	LQMNSLRAEDTAVYYCARGYGPWYAYSYFALDYWGQGT
		VTVSS
22	CK129 V _L	DIQMTQSPSPLSASVGDRVTITCRASQYGGYVAWYQQKPG
	amino acid	KAPKLLIYGASLLYSGVPSRFSGGRSGTDFTLTISSLQPEDFA
	sequence	TYYCQRGHALITFGQGTKVEIE
23	CK129 V _H	GAGGTTCAGCTGGTGGAGTCTGGCGGTGGCCTGGTGCAGCCAGG
	nucleic acid	GGCTCACTCCGTTTATCCTGTGCAGCTTCTGGCTTCAACATCTC
	sequence	TCTTACGGTTCTATGCACTGGGTGCGTCAGGCCCCGGGTAAGGG
	bequeilee	CTGGAATGGGTTGCATCTATTTACCCTTACTCTAGCTCTACTTA
		TATGCCGATAGCGTCAAGGGCCGTTTCACTATAAGCGCAGACAC
		TCCAAAAACACAGGCCTACCTACAAATGAACAGCTTAAGAGCTGA
		GACACTGCCGTCTATTATTGTGCTCGTGGTTACGGTCCGTGGTA
		GCTTACTCTTACTTCGCTTTGGACTACTGGGGTCAAGGAACCCT
24		GTCACCGTCTCCTCG
24	CK129 V _L	
	nucleic acid	GGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGTACGGTGG

_	_
~	<u></u>
\mathcal{I}	9

	sequence	TACGTAGCCTGGTATCAACAGAAACCAGGAAAAGCTCCGAAGCTT CTGATTTACGGTGCATCCCTTCTCTACTCTGGAGTCCCTTCTCGC TTCTCTGGTGGCCGTTCCGGGGACGGATTTCACTCTGACCATCAGC AGTCTGCAGCCGGAAGACTTCGCAACTTATTACTGTCAGCGAGGT CATGCTCTGATCACGTTCGGACAGGGTACCAAGGTGGAGATCGAA
25	CK129 V _H CDR1	NISSYGSMH
26	CK129 V _H CDR2	ASIYPYSSSTYY
27	CK129 V _H CDR3	RGYGPWYAYSYFALD
28	CK129 V _L CDR1	QYGGYV
29	CK129 V _L CDR2	YGASLLY
30	CK129 V _L CDR3	RGHALIT
31	gWiz-LS- Fc(mIgG2)- His6-linker- TEV- hCXCL1 ³⁸⁻ ¹⁰⁷ -G2- AviTag	ATGASSET00000000000000000000000000000000000
32	gWiz-LS- Fc(mIgG2)- His6-linker- TEV- hCXCL5 ⁴³⁻ ¹¹⁴ -G ₂ - AviTag	ATGAGGGTOCCCCUTCAGCTCCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCA COATGTGAGCCCCAGAGTGCCCCCCCCTGCTCCTGGCTCCCCCCCC

		CCTOCADCACCACAASACATCADTAACAAASACETCACCCTCACCTOCATCATC
		acadoottettacotteccarattectotecceetocaccaatectectac caretaaaactajaacaacajeccaacajecctecaceeticatecetta jeec
		ATSIACAGGAASCICAGASIACAAAASASCAGTIGSSAAAGAGGAAGCOULTIC
		GCCTGUL DAGLIGITODACGAGGAL DEGLACAA ECACUTL ACGACITAAGACCATC NGCCCCCUUUUUGGSIXAACACCATCACCATCACCCTCTCCCCCCTGCATCTC
		GGTACC GAGAACCTGTACTTCCAA GTGCTGCGCGAGCTGAGATGCGTGTGCCTG
		ATCGGCCCCCAGTGCAGCAAGGTGGAAGTGGTGGCCAGCCTGAAGAACGGCAAA
		GAGATCTGCCTGGACCCCGAGGCCCCATTCCTGAAGAAAGTGATCCAGAAGATC
		CTGGACGGCGGCAACAAAGAGAAC <u>GGCGGA</u> GGCCTGAACGACATCTTCGAGGCC CAGAAAATCGAGTGGCACGAG TGATGATAA
33	gWiz-LS-	ATGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
	Fc(mIgG2)-	CGALGE GAGOCCAGAGTOCCCA LEACACAGAGUUCCEG LOUTCCAC LOAAAGAG
	His6-linker-	Tereconarsescanteraganersecarnescentrestere
	TEV-	COTCCARAGATICAAGGATGIACTOATGZICTOOOTIGAGCOOCATGGICACATGI
	$hCXCL8^{29-}$	CECUTO PEOCATOR ACCACCA FOACCOCATA COTOCATA E CADOD SUFEL DOTO AACAACCEOCAACTA CACACCACCACACACAACCOCA LA CAC ACCA TA CAAC
	$99-G_2-$	ACTACTODO OFFICIONO ACTOCIÓN CONTRACASE CONTRACASES EN ACTACIÓN DA CASENCIA CONTRACASES
		GECA AGA ATTCA A A BOA A SETO A A CARACTER COMPTCE COMPTCE A
	AviTag	AAAAGUREO EGAAAROOGAURASSOCIAURASAGGTUGASAGGTIATA. G. UTTG
		CCTOCACCAGOAGAAGAGAAGACTAAGAAAGAGTUCAGUCTGACCCGGACCCGGACCATGATC
		ACAGGOTECITACCEGCGAARTEGUTGTGGECEGGAGGEGCAATGGGGGGAGA
		CRAMARACTACARCARCERCORDOUTCCTCCACTCCATCOTTCCTTC
		AFGIAGASCAASCICAGAGIAGAAAAGSGCNCTIGSGAAGAGGAAGCCTITIC
		CCCTCCTCACTCCTCCACCACCACCACCACCACCACCACC
		TOCOGETUTUTGESARCACCATCACCATCACCTCTTCTGGCGTGGATCTG
		GGTACCGAGAACCTGTACTTCCAAGCCAAAGAACTGCGGTGCCAGTGCATCAAG
		ACCTACAGCAAGCCCTTCCACCCCAAGTTCATCAAAGAACTGAGAGTGATCGAG AGCGGCCCTCACTGCGCCCAACACCGAGATCATCGTGAAGCTGAGCGACGGCAGA
		GAGCTGTGCCTGGACCCCCAAAGAAAACTGGGTGCAGCGGGTGGGGAAAAGTTC
		CTGAAGCGGGCCGAGAACAGC <i>GGCGGA</i> GGCCTGAACGACATCTTCGAGGCCCAG
		AAAATCGAGTGGCACGAG TGATGATAA
34	gWiz-LS-	ATGACCCDODDCCTDADCHCCTDODDCHCCCDODHCHCTDODTCCCACCTDCA
	Fc(mIgG2)-	CGATGEGAGOCCAGAGTOCCCN: AACACAGAACCECEGI. OTECCACI: OAAAGAG
	His ₆ -linker-	EG LOUCCCA EGOQCAGO EGOAGACO EGOTOGO EGGACCA EGOGLULTI CA LOTTIC
	TEV-	CCTCCAAAGATCAASSATCTACTCATCATCTCCCCCACCCCCCCCCC
		STGTTGTTGATGTGZGCGAGGATGACCCAGZCGUCCAGZTCAGCCGGTUDGTG
	mCXCL1 ²⁸⁻	ANDRACOTOCARCHAGAGAGAGOTON DRCAGARA DOCATACAC ROGATTA DARC
	96 -G ₂ -	A CTACTO COGEGE COTO A SUBCO COCOMPOSA SUACOR GENERAL CALA SUBCIONAL COMPANY
	AviTag	GGCAABBAGELIUAAREGCAABBLOAACAAUABAGCUUECOCALUUCOCALOBAB BARAOOAUCECAAAACCCARABBSUCARTAABAGCTOCACAGGCACAESUOTTG
		COLOCACUACCERARISSI
		ACCENTRACIAN CONTRACTOR CONT
		GREGGARACEA CARGARCA COSCARCA STOLEGACTO SA CONSTRUCTION AND CONSTRUCTION CONSTRUCTION AND AND CONSTRUCTION AND CONSTRUCTICA AND CONSTRUCTICA AND CONSTRUCTICA AND CONSTRUCTICA
		ATOTACASCAACOT CACROTACAAARCACCACTHOOCAAACACCAASUCUUTTO
		GCCTGCTCAGTGGTCCACGAGGGTCTGCACAATCRCCTLACGACTAAGACCATC
		TO DOCKNOT DOCKNAAA CACCATCACCATCATCACTCTTCTGGCGTGGATCTG

		GGTACCGAGAACCTGTACTTCCAAGCCAACGAGCTGCGGTGCCAGTGCCTGCAG ACCATGCCCGCCATCCACCTGAAGAACATCCAGAGCCTCAAGCTCCTGCCCAGC GGCCCTCACTGCACCCAGACCGAAGTGATCGCCACCCTGAAGAACGGCAGAGAG GCCTGCCTGGATCCCGAGGCCCCGGTGCAGAAAATCGTGCAGAAAATGCTG AAGGGCGTGCCCAAG <u>GGCCGGAGGCCTGAACGACATCTTCGAGGCCCAGAAAATCG</u> GAGTGGCACGAGTGATGATAA
35	gWiz-LS- Fc(mIgG2)- His6-linker- TEV- mCXCL2 ³¹⁻ ¹⁰⁰ -G2- AviTag	ATGACOUTCCCODECTACCTORESCOUTECTOCTECCCODECACCTORA CGATATIGA SCICLAGA STRECOLATIAN CACAGA ACCONTRUIDUT CACAGA STRECOLATION TO COLICCA AGUAL CAACUATE HACIDATION CUUDEL CACCUUGAL COLUMNA AC STREETERA TETERASCER SCATCACCACACO TUURE A TORSULTET TOTE ACCACO TOCCAGA CTACACACO STUCAGA COLUMNA ACCUURE A TORSULTET TREE ACCACO TOCCAGO STREAC ACACO STUCAGA COLUMNA COCUUNI CACACO STUTACAAC AGTACT CTCCCGG STREAC ACACO STUCAGA COLUMNA COCUUNI COCUUNI CACACO STREAC ACCACO TOCCAGO STREAC ACACO STUCAGA COLUMNA COCUUNI COCUUNI CACA ACACO TOCCAGO STREAC ACACO STACACA SAFOCO LOUAL COCUUNI CACA ACACO TOTES AANOCCASACO SCACACA SAFOCO LOUAL COCUUNI CACA ACACO TOTES AANOCCASACO SCACACA SAFOCO STREAC STREACT COUCUAC CACACAGA STREACTICA STREACTICA SCACACO STREAC ACACOCUTETINA COLUMNA CACACASA CACACACA SAFOCO SCACACO STREAC CACOCUTETINA COLUMNA SAFOCACO SCACACO SCACACO SCACACO STREAC ACACOCUTETINA COLUMNA SAFOCACO SCACACO SCACACO SAFOCO SCACA CACOCUTETINA COLUMNA SAFOCACO STREAC ACTO SCOLUCINA CACOCUTETINA STREACT ACACAACACO SCACACO SCACACO SAFOCO SCACA CACOCUTETINA STREACTICA SAFA SACACO SCACACO SAFOCO SCACA CACOCUTETINA STREACT ACACAACACT SCACACO SCACACO SCACACO STREAC COUCUL O LE CUUDI. AAS CACCATCATCATCATCATCATCATCATCACCATCATCACCAC
36	gWiz-LS- Fc(mIgG2)- His6-linker- TEV- mCXCL5 ⁴⁸⁻ ¹¹⁸ -G ₂ - AviTag	ATGROCHTCCCCCCTCACCTCCTCCCCCCCCCCCCCCCCCCCCC

		AARATCGAGTGGCACGAG TGATGATAA
37		<u>MRVEAQLIGIIIIIWIRGERC</u> UPRVPITQNPCPPLEECPPCEARDIIGGPSVFT
	LS-Fc-His6-	PARI ROVIMI SUSPINITOVIVOVSEDDE OVQI SVEVNIVEVHI AQTQI HREON
	linker-TEV-	STLEVYSALPIQEQCHESCREELCVYMRALESPIERTISKPROPYEAGQVYV
	hCXCL1 ³⁸⁻	FEPAREZIKKERSI. KUMI LOPILPARI AVEW ISNOR ERQIMKELA EVILEVU OST.
		my skervças twergelfacevy anglemelatette skelgel herressgvd
	107 -G ₂ -	GTENLYFQATELRCQCLQTLQGIHPKNIQSVNVKSPGPHCAQTEVIATLKNGR
	AviTag	ACLNPASPIVKKIIEKMLNSDKSN <u>GG</u> GLNDIFEAQKIEWHE
38	LS-Fc-His ₆ -	<u>wryf Aglest Lligipgargeer yf i tonf op fi reoff gaappli Sspsyfi.</u>
	linker-TEV-	FERENDVERESESPEVICVVEVSEODEDVÇEVBEVARVEVALAÇEÇTEREDT.
		STERVYSBLETQHQDPHS/KEEKOSVNEPALESPTEKTTSRPREPVBACQVVV
	$hCXCL5^{43}$	PPPA SEMPRATEPS FOOM FIGHT PAR LAVON DEMORTE ONE RELATIVLE OF DEST
	114 -G ₂ -	WUSKLEVQKSTWEEGSTFACSVVEGTERALITEKTISESTSK HRBBBBSSGVD .
	AviTag	GT ENLYFQ VLRELRCVCLQTTQGVHPKMISNLQVFAIGPQCSKVEVVASLKNG
		EICLDPEAPFLKKVIQRILDGGNKEN <u>GGCINDIFEAQKIEWHE</u>
39	LS-Fc-His ₆ -	MENEAQUDGILLINDPGARGEDENPHTYNECEPHKEGEPGAAPDLESSEGNEI.
	linker-TEV-	
		STIEVVSAUPTOHOLAMSSKEEKOSVERRATESPTEKTIS SPESVVRAPOVVV
	hCXCL8 ²⁹⁻	PPPA SEMERREPORT OWE DOTE PAREAVOWL SEGRET SQUERE LETVED SEGRET
	99 -G ₂ -	WYSKLEVOKSUWERSSUFACEVVÆGLENRIJTEKU FRESUSK HRHRRHSSGVD
	AviTag	GTENLYFQAKELRCQCIKTYSKPFHPKFIKELRVIESGPHCANTEIIVKLSDG.
		ELCLDPKENWVQRVVEKFLKRAENS <u>GGGINDIFEAQKIEWHE</u>
40	LS-Fc-His ₆ -	Mentragilisi illiyile garcare vv fitore ce pi kecipp caap d.e.c.c.p.svat.
10	linker-TEV-	FERIRDVERI SESERVIDVVVDVS SUDEDVÇE SVEVRIVELAÇI, ÇIBREDI.
		STLEVVSALDLQVQDØMSGKEFKORVENBALDSDLEKTUS RDDGVVRADQVMV
		I STITELE SOUTH TO CONTROLE OF DEPENDENCE DE TERET DE TREST DE LE SERVICE DE LE SERVICE DE LE SERVICE DE LE SE
	mCXCL1 ²⁸⁻	
		PPPAREMEREEVELOWE JONE PAMEAVOWL SUGPTED STREATVLOSEDOX
	<i>mCXCL1</i> ²⁸⁻ ⁹⁶ - <i>G</i> ₂ -	PEPARENERERSELORE IGELEAR LAVOWL SEGET SQASKE LATVLESEGGY Mysklevqwstweegs leadovversileralitekt for stor hennen <u>ssgvd</u>
	mCXCL1 ²⁸⁻	PEPARENERERSELORE IGELEAR LAVOWL SEGET SQASKE LATVLESEGGY Mysklevqwstweegs leadovversileralitekt for stor hennen <u>ssgvd</u>
41	mCXCL1 ²⁸⁻ ⁹⁶ -G2- AviTag	PPPASEMERKEPSELOMELIGEEPAMEAVDWLSNGPTSQNSKGLATVLDSBOGY MYSKLPVQKSTWERGSDFAOSVVHEGLENALITTKIESPSEGK HHHHHH SSGVD GTENLYFQANELRCQCLQTMAGIHLKNIQSLKVLPSGPHCTQTEVLATLKNGR ACLDPEAPLVQKIVQKMLKGVPK <u>GG</u> GLNDIFEAQXIEWHE
41	mCXCL1 ²⁸⁻ ⁹⁶ -G ₂ - AviTag LS-Fc-His ₆ -	PPEASEMEREEPSELOMELIGEEPAELAVOWLSNGFTSQASKALATVLDSDGSY MYSRLFYQKSTWERGSDFACOVYERGLABADITEKTESPSEGK HHHHHHS SGVD GTENLYFQANELRCQCLQTMAGIHLKNIQSLKVLPSGPHCTQTEVLATEKNGR ACLDPEAPLVQKIVQKMEKGVPK <u>GG</u> GENDIFEAQKIEWHE MRYFACLEGELLLWEFGARCEPFYFTDQRPCEFEKECTPCAAPDLEGGFSVFT
41	mCXCL1 ²⁸⁻ ⁹⁶ -G ₂ - AviTag LS-Fc-His6- linker-TEV-	PPPAEEMIKEERSII OMIISPIPAEIAVOWI SHGRTEQAIKALATVIDSOGSY MYSKLEVQKSTWERGSIFAOSVVHUJLERALTTKI I SESIGK HHHHHIS SGVD GT ENLYFQ ANELRCQCLQTMAGIHLKNIQSLKVLPSGPHCTQTEVLATIKNGR ACLDPEAPIVQKIVQKMLKGVPK <u>GG</u> GLNDTFTAQKIEWHT MRVPAOLIGILLIMIFGARCEPPVFITORPCTFIKEOPPCAAPDLLGSPSVFT PPKIKDVLMISLSPMVTOVVDVSEODPDVGISWEVDIVEVBLAQTCOREDY
41	mCXCL1 ²⁸⁻ ⁹⁶ -G ₂ - AviTag LS-Fc-His6- linker-TEV- mCXCL2 ³¹⁻	PPPAEEMIKEEPSILOWIIGFIPAHIAVUWI SNGFTSQAYKALATVIDSNGSY MYSKLEVQKSTWERGSTFACSVVHUGLANALITKIIISESIGK HHHHHH<u>SSGVD</u> GTENLYFQANELRCQCLQTMAGIHLKNIQSLKVLPSGPHCTQTEVLATLKNGR ACLDPEAPLVQKIVQKMLKGVPK<u>GG</u>GINDIFFEAQKIEWHE MRVPACILGELLLMIFGARCEPPVFITQRPCFFIKEOPPCAAPDLLGGFSVET. PPKIKDVLMISISPMVTCVVDVSEOPPDVGISWEVDINEVELAQTQCBREDVI STLEVVSALFIQWQDWMSGNEFKCAVNNKALPSFIEKTISEFGPVRAPOVYV
41	mCXCL1 ²⁸⁻ ⁹⁶ -G ₂ - AviTag LS-Fc-His6- linker-TEV-	PPEASEMEREEPSELOWEIGEEPAELAVOWLSRGPTSQASKALATVLDSBGSY MYSKLRVQMSTWERGSTFACEVVHEGLABALTTKTEEPSEGK HHHHHHSSGVD GTENLYFQANELRCQCLQTMAGIHLKNIQSLKVLPSGPHCTQTEVLATLKNGR ACLDPEAPLVQKIVQKMLKGVPK <u>GG</u> GLNDIFEAQXIEWHE MRVPAQLEGELLLMILFGAROEPPVFETQRPCFFEREOPPCAAPDLEGGFSVFT PFKEKDVLMISLSPMVTOVVVDVSEODPDVGESWEVDIVEVBLAQTQTØREDV STLEVVSALFIQHQDWMSGPEFKORVNDRALPSFLEVTTSRFEGPVRAPOVYV PPPAEEMERKEPSETOMETOPEPAELAVOWTSNCRTEQNYRNLATVLDSDCSY
41	<i>mCXCL1</i> ²⁸⁻ ⁹⁶ -G ₂ - <i>AviTag</i> <i>LS-Fc-His6-</i> <i>linker-TEV-</i> <i>mCXCL2</i> ³¹⁻ ¹⁰⁰ -G ₂ -	PPEASEMEREEPSELOMELIGEEPAELAVOWL SEGFTSQASKALATVLDSEGST MYSRLEVQKSTWERGSLFACSVVERGLEBELTTKTEEPSEGK HHHHHHSSGVD GTENLYFQANELRCQCLQTMAGIHLKNIQSLKVLPSGPHCTQTEVLATLKNGR ACLDPEAPLVQKIVQKMLKGVPKGGGLNDIFTEAQXIEWHT MRVPAQLEGELLLWLPGAROEPPVEIDQEPCEFEKEOPPCAAPDLLGGESVET PPKEKDVLMISLSPMVTOVVVEVSEODPDVGESWEVEEVEVEVELAQTQCBREDV STLEVVSALFIQUQDWESGEEFKOKVNEKALPSFLEKTESAFFGPVRAPOVV PPFASEMEKKEPSETCMETOPEPAELAVOWTSNORTEQNYKHLATVLDSDOSY MYSRLEVQKSTWERGSLFACSVVEGLEBELTKEEPSEGKHHHHHHSSGVD
41	mCXCL1 ²⁸⁻ ⁹⁶ -G ₂ - AviTag LS-Fc-His6- linker-TEV- mCXCL2 ³¹⁻	PPEASEMEREEPSELOMELIGEEPAELAVOWL SEGFTSQASKALATVLDSEGST MYSRLEVQKSTWERGSLFACSVVERGLEBELTTKTEEPSEGK HHHHHHSSGVD GTENLYFQANELRCQCLQTMAGIHLKNIQSLKVLPSGPHCTQTEVLATLKNGR ACLDPEAPLVQKIVQKMLKGVPKGGGLNDIFTEAQXIEWHT MRVPAQLEGELLLWLPGAROEPPVEIDQEPCEFEKEOPPCAAPDLLGGESVET PPKEKDVLMISLSPMVTOVVVEVSEODPDVGESWEVEEVEVEVELAQTQCBREDV STLEVVSALFIQUQDWESGEEFKOKVNEKALPSFLEKTESAFFGPVRAPOVV PPFASEMEKKEPSETCMETOPEPAELAVOWTSNORTEQNYKHLATVLDSDOSY MYSRLEVQKSTWERGSLFACSVVEGLEBELTKEEPSEGKHHHHHHSSGVD
	mCXCL1 ²⁸⁻ ⁹⁶ -G ₂ - AviTag LS-Fc-His6- linker-TEV- mCXCL2 ³¹⁻ ¹⁰⁰ -G ₂ - AviTag	PPPAEEMIKEEPSILOWILIGELPAHLAVUWLSNGETSQATKALATVLDSDGSY MYSKLEVQKSTWEEGSDFACSVVHUGLENRLITKTISESDGKHHHHHHSSGVD GTENLYFQANELRCQCLQTMAGIHLKNIQSLKVLPSGPHCTQTEVLATLKNGR ACLDPEAPLVQKIVQKMLKGVPK <u>GG</u> GINDIFEAQXIEWHE MRYPACILGELLLIMIP GARCEPPVFITQNPCFFIKEOPPCAAPDLLGGFEVET PPKIKDVLMISISPMVTCVVDVSEODPDVGIEWEVDISVETAQTQCBREDY STLEVVSALFIQWQDWMSGDEFKCAVNDKALPSFIEKTISAFFGPVRAPQYY PPFAEEMIKKEPSITCMETOPIPAELAVOWTSNCKTEQNYKHIATVLDSDCSY MYSKLEVQKSTWEEGSDFACSVVHUGLENRIJTKTIERSDGKHHHHHHSSGVD GTENLYFQASELRCQCLKTLPRVDFKNIQSLSVTPPGPHCAQTEVIATLKGGQ VCLDPEAPLVQKIIQKILNKGKAN <u>GG</u> GINDIFEAQXIEWHE
41	mCXCL1 ²⁸⁻ ⁹⁶ -G ₂ - AviTag LS-Fc-His6- linker-TEV- mCXCL2 ³¹⁻ ¹⁰⁰ -G ₂ - AviTag LS-Fc-His6-	PPPAEEMIKEEPSILOWILIGELPAHLAVUWL SNGFTSQATKALATVLDSDGSY MYSKLEVQKSTWERGSTFACSVVHEGLERRITTKTISESEGKHNHNHH <u>SSGVD</u> GTENLYFQANELROQCLQTMAGIHLKNIQSLKVLPSGPHOTQTEVLATLKNGR ACLDPEAPLVQKIVQKMLKGVPK <u>GG</u> GLNDIFEAQXIEWHE MRVPAQLEGLILLAWLFGARGEPEVTITQRPOETIKEOPPCAAPDLEGGESVST PPKIKDVLMISLSPMVTOVVVEVSEOPPDVGISWEVREVENSEVETAQTQCBREDT STLEVVSALFIQUQDWMSGEEFKOAVERGALPSFLEXTISAFEGFVRAPOVYV PPFASEMIKKEPSITCHEOPIEPAELAVOWTSNORTEQNYKHLATVLDSDOSY MYSKLEVQKSTWERGSTFACSVVREGLERRITTKTISESEGKHNHNHMSSGVD GTENLYFQASELROQCLKTLPRVDFKNIQSLSVTPPGPHCAQTEVIATLKGGQ VCLDPEAPLVQKIIQKILNKGKAN <u>GG</u> GLNDIFEAQXIEWHE
	mCXCL1 ²⁸⁻ ⁹⁶ -G ₂ - AviTag LS-Fc-His6- linker-TEV- mCXCL2 ³¹⁻ ¹⁰⁰ -G ₂ - AviTag LS-Fc-His6- linker-TEV-	PPPAESMIKEEPSILOWILIGELBALLAVUWLSHGETSQAFKALATVLDSEGSY MYSRLEVQKSTWEEGSLFACSVVHEGLEBBLITTKTIEPSSLGKHHHHHHSSGVD GTENLYFQANELRCQCLQTMAGIHLKNIQSLKVLPSGPHCTQTEVLATLKNGR ACLDPEAPLVQKIVQKMLKGVPKGGGINDTFEAQXIEWHE MRVPAQLLGILLLWLEGARGEDEVEITOPBCTEFIKEOPPCAAEDLLGGEGVET. PFKIKDVLMISLSEMVTOVVEVSEDDEDVGISWEVENVEVETAQTQCBREDY STLEVVSALFIQUQDWEGEVEKOAVHEGALEEPIEKTIEREEGEVRAPOVV PPPASEMIKKEESITOMETOPIEPAELAVOWTSHORTEQNYKHIATVLDSDOSY MYSRLEVQKSTWEEGSTFACEVERGLEBBLIKKTESESTGKHHHHHHSSGVD GTENLYFQASELRCQCLKTLPRVDFKNIQSLSVTPPGPHCAQTEVIATLKGGQ VCLDPEAPLVQKIIQKILNKGKANGGGINDIFEAQXIEWHE
	mCXCL1 ²⁸⁻ ⁹⁶ -G ₂ - AviTag LS-Fc-His6- linker-TEV- mCXCL2 ³¹⁻ ¹⁰⁰ -G ₂ - AviTag LS-Fc-His6- linker-TEV- mCXCL5 ⁴⁸⁻	PPPAESMIKEEPSILOWIIGELPAELAVUWI SHGPTSQAYKALATVIDSEGSY MYSKLEVQKSTWERGSIDFACSVVHEGLERALITKIIIDESIGKHHHHHHSSGVD GTENLYFQANELRCQCLQTMAGIHIKNIQSIKVIDSGPHCTQTEVIATIKNGR ACIDPEAPIVQKIVQKMIKGVPK <u>GG</u> GINDIFTAQXIEWHT MRVPAQIDGILLIMIEGARCEPPVEITQRPCFFIKEOPPCAAPDLEGGEGVET. PPKIKDVIMISISPMYTOVVDVSEODPDVGISWEVNEVEVELAQIQCGREDY STLEVVSALFIQHQDWMSGEEFKOKVNNRALPSFIEVTISKEFGPVRAPOVYV PPPAEEMIKKEPSITCMITOFIPAELAVOWISHCRTEQNYKHIATVIDSDOSY MYSKLEVQKSTWERGSIDFACSVVHEGIERALITKIIPESIGKHHHHHHSSGVD GTENLYFQASEIRCQCIKTIPRVDFKNIQSISVTPPGPHCAQTEVIATIKGQ VCIDPEAPIVQKIIQKIINKGKAN <u>GG</u> GINDIFEAQXIEWHE
	mCXCL1 ²⁸⁻ ⁹⁶ -G ₂ - AviTag LS-Fc-His6- linker-TEV- mCXCL2 ³¹⁻ ¹⁰⁰ -G ₂ - AviTag LS-Fc-His6- linker-TEV-	PPEASEMERKEPSELOWEIGEPAELAVOWLSHGETSQAFKALATVLDSEGSY MYSRLEVOKSTWERGSLFACSVVHEGLERBELTTKTEEPSEGKHHHHHHSSGVD GTENLYFQANELRCQCLQTMAGIHLKNIQSLKVLPSGPHCTQTEVLATLKNGR ACLDPEAPLVQKIVQKMLKGVPKGGGLNDIFTAQXIEWHT MRYFAQLEGILLLWLFGAROADEVFEDORECEPIKEOPFCAAEDLEGGFSVFF. PFKEKDVLMISLSFMVTOVVDVSEODEDVCISWEVENVEVEDAQUQCBREDVE STLEVVSALFIQUODWSGEUFKONVNERALPSFLEKTESREFSFVRAPOVVV PPFASEMERKEPSEICHEDOFEPAELAVOWTSHCRTEQNYKHLATVLDSDOSY MYSKLEVOKSTWERGSLFAOSVVHEGLERBELTTKTESESLGKHHHHHHSSGVD

43	gWiz-LS-	ATGASSBICCCSSD.CAGCEUCI.96660/BUDDIGC.SUPCIAGC.BUDDAGG.B
	hCXCL1 ³⁵⁻	CGARRY GCCTCTGTCGCCACCGAGCTGAGATGCCAGTGCCTGCAGACCCTGC
	107_	GGCATCCACCCCAAGAACATCCAGAGGGTGAACGTGAAGTCCCCTGGCCCCC
	(Gly4Ser)2-	TGCGCCCAGACCGAAGTGATCGCCACCCTGAAGAACGGCCGGAAGGCCTGCC
	mouse SA-	AACCCCGCCAGCCCCATCGTGAAGAAAATCATCGAGAAGATGCTGAACAGCG
		AAGAGCAACGGTGGAGGCGGTAGCGGAGGGTCGCGAACCACACACA
	(Gly4Ser)-	GARATOSCICATOSTATAATOATTERARASACAAOATTECAAAOSCITAG CHRATESUUTTEECCUAUTAECTUUGARAATUSUTOAEACUATRAOCATUSUDA
	His ₆	TTASE CCACCAAGEASUAGACE. TTOCAAGACCTOEGECCOCAEGACTOG
		COCCASULETCA CAARTCOCTTURO ACTUTTUTTOGA GATAROUTSTETOCUA
		CCAARO DECCTORARACUS TO DEVA SOTO DECIS OTO DECES CARRACRAG
		CCORAASAAORATSTUTOOUSCAAOAGAAAASATRACAACCOOASCUUGO
		COATE E GAAAGECCA GAGECTE CAUGUCA E GUICACCE CUTTTAAGGAAAACC
		ACCECCITTA ISSGACACIE HELWOATISE AGET GOCAGAAGACE ECOLTA LE.
		TRUGCCOMGARCEDOTELECENTGOUGAGONGENCANE PROBUCCO
		ECTED DAGSOCOURCESCOARACCECCOCHGACCECCAACCEECCEC
		ARGRAGAGAGECTUTCATOTOTOCOTCAGERAFGERAGUSCCCCAGER
		CASPACITTOSACACEOA STEUTAAASCALOCO SACEACOTOSECICAC 307
		ACATECCOCAATECTGAACTEECAGAAATECACCAAAATEGACAACAGACCTGA
		AAAGTOAACAAGGAGI GO IGUUGI GO IGAGAAGGOGGAGA, GAGA
		6CGBAACTIGODAASIACAIBISIGAAAACCESSOBACLEICUODASCEERC
		CAGACTUSCIGOGAURAACCACUSINGARGARASCOCCACINICOIAGURAGG
		CARCATCACACCACCOCERCECCOCACECCCCCCCCCCCCCCCCCC
		GRECCASGAAGTSIGGAAGAACTATGGTSAGGGGAASGATGTCLTCCT996CCA
		TECTTOLETGASTACICEAGAA PROACCOT PATIESOTOL VIA LOODLET LOO
		agaont sciaagaaa taigaascca cuong saaa one si scenteas scoar
		COLOCOGUARON FACUROANAG ITUTI SOFGAATI FOAGOUTOL FOIABAAGE
		COTRAGNACTICOLOAAAACCAACTOTCALCITTACGACAACCIIGOACAAR
		GGATINCAAAA ISOCATICIASUTOGCIACAOOCA SAAASOACUTCAGSUTU
		ACCOCRATECTOD PAGCOTO PAGASEO PACCACERCOCO DA ACTO
		I ISTACECTICOTERACIAN CAGRER CLEGOCTUSTUSTERA SACUATOUSTOTES
		AT DEFEABOD HEREOTOT DESCIDENT GAGAGAGA DECEACTOR FEGACIAL G
		ACCEASURATEIERURGAUCEUDARTSGERARGOSSCOAFROUUSUODROUGU ACACUUSA I SAEACRI A I SUCCOORAASESUL II AAABOL SAGACUUL OACCUU
		CACHOLISH PRAMACHA POLICOV, ANALASI FFANABOLISHAAAAUUU AND F CACTOLIS FATOLOGX CACTUCIX GAGAAGGX GAAGOAGS FTAAGAAS CAAA
		SCICITI SUIGASCI STA SCA CA SCICA A SCICA A SUSCASCA SUISA
		ACTOTOATCATGACTTT MACACTT OUTCOATA JATOTTOCAACCCTCOTO
		AAGUACROOTGUTTOTOGAUTGROOG LUCRRACOUTGETCAOTAGALGOARAGE
		GCCTTAGCC <u>GGAGGGGGGGGGGGTTCC</u> CACCATCACCATCACTGATAA
44	gWiz-LS-	ATGAGGE CCCUGULOAGCIUULOGGGUIDOLOCLUUICLOGGUIDOLOCLUUCAEGLU
	$hCXCL2^{35}$	CORRECTCCTCTGGCCACAGAGCTGAGATGCCAGTGCCTCCAGACACTCC
	107_	GGCATCCACCTGAAGAACATCCAGAGCGTGAAAGTGAAGTCCCCTGGCCCCC
		TGCGCCCAGACAGAAGTGATCGCCACCCTGAAGAATGGCCAGAAGGCCTGCC
	$(Gly_4Ser)_2$ -	AACCCCGCCAGCCCTATGGTCAAGAAAATCATCGAGAAGATGCTGAAGAACG
	mouse SA-	AAGAGCAACGGTGGAGGCGGTAGCGGAGGCGGAGGGTCGGAAGGACACACAC
	(Gly4Ser)-	GROATCOCCETCOSTATASTCRTTICCCR-SACASCRITTCAAROOCTISC:

	His ₆	CTCATT-DECEDITO-DEACDATCCCCAC&AACDCTCCATA-DEATCACCALCCCA&A
		THACTOCKCCAACEARCACCTCTCCCAARCACUTOPOTCCCCCATCACTCFCCC COCCACCTCCCCCCCCCCCCCCCCCCCCCCCCCCCC
		CCARACCTOCSTSARAACURISGTGARCUSGOTGACUSCIGTACARACAASAS
		COUSAAGAAAUSAAEGELTUULGOAAGAAGAAGAAGAAGAAGAAGUUGAGOOLSUUA
		CCAPTISAAGGOOASAGGOTEAGGCOATEISCACOTOIITTAAGGAAAAOOOA
		ACCACCUTTATEGGACACTATETUCATERAGTEGCORGAGACATCUTTATETC
		TRUNCCORCARCEDOTURCERTODUSACCROTRURATIORCALECTORO LURG
		TOTECTORAGOCTORAGOCAROCTORCOCOAROCTICATOOTOR
		ARCCACAPAGCETT OFFCTCAT OFFCTCCCT DEGRCAAT OPACTCCC DEGC LATC
		CARAACTITIGRAGAGAGAGATITITAAAGAATISGGCAGIAGCICGICTGAGCOAG
		ACAE ECOURAE SOLICATE E SCACARA CACUARAE E GURACAGACUT DACC
		ANAGTONONAGGAGTOTTOCONTGOTGACOTGGGAATOGCGAGAGGAGAG
		GCCCAACLEGCCAAGLECATGTGLGAAAAUCAGCCGACLELCLCUAGCEAAUTS
		CACGCTUDETCOCATABACCACUSTICABCABACCOCCEDIGTCTBAUGACCTC
		GAGCAT GACACCATGUCTECTEATCTECCTGUCALTECCTGUTEATCTTUTTEAG CACCAACCTCTCCCAACAACTATCCUTACCCCAACGATCTCTTUTCCCCCCC
		TECHQUATGASTADIONAGARGAGAGCCHGATEACHCUGTAUCCCUGTUBCHG
		AGACITER LASGAALA LGABROCAC LUERGAAASTEC LEGEUTSAAGCCAAT COUDOOSCALEGOTACESCADAGUSCUURDE SAATUPDASCUUC DTELESAAGAG
		CULARGAGUT. 99 I CAARAYONACUVI. 98 I CITTAOGAGAGOL. I GGAGARI 8 I. CORTICORARATOCORTICIACUTOO UTACADODAGAAOCROTICACOU DICA
		ACCRETE COMMARINE CONTROL FOR THE FORMATION OF A STATEMENT OF A ST
		TO DAGA DETO CECAR-SA ECA CALOR ACCONTENTO DO CAR-SACILATO DE EL CELO ACC
		AFOTGAACCETETETETETETETETETETETETETETETETETET
		AUCAAG JUUPSHAG JUGAL COC JUGTISGAAASBUSGCCATGOL L CLUTGOL CHG
		ACASTIGATGASACATATSICCODAAAGAGUTTAAAGCUGAGACCUUDACCIIC
		CACTUTGA HA JUTGOACACTTODAGAGAGAGAGAGUAGA HAABAAACAAAUG COUDTTOTGADDTOTGADGAGAGAGAGAGAGAGAGGCTACAGUGCAGGAACTIDAAC
		actorea high reactive concerned to concern a concernation of the c
		AMOUNCACOUTOUTCOCOUTCAAACCUTGECACTAVATCCAAACC
		OCCUTAGOO <u>GGAGGGGGGGGGGTTCC</u> CACCATCACCATCACTGATAA
45	gWiz-LS- hCXCL3 ³⁵⁻	ATGASSETCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	107	GGCATCCACCTGAAGAACATCCAGAGCGTGAACGTGCGGAGCCCTGGCCCTCAT
	-	TGTGCCCAGACAGAAGTGATCGCCACCCTGAAGAATGGCAAGAAGGCCTGCCT
	$(Gly_4Ser)_2$ -	AACCCCGCCAGCCCTATGGTGCAGAAGATCATCGAGAAGATCCTGAACAAGGGC
	mouse SA-	AGCACCAACGGTGGAGGCGGTAGCGGAGGGGGGGGGCGGAAGCAAABAAGT
	(Gly ₄ Ser)-	GAGATUGOODATUGGTATAATGATTEGUGAGAADALTTCAAAGGOODAGTU
	His ₆	CTCATT-DECEDITO DEAGUATOU OCACAAAU SCHCATA-DEAHCADDAU GCCMAA
	11:50	THATCH SCARTARCRAATTISC AACAUSTOTUSCCCATCASIC FOOD
		- GODAAC JURGADAAATOOOLI CADACU OLI LITTEGAGA LAAGU SUUGOOALI E COANACCTOOSTGARAACUN TGATGAACUGOTGACTGC TGTACAARAACAAGAG
		COCCEARGAACCEARIGE LTUCL SCACEURAGATGECEACCECUESCO LEUUE
		CCATTTOFAACODOAGACCOTCAGGCCATCTGCACCTCCTUTAACCAFAACODA
		RUCACOUTTAD BEGRUAUTATT USCAD BAGYTISCORGA/GACATOUTTAD TTO
		TAT SCCCORCRACTIONT TATTA PODIVACCACTACAA TORCATTCTORO DCAC
		TETTELEONGASSCOGASASSGAAASCISCOTGASSCCCGANGSUTGASSELEEG
1		and in the two of a database in the cash to be the state to be the state of the state of the state of the state

		AR CORCERNENCE THE CONTENT OF CON
		na macadot de teotodas toados e caaa coste caotada sociada do caarga c Secterados <u>ggagggggggggt toc</u> catcaccatcactgataa
h 10 (1 m	W12-L3- CXCL4 ³²⁻ D1_ Gly4Ser)2- house SA- Gly4Ser)- lis6	ATG SSGENDECCCURACTECTIBOLICE CONSTRUCTION CONTROLOGICAL AND CONSTRUCT A

		AACAAATATGAACODACTOTOCAAAACTODTSCOTCAASCCAATODTCOCCO TGOTACCUCACAGTCUTECOTCAATUTOACCUTCUTOTAGAACACOTTAACAAC TTSSTCAAAADCAACTOTSATCUTTASJAGAACOTTCCACACAATATCCATTDCAA AATSCCATTOTAGTOTOCUACACOCAGTAGAACOTTCAGGTGLCAACOTTCAA AATSCCATTOTAGTOCUACACOCAGTAGGAACACTAGTISTISLACACTT CTCUTGAAGCCTGCACGAAGACULAGGAAGASEGGGGGCCAAGLISTISLACACTT CCUTGAAGCTGCCTGGGTGGGGAAGACCCAGTGGTGAGCATGCTACCAGAGTGC
		TOTASTOCAD DEFEOTO DAAR COODDECA DOCTUTE CLOCT DE CACACULEA SEAR CALLATS DECEOALA ES STUTIALA SCREASA CULTE A COLLECAD O DEST ATOTOCAJACIDO AJAGAS COLADA COBCATTAS CALASIA A CODDEC DE CO SACIDO STUSA ESCACADAS COLADA SE SCALAS A CODDEC DE COL SACIDO STUSA ESCACADAS SCULACASES A SALASTE CALAS CULEA CALASIA SAL SACIDID SCACACULO E GALLACALE LI SUA ASSEL SUPERCASUADA CO TOCTECIDO A CEGACIDO E GALLACALE LI SUA ASSEL SUPERCASUADA CO COLECTO CALESCACADO COLARIA COLOCIDA COLADO C <u>GGAGGGGGGGTECO</u> CACCATCACCATCACTGATAA
47	gWiz-LS- hCXCL5 ⁴⁴⁻	ATG
	(Gly4Ser)2-	GCCCCATTCCTGAAGAAAGTGATCCAGAAGATCCTGGACGGCGGCAACAAAGAG
	mouse SA-	AACGGTGGAGGCGGTAGCGGAGGCGGGAGGGTCGGBAGGCACACACACCACAC
	(Gly ₄ Ser)-	GOULAT DESTAAL GAT LIKREGAGAALAADAT ELUAAASSOL HASLOOL HATT
	His6	GCOPTTUCCARTAUCTCOAGAAATGODOAUACGAPGAGCATGOOAAATUAGTG
	HIS6	CAGGAAGIAACAGACITIGCAAAGACGTGTGTGCGGACGAGCGCGAAC
		TOTWACABARTOCCHICACASTCUTTTUWACATRAWHCTCTCCCAUDOCAAAC
		CTCCCTGAAAACTAINGTCEACTIGGCTCACTACAAACEAGABCCCGAA
		AGAAAO PRATOTTT DUTGCAACAGAGAGAT PRCAACOO DECCC TOO PRCCATTT
		GARAGOULAGAGOUSAGGORUSTGOROUCCTUPRAGGARAGOCARCOROC
		TTLA EQUADRY EA LEEGOA E GAAGEL GOCAGAAGACA LUUEL A EL LUEAL GOC
		COAGAACTTOTTTACTATOCTCACCASTACAATCACAATCACCACTCTFST
		GCA CAGECTEA CAAGEAA SCTECCTEA CCCCEAA SCTUER TE STSUEAA SEAS
		ARACCAUTOGUCTCATCTCC/HCACSCARTGASCTC/HCCSCTRUGGACARC
		THE SEARCE CAGAGOLITET AAAGCE INGGCANTAGO FOGLUI CAGOCA SACATTO
		COSTATECTEASTITICEASTAATICAOSTAATICOSTACACACOTECACEAACHE
		AACAAGGAGTSUIGCOATSUIGAOOTSUIGGAATSUGCAGATSUGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
		CELUUCAAGLACERGEGEGEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
		TGCTGCS/TANACCACTGTTGAAGAAAGCC2/CTGTGTL2GTGAGCIGGAGCAT
		GACACCAIGUCTCCIGAICICCIGUCAITGUIGCICAUTHECTCAGGACCAG
		CAASTCICCAASAACEATSUTGACCOSAAGCATCIUTECCTOSUCACCITITTC
		EAUGANATECEAGAGACECOTGALEACLOTGLEETOCOTGLUGUIGAGACET GCUBACARATETCARECOTOTEEAABBCUECECOCOUERACCORATICOTOC
		CATECULOGOACESIGOTTECISENTTECESCOTOTUSINGENGESCULAS
		AACIIGGECAAAACCAACIGIGATUELIACGAGAAGCILGGAGAALAIGGAIIC CAAAAIGOOATTUEAGTECGUENOACCUAGAAAGUACUTOAGGEGEOOACCUUR
		AC LOTOSI GGAGGOL GCHAGAAROO LAGGARGAG LGGGCACCAASUGL I G LAUA
		CTINOTSPACATOASPCACTOOSTFCINOTOSPACACTANCTCUCTOSPALICOTO
		ARCCOTGENERGTCTGCUSCATGAGAGGCCCCASTGROUGASCATGTUACCAAG
		TO TO TO A COMPAREMENT OF COMPAREMENT.
		9AUGAANNATATSICOODAAAGAATTUKAAGOT9AGACCTTCACCUUMA CICI

49	gWiz-LS- hCXCL7 ⁵⁹⁻	ATG
		TTACCO <u>GGAGGGGGGGGGGTTCC</u> CACCATCACCATCAC TGATAA
		SACACCUROTUCICGAOTSAGORTOCASACOTTOUCACUASAUGCAAASAUGC
		STOAT GGATGAOT E UGUACAGE UGUTGGA LACATGE E GCAAGGO E GCUGACAA
		CITROTSASCIAGTSASCAAASCCCAAGSCTACAGGGSASCAACTSAAGAC
		TCTCATATCTCCACACTTCCACASAACACCACAACAACAACAAAAAAAA
		ARVERATE FRANCKARCON FRANCKARCHUSTAR GEFELLER GELEUR FRA GELUARGARACHTAL GELOUCARAGACHTTRAAGUNGAGACHTUCACON I UCA
		CIGAROCSIGUETEUUIGOTECA IGAGAAGACCCCAGEGAGIGAGCAUUIGAC ARCECCUCIACEGGATOCCECCUCGAGAGCCCCCCATECCICCCCCCCCCCCCCCCCCCCCCCCCCCCC
		AC ADTT CETGAAGATCAGAGACTGECUT GT GT GGAAGACTAFC DODCTGCAAT
		CCAACTOLOG ISBAGOOLGUAAGAACUTAGGAAGAGTOGOCACUAAGIGITS
		TTCCARATGCCATIOTAGTCCGOTACSCCCAGAASGCAOTCSGCUTCAAS
		AAVAACTTOOTUAAAAOOAACTOTOATUTTIAGOAVAACOTTOJAGAATATOG
		CCCSCRUSCIACESCRUSCRUSCUIGAAUTICRECCUUHECAGARGAGES
		CTICCTARGASTACGAACCCADETCCBAAAGECCTCOCTCARCOCA
		tfgtatgaatattoagaa sacroootsattactoistatoootsitteotsas
		CASCARCTCTSCARCARCISTCCTCASSCCARCONTGTCTTSCTCCCCCACSTT
		CAL SACACUAL SECTIOUS A FOLIOUS SECARTSONGE LUARE LE GIUDA SEA
		ACTEGRISCIGATEMACCACTETISAAGAAASCCCACTETICATEASCIGA
		GRACTT-DICAACTA-PERCICICCAAAACCACCACCACTACTHCACCACCAACTICCA
		er chacaasso foctoraci i choacassa i chacassa i chacasso a consector er chacaassa strecter consector consector consector i seconda tor caso cas
		TTECCASTOTEACETTECAGAARTERCASTECCASCETCCCCAC
		AGETTEGSAGAGAGAGUTTETAASGCATGGGGAGTAGGTGGTCTGAGCCAGAG
		IG IUUAGAGGCIUACAAGGAAAGGIGCUIUACCCCUAAGGIIGAIGGIGIGA GAGAAAGCAIIAGTCICAIOTGICCCUIOAGAGAACGACIACAGIGIGAGIAIGGA
		GOCCCCAGAACTECETETACTERCOTGASCECULACAAESAGAEECIISECCCASES
		ACCEPTEATOOSACACTATCESCATCAASTECCCASAAGACATCOTLACTCOTA
		TTI GARA GOCA GROUT CA OCCUATO I COLOCITICIA ACCARA A COCARC
		CRAACAAACCAATCTTTCCTCCAACAAAACATCACAAACCCACCCCCC
		ARCONCOTORAGACORTEGEORACICECTOROTECERCARACARCACA
	11130	ANCESTERCARA FCCOTTCA CROTOTCETE GANGA ERA ETTEC STECCA TEC
	Hise	STECAGGAAR AACAGAULE GCAAAGACG ISTULEGCCGATEAG LOUGCOGC
	(Gly4Ser)-	ATTWOTTTTCCCAGEATCPCCAGEATGCTCATACGATGCCAEATT
	mouse SA-	ATCCCODATCCCTACATCSTTCGCCACAGAGAGACATTCAAACCCCCCACCCCT
	(Gly4Ser)2-	AAGAACGGTGGAGGCGGTAGCGGAGGCGGAGGGTCGCAAOAACACAAAAAACCC
	114_	GAGGCCCCATTCCTGAAGAAAGTGATCCAGAAGATCCTGGACAGCGGCAACAA
		AAGGTGGAAGTGGTGGCCAGCCTGAAAAACGGAAAACAAGTGTGCCTGGACCC
	$hCXCL6^{43}$	AACCCCAAGACCATCGGCAAGCTCCAGGTGTTCCCTGCCGGCCCTCAGTGCAG
τu	gWiz-LS-	COATCT GTGCTGACCGAGCTGCGGTGCACCTGTCTGAGAGTGACCCTGCGCGT
48		ATGASSGT000050T0AGCH00T966GUH00T60T50T0T966T000A96T30
		CCCGGAGGGGGGGGGTTCCCACCATCACCACCATCACTGATAA
		ACCESCITE CONSTRACTOR CLOCKLER FIGHT CONSCIDENCES ACCOUNT OF CALCULAR ACCESCING ACCESC
		AT WATCH COTTEC CACACITY CTOCACITY FOR COTTECT CACACITY FOR CACACITY F
		- LOUIDROUTOUTORROUACAROOUUAACOOTAUACOORAQUAACTORAUACTOR

¹²¹ _ (Gly4Ser)2-	GAAGTGATTGCCACACTGAAAGACGGCCGGAAGATCTGCCTGGACCCTGACGCC CCCAGAATCAAGAAAATCGTGCAGAAAAAGCTGGGTGGAGGCGGTAGCGGAGGC		
mouse SA- (Gly4Ser)-	GRAGGETCE GARGE ADACARGAGE AGE TO CONCATEGE TATAR FRANT 2553 GARCANNA TO CORAGES CONCATES TO CONTENT CONSIGNATION STATE LOCTUAL ACGATGAGE A LOUGAA FLAGT CONTENT CONSIGN TATE CONCATES CONSIGNATION ADACATES CONSIGNATIES CONSIGNATIS		
Hiso			
	CUDIAOS SAASTUSSAAATAISSAITOCRAATSOCHUD CHOUDSOTAC ADODAGAABDACO JUBBELELCASDODAAUTUL OS ESABECTISCAGAAAT OTASSAASAUSSGOADDA SIGTTOUR CACITUL OS ESABECTISCAGAAD SOUT EGIUTSGAAGACTAL OLG JOTSDAALCUTSAACCEISTELE ELCUSCLIGA JGAS ARCACO COACIDACIDACCATOURAC CARCINGCIOTACI DOCIDOUDCAA ASSOCGOCURESCITUCIES COTOUSACASTTERISAARCAIRES COCUDARASAG TITDAACOTOASTCOTOACUTOCOACITUCATAICITCCACAAD FAC GASRASCAGATURAGAAACERAAGAC JUTUALSGAITGACASCACAASCCC AAGSUTACAGCUGABCAACTEGAAGAC JUTUALSGAITGACELE ELCUGACAFLICUTS GALACAJUTEGOAAGSCIGOTGACEAGACACCIGCITUCICGACAGUSCICA AADUTTOTOAJTAGAACGCOCOTTROCOC <u>CCCCCCCCCCCCCCCCCCACA</u>		
50 gWiz-LS- hCXCL8 ²⁸⁻ ⁹⁹ - (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	ATG AGGETUDDOGOLICADOLOGLIGUDGOLOCTUD. DOLCTUDOLOCICADOLOCIADOLOGLIGUDGOLOCTUD. DOLCTUDOLOCICIDADOLOCIADOLOCICIDIDOLOCICIDADOLOCICIDIDOLOCICIDADOLOCICIDADOLOCICIDADOLOCICIDADOLOCICIDIDOLOCICIDADOLOCICIDIDOLOCICIDADOLOCICIDIDOLOCICIDIDOLOCICIDADOLOCICIDIDOLOCICIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICICIDOLOCICICIDOLOCICICIDOLOCICIDIDOLOCICICIDOLOCICICIDOLOCICICIDOLOCICICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDOLOCICIDIDOLOCICIDOLOCICIDIDOLOCICIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDOLOCICICIDOLOCICIDOLOCICIDOLOCICICIDIDOLOCICICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDIDOLOCICIDOLOCICIDOLOCICICIDOLOCICIDOLOCICICIDOLOCICIDOLOCICICIDOLOCICIDOLOCICICIDO		
	AND TO SECRET FULLITIC NUMBER OF THE TO SECRET FULL AND TO COTO ANA CRATCHTO ACT STOTE ACT STOTE A CANA A ACA SOCC GAAS GAAOGAS TO TTO CTSCAADA CAB AGA TO A CAAC DOD A SOCCIDO DA CCA		

51	gWiz-LS- hCXCL9 ²³⁻ 125_ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	CTUBATCAAA DETAILOTO DUCAAACA STITEAA AOUTGACAOUTUCACOUTUCACOUTUCACOUTUCACOUTUCACOUTUCACOUTUCACOUTUCACOUTUCACOUTUCACAO
		ACONTRACCOCCACACITATIONO A CONSTRUCTION CALCUTON CALTER TATE CODECCACACETER TACTA TECTON SCALE ACATERICATER CALTER TECTOCACACETER CALESCANDE SALES CALESCAND CONSTRUCTED TACES GAGAAASOA ELIUSTOL CALESTIC COGLUAGASAALSAASES CLUCASILA I SCAS SAESTT SCACACESTIC COLTATAS CALESCAND CORTECTED SAECCASACA TECTOCACETECTED TASS CALESCAND CORTECTED SAECCASACA CTERACACCASTECTED TASS CALESCAND CORTECTED SAECAS ACCESACE ACA CTERACACCASTECTED TASS CALESCAND CORTECTED ACCESTICACE CORTECTED SACTTED COLSCAND TO TEST SAAAACCESSECCACETEC TEACTCASCE CORT ACCETECTED SCALEACIES CONTRACTOR SCALESCAND CORTECTED CALESCAND CONTRACT STERAAAACCESSECCACESTIC TEACTCASCE CORT CALESCAND CONTRACT SCALESCAND CONTRACTS CONTRACTS SEAS CELESCAND CONTRACTS CONTRACTS CONTRACTS CONTRACTS CONTRACTS SEAS CELESCAND CONTRACTS TO CONTRACTS CONTRACTS CONTRACTS SEAS CELESCAND CONTRACTS TO CONTRACTS CONTRACTS CONTRACTS SEAS CELESCAND CONTRACTS TO CONTRACTS CONTRACTS SEAS CONTRACTS SEAS CELESCAND CONTRACTS CONTRACTS SEAS CONTRACTS SEAS ACCESSES CONSTRUCTION CONTRACTS CONTRACTS SEAS CONTRACTS SEAS CELESCAND CONTRACTS CONTRACTS SEAS CONTRACTS SEAS CONTRACTS SEAS CELESCAND CONTRACTS CONTRACTS SEAS CONTRACTS SEAS CONTRACTS SEAS CELESCAND CONTRACTS CONTRACTS SEAS CONTRACTS SEAS CONTRACTS CONTRACTS CONSTRUCTS CONTRACTS CONTRACTS SEAS ACCESSES AND CONTRACTS CONTRACTS CONTRACTS SEAS CONTRACTS CONTRACTS CONTRACTS SEAS CONTRACTS CONTRACTS CONTRACTS SEAS ACCESSES AND CONTRACTS C

		TECCATOFTECACE DITECATORECACE DECACEDERACE DE CONTENENCACE DITECACE ACENTE DE CONTENENCACE DE CONTENENCIA DE LA TURA ACENTE E LA GARAGA DE CONTENENCIA DE LA TURA ACENTE DE CONTENENCIA DE LA TURA ACENTE DE CONTENENCIA DE CONTENENCIA DE LA TURA ACENTE DE CONTENENCIA DE CONTENENCIA DE LA TURA ACENTE DE CONTENENCIA DE CONTENCIA DE CONTENCIA DE CO
52	gWiz-LS- hCXCL10 ²²⁻ 98_ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	ATG ADDNECCOUD, CACCIDOL SECCUTORI SCILUTERISCUNDEASE JULA CAROL STGCCTCTGAGCAGAACCGTGCGGTGCACCTGTATCAGCATCAGCAAC CAGCCCGTGAACCCCAGAAGCCTGGAAAAGCTGGAAATCATCCCCGCCAGCCA

	CTICCA BATA TOCATTIC CAAA TOCCATTITACITCO DACA COCABAACO. COTO ACCTOTO ACCUCAACTO DUUTO ACCUTUCAACAACO DACCAACAACO COTO ACCTATTIC DACA TTIC OTCAA DATCACA DACTAACO DACCAACAACO TA CERTOTO CAALCO TGATCO TOCAACATCO COCABAA SACODO AST AGUIAAGOALG JEACOAAGUUTELAGUUGALOOC JUUTEBAAA SUCESSOATG TTOTOTO SCTCTGACA STIGATO AS A CATATISTIC CORAAGASTI TAAS SCIDEA ACCTTOTO COTO CACECTIGATA DUI GOACACITICO AGA SAAGA AS COGO ACACT AR STAA CAAR DECTTOTTISTICA COTOFICTAACOACAACOO AACTACACOCAACEC GA SCAACTGAAGACITICA TGACATTICO ACCACTTICO TOGA TACATO TIG AACOCTTOTICACACITICA TGACATTICO ACCACTTICO TOGA TACATO TIG AACOCTTOTICACACITICA TGACATTICO ACCACTTICO TOGA TACATO TIG AACOCTTOTICA CACTTICTICACCTICICO ACCACTTICO TOGA TACATO TIG AACOCTTOTICACACTICICACACTTICO ACCOCTICICACAC
53 gWiz-LS- hCXCL11 ²²⁻ 94_ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	ATG ANY LESS TRANSPORTATION TO SERVICE TRANSPORTAGE SERVICE AND AN A SERVICE AND A S

		ACTOTOATEGATOACTTTCCACASTTECOTOTATACATOTEGCASOCIICCECA AACOACACCTCCTTCCCACTCACCCTCCCAAACCTTCTCACTACACCCCAAACA COUTTACCC <u>GGAGGGGGGGGGCGGTTCC</u> CACCATCACCACCATCACTGATAA
54	gWiz-LS-	ATG GOOD COORD COMPANY CONTRACTOR
	$mCXCL1^{25}$	GGCATCCACCTGAAGAACATCCAGAGCCTGAAGGTGCTGCCCAGCGGCCCTCA
	$(Gly_4Ser)_2$ -	
	mouse SA-	GATCCCGAGGCCCCCCTGGTGCAGAAAATCGTGCAGAAAATGCTGAAGGGCGT CCCAAGGGTGGAGGCGGTAGCGGAGGCGGAGGGTCGCAASCACACAACAA
	(Gly4Ser)-	ATOSCOCATORE A LAATRA EE LOOCAGAACBACAE EE CAAARSOC LAUL DE ATOSCOTTTTCOCAGTATCTOCAGAAATSCOCATACGAE GACAGOATS
	His ₆	GECCAO PRACIA A CREACE TETO CRARCE COLOFICITO O DA ECACEMUCICO CO
		ARCTOP SECANATOCCULONON CICULTUTE SEASA PRACTICULOTOCCALLOO
		AACC FCCUTGRAAACTATEG FGASUTGGC FGSUTGC FG LAGAAAAAAAAGASA SCC
		SAAS SARAOSAS TEUTTOUTEC NAONONAGEN SACONOSA SUCUSOOSACO
		TYTESAARGOCZ SAGOYTES SOORTETECACOTEETTIARGEZAAROYEAAC
		ACOTTALCCCACACHALITOCALUAACTT SCCACAACACACOTTALLICTA
		CCCCCRGRAGUTCTITACUATOCICACCROIRCARFGRUETTCCCACUUACTC
		TCC-VCACACOCHCACAAO VAAACOTO DUTGACOD SUAACOTT (ATCOTOT DA
		GASAAAGDATUSSTOPDATUTSUDDOTUDSAAAATISAAGTOOLOOAGDATISCA
		AAGTTTGGAGAGAGAGOLLTTAAAGCATGGGCAGLAGUL 0510.TEAGOCAGAG TEODOCAETGCTGACTTEGCAGAGAGCATGGGCAEATDGGCAEGAGAGCAAA
		STORACA2 SEATECTSCORTSTSCOTSCISSARTSC SCASA TO ACASESC
		CRACTICOCRACTACATCONTGABAR DIAGCOCRETATC TCCROUAAACO N/A
		ACTIGUISCIATAANCANUTGUISAAGAAGCOCAUTUICITAGIGAGESGA
		CRICACASCA HODDEDCHCA TOURCEDCOCCAFTCCTCCLGA FUETCELGA CCA
		CARRANSTETROANSAACTATECTEARBOOAASGATETCTTCCTBOSCACRTT
		TIPSEAE GRAFAEE CARGARGACAUUUL GAE LISUT DE GEATUCOL GUI GAG
		CTTECHACAARFATCAACCECTOFCESSAAACTCCHCCOOTCRACCOAATCC
		CCCSCATECTACSSCACASTSCTTCCTSCACCTCTTCTASAAGASCC
		ARCARCTERCICARACCASCEDERATOTECACCASCASCASCASCASCASCASCASCASCASCASCASC
		THEOARASIGCONTICUAGE FOCULACACCUS GARAGOA CUTCAGOIUT CAAC
		CCARCECTOCI (CACOCI) SAACBAA SETACOBA SAGECOCCASCAACTCI EG
		ACACTECOTOASGADOAGAGACDACCEGEGEAGASGACESTCUGUCOCAAE
		CIGAACCEIGIUTELCIGCTECALGAGAGACCCCAGTEAGIGASCALELLAU AAGTECTGTAGTEGATCCCCEGGGAAAGCCGGCCATGCTICTCTCCCCCEGA
		GEDEAT GEAACA TATUTCOCCARA GAGT TAXAGOTGAGA COLOCACUTTOCA DOTGATATOT MACACOTT CCACACAA MACAACCAMATIAACAAACAAAC MOC
		CTUBUIGAGO UBIIGAAGCAURAGOOCAAGGOTACAGUGGAGCAAGUGAAGAG GTCATO ATGACTTUBURCACTUBUICCATACATCTTO CAAGCOTO UGACAA
		GACACOUSCI DOTOSACIGACOSTICCAAACOTIGUDACUA GAUROAAA SACOO TURRUC <u>GGAGGGGGGGGGTTCC</u> CACCATCACCATCACTGATAA
55	gWiz-LS-	ATGAGGTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	$mCXCL2^{28-}$	CGGGTGGACTTCAAGAACATCCAGAGCCTGAGCGTGACCCCCCCTGGCCCTCA
	- (Gly4Ser)2-	TGTGCCCAGACCGAAGTGATCGCCACCCTGAAGGGCGGCCAGAAAGTGTGCCT
	(<i>Gry45C1)</i> 2 ⁻	GACCCCGAGGCCCCCTGGTGCAGAAGATCATCCAGAAGATCCTGAACAAGGG

	mouse SA-	AAGGCCAACGGTGGAGGCGGTAGCGGAGGCGGAGGGTCGUAADDADDADDADT
		URGA TO CUCULATO CONTATI RA TOA TITTO CONCEACIACIACIA CITTO NARO CUCULATO CO
	(Gly4Ser)-	OT VALLECOOT LEEFC COACTA ECTOCA VAAA TOOT DA EAC OAT DAGCA TOO DAAA
	His ₆	TTASTSCAGGAS STAACAGACHUTGCAAAGACGTSTSTUGCCGATGAGTCUGCC
		GOCSAUL 9 I GAUAAA I OOCITICA (AC LUTITLE I GUAGALAAG LIUI SL GOCAIT
		CCRAROCTCCGTGAALACTATOSTGAAATOSCTGAATOSTGTAAAAALCAAGAG
		CUCGARAGAA ACGRA TUTU DO USUA NOR CARAGA PERCARCO CON GUUT SOON
		CONTRARSORATION CONTRACCO CONTRACCARTA CARAGERADO
		ACCECCTETA TERGA CACES ITTERCA TOMAGE FOR CARAGA CA ECC TA TERC
		TRICCODORGAACTICITTIECTATOCICEODROFRORAL GAGACICODACCORC
		TGTTETSCAGAGEOTGACAAGEAAAGCTEDCTGACODOGAAGCTTEATSGTETS
		ARSSAGAAASCAT LOUTCL CALCTUTCCG LCAGASAA LGAASL SC LCUASL ATG
		ON CRACIPTICON CRONON COUTTINAN CORTINOCON CERMITO DE CUMACO CRO
		ACATTOCOCAATECLOACLITESCAGAAATUACCAAATTOGCAACAASACCLGACC
		ARACTCARGASCENTCCCCCAPSCICECCTCCCCACAUGACACC
		goggarchtgocarghacatghghgrafaragolggogrolletul ocaguaractg
		CASECULOOT-DIGA BAAADCAC LOTT-DAAGAAAD DUCAC TOT-DUHAOLOA DOHG
		eascalgacaccalgoeescusaroesculgocaulgougeesculuterusas
		GACUASSAAG JURSCAAGASURALGO JUBAGGOGAAGSALGEO LIUCI, GGGCAUG
		TECTTOTATIGAATATECCAAGAAGACACOOTGATEAOTOTGERALOOCUGELGOTO
		ABACE EGUTARGRAFIATGARGCUACLO EGGAAAGEGCTGOGO EGAGGODARE
		COTFCCCCAT-FFACCOCATAGTCCTTFCCCAAGTFCACCCTTTFCTACAARCAG
		COLLAGRACELUSE CAARACKARCEGUE CETTERUSASARCUESGASARA
		GGATTO SAAAFCO SATHORACIH GGOTAGASCOS CARAFCACOTCA SUISTOA
		ACCONARCICIDETSSAGGOTGCASGAAADCIAGGAAGASIGGGOACCAARTOT
		TGLACKCTTOCHGAGGACGGCTGCCHUSTGLGGAGGGCLAHCUSTCUGCA Afoctgaacostgtgtggcctgcctgggaggagacggcccastgaggaggaggaggaggaggaggaggaggaggaggaggag
		ACCARGE OF LOTAGE GON LOUDE OF LOGALANGOOG GUICAL OF LEUVEL OF LOUG
		ACAOTTOREAAACATATOTOOCCARACOOTTRACCOCCAGAOOOTTCACOTTO
		CRCTOTORIATOTOCICACOTOCI GAGAAGEI GAGGAGEI TAAGAAL CARACG
		OCTUTTOTONGCICOTONAGCAGAAGOCCAAGOCTACAGOCCAGCAAGO DAAG
		ACTIVICATORA ISAOTTECCACACITECESCATACA ECETOCAA SCOTOCISAC
		AAGGADADO EGUTTO ECCACITGA99G JOUARACO JITETOAC EAGALI90AAAGAD
		SOCITACUC <u>GGAGGGGGGGGGGTTCCCACCATCACCATCACTGATAA</u>
56	gWiz-LS-	ATGACCHECCCCCCCCACCTCCCCCCCCCCCCCCCCCCCCCCC
	$mCXCL3^{28}$	CGGGTGGACTTCGAGACAATCCAGAGCCTGACCGTGACCCCCCCGGCCCTCAC
	100_	TGTACCCAGACAGAAGTGATCGCCACCCTGAAGGACGGCCAGGAAGTGTGCCTG
	(Gly ₄ Ser) ₂ -	AATCCCCAGGGCCCCAGACTCCAGATCATCAAGAAGATCCTGAAGTCCGGC
	mouse SA-	AAGAGCAGCGGTGGAGGCGGTAGCGGAGGCGGGGGGGCGCAA DOACAOAA DACH CADATCODOCATCOCTATAATCATTTPDGGACGACGACATTTOAAAGCCOTACHC
	(Gly ₄ Ser)-	OF SAFEROUTUERCON OTABUUDON SAAAUGOTUS FACON DA SCADOO DAA
		TTAGTGOAGGANGTAAOAGACTUTGOAAAGAOGTGIGIUGOOGAIGAGTCUGCC
	His ₆	GOCEACUSTGE CAAR POOCHTC ACA CTUTTUT DE ESTAR SUTUTUT SCECCETT
		CCARACCECCEURARAC LETURE GRACTORE E GECTRAL CARRACAGAG
		CCCCARASSAAACCAATCHIIICOUSCAACACAAAGAICACAAACCOCA SCUICCOCA
		CCAPTESAAGGOOASAGGOTGASSCOATGUSCACOTOETEEAAGGAAAAOODA ACCAOOUUEAURGGACACDATTUSCAUGAASEEGCOAGAEGACATOCUEADTTO
		TALESCOULAGA ACTIVITACE A TROUGACE CENCRAL SAGALECTRALE EC TALESCOULAGA ACTIVITACE A TROUESAGUE CENCRAL SAGALECTRACE CAG
		TRUES CLASSOC BACAAGGAASCESCORACCCCAACOLEGATER. SEC

		CAGAACTIIIGAGAGAGAGAGAGAGACTIIIGAAGAATGGGCAGTASCICGTCUGAGCAG
		ACATTOCOCAATGOUGACUTTOCEGAAATCACCAAATEGCAAAAGACUUGAOO AAAGECAACAAGACUGOLGOCATGOLGACCUUGGAATGOGOAGAUGACAGG
		GOGGAACTTGOOAAGTACALGLGTGAAAACCAGGOOACLATCLOOAGCAAACLG CASACTTOOTOCCATGAACCACTOTTGAACAAAOCCCACTOTSTTACTOA SCTG CASCALGACACCALGOOTGCTGATOTGCCTGOOALTGCLGOTGATTTCTLGALGAG CAGCALGACACCALGOOTGCTGATOTGCCTGOOALTGCLGOTGATTTCTTCCT CAGCALGAACTATTGCAAGAACTACTGCTGAGGOOAAGGATOTCTTCCTCCCC CAGCALGAACTATLCCAAGAACACCCCTGALLACTCLGLALCCCLGLLGOTG
		AGACTIGO FARGARER EGRAPOCACIUTISGARASTISCESCOUTGRASCORAT CCTOCO SCRECCTROGCECCOCUTOCTORATITCROCCECCTCURCRACAC CCTRAGASCIUMSECRARACORACTISCETCOCTORATITCROCCECCTCURCRACAC CCTRAGASCIUMSECRARACORACTISCERTUTERACASTASCOTCRESSARATA GGATTCURRACTCURSECURGESSOFECTORACCURGRASGECCTCRESSOF ACODORACTCURSEGURSECEGCAGARACCURGGRASGESTSSOFCACURA FEST
		TOLACACTTOCI GAAGATCAGAGAGTGOCI LUTGL GGAAGACLAI CUGTOL GCA ATOCTGAADOTCUCTOTCTOC CODACGAGAGACCCCCADTCAUTGADDAU CU ACCEAGTGOTGTAGTGGATCCCCDGGTGGAAGACCCCCADTCAUTGADDAU CUT ACCEAGTGGTGTGGTGGAGACCCCCCARAGAGCCCCAGGACCCCCCCCCC
		 CACTUTEA LA JUIGUACACITICOAGAGAAGGAGAAGGAGAALEAAGAACAAAGG GUIUTIGU GAGUITSU GAAGGAQAAGUUUAAGGUIAGASGGAGGAGGAACIIGAAGUUGAAGGUIAGASGGAGGAACIIGAIGAAGUUGAAGGUIAGASGGUIGUIGUIGAG ACTUTUALEGA TCACITICOCCASASTECCTUGATACATUI FECAAGGUIGUIGUICAG
		AAGAAAACCEGOTTCECGAATGAGGGOAAACCETTGECGACTGAAAGAA SOOLLAGUU <u>GGAGGGGGGGGGTECCAACCAACCACCATCACTGATAA</u>
57	<i>gWiz-LS-</i> <i>mCXCL4³⁰⁻</i> ¹⁰⁵	ATG ACCORECCOUNTRACTOR SCCOTORISC CONTRELECTOR SCCOTORAGE CONTRELECTOR SCCOTOR SCCOTOR SCCOTOR SCCOTOR SCCOTOR SCCOTOR SCATTER STRANSPORTS SCCOTOR SCC
	(Gly4Ser)2-	AACGGCCGGAAGATCTGCCTGGACAGACAGGCCCCCTGTACAAGAAAGTGATT AAGAAGATCCTGGAAAGCGGTGGAGGCGGTAGCGGAGGGGGGGG
	mouse SA- (Gly4Ser)-	CASPAGACTCASATCOCCUPTCOCTATAATCATTUSCGACAADAACATTUBAA GOCCTAGTOCUSATIGOCUTTTOCCASTATCTOCASAATGOUCAUACGAUGAG
	His ₆	
		IGUIGUCALE CCARACOLE COTORA A A CERTORE GARUTORE E GARUTO E GUIAUA AAACAACACOCCARACAASCORATCUTTO DE CCARCACACACACACACACOCC AGCOTOCCACCATTUGAA AGOCCAGAGOTES SCOCATOTICACOCCUTURA O
		GAAAAOCCAACOAOCTTTIATGGGACACTATITECATGAAGTTGOOAGAGAGAOAT CCITATITECTATGOOCCCAGAACTTCTTTACTATGCATGAGGAGGTACAATGAGAAT CTGACCCAGTGETG CAGGCTGACAAGGAAAGCTGCCTGACCCCGAA FOTE CATGCTCTCAAGGAGAAACTATICCTTCATCTCCCCTCACAGAATCAA TCA
		 TOCKSTATECASAGETTESSAGAGAGASCTUPTAAASCATEGECASUAGEUCST OTSESCOAGACATEGOOGAATSGOTGACTTEGOAGAAATCAGGAAATUGGOAASCA GACUTGAOCAASSTOAACAASGAGTGCTGCCATGSTGACCTGCCGGAATGCGGC GALGAGAGGCUGAACTEGUGAAGAACCASTGUTGACCAGGCUACLALCTUC ACCAAATEGCAGGCUGGCTGCCGATGAACCASTGUTGAATAACCCCGACTGUCTT
		AGUAACSEGAGAAUSACEGACEGACEGACEGACEGACEGACEGACEGACEGACEG
		CTOLE OCTUAÇÃO E LOUTAAGAAATAL GAACUUADECE CUAAAAO LOUTODOCE CAAGUCAATO DECOCOCADERTA OCOCERCA OTODEECE CUAACEET CACOOL CTE GTA SA BAGOCTA AGAACEEGO DA AAS CONACESTIGAL OTELE COARAA SCEL
		99ASAADA 1958 TTODANAS TSODA TOTAGITOSCHACADOCA GAAAGOACCI CAGSINUDAACOCCAADICICGUGGAGSCIGOAAGBAACDIAGGAAGAGUGGSC ACCAAGUGHIGIAGADHICCISAAGAICAGAGACIGUUHIGIGIGGAAGACIAT
	1	CTOTOT MAA DOOT MAACCOTOT MODOTO DECESTOR MAAGAOOD DAGUDAOT

		CAUDATUT I AUDAXIERO, EDITATIERO EDITERO EDUCARARAS, DUDUAL COLL TUTROTUTGACARTIGATAL OTIGUACACTICUAGARAAGAGITERAAGCIGARA TECACOTICUACACTOTUATALOTIGUACACTICUAGARAAGAGAAGCAGATIRA AAACAAAGGGOLO E EGUTGAGO EGUTREROCAGAGOCUAAGCOCAAGOCIACAGO CARO EGAGACEGOLO E EGUTREROCIO DECEGACAGOCUAGOCUAGACA EGUTRO A COTICUAGACEGOCUTERROCI <u>GGAGGGGGGGGTTCC</u> CACCACCACCACCACCACCAC TAC
58	<i>gWiz-LS-</i> <i>mCXCL5</i> ⁴⁸⁻ 118_	ATGACCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	$(Gly_4Ser)_2$ -	GCCCCCGTGATCAAGAAGATCATCCAGAAGATCCTGGGCAGCGACAAGAAGAA
		GCCGGTGGAGGCGGTAGCGGAGGCGGAGGGTCGCAACACACAC
	mouse SA-	CCCCAT-DEGEATAATGATTTCC-DEGAACAACATTTCCAAASGCCTACTCCTCAT
	(Gly4Ser)-	CCOTTTUCCONTAUCTCOADAARTCOTOAURCOATCAUCATCODAARTUNOT
		UTEOR FGAAAR FAUGERBAAC JEGUL GAC JEUT GARAAACAAGA SUC OGA ACAACCAAR STFFECOTO SPACA CAAR SA TCACARSEC CLOOT JECCACOCATT GARACCAAR STFFECOTO SPACA CAAR SA TCACARSEC JECCACOCACOCA TTUS TGGACACTAE TFECA TGAAR TGCCACARAGEC JECCACACOCAC COACTACTTE TTAC FA TCUTCACACA CATCACATTE TTA AGRAAS CCALOTTE TTUS OF A TCUTCACTAE CAACTAE CATCACCATTE CTACCACA FA TCUTCACCACAA AGACTE STECCACACACTES TO GCACTAR STGCCACTECTOTO STFCACACACACTAE CAACTO TE CACTAE SCACAA TTUS GA SA SA GACOTTET FAA SCO TGCCACACACTAC TO CACCCACA AGA TTUS GA SA SA GACOTTET FAA SCO TGCCACACACTAE CAACTO TE CACTAE SCACAA TTUS GA SA SA GACOTTET FAA SCO TGCCACACACTAE COACTEG COACTAE CAACAA TTUS GA SA SA GACOTTET FAA SCO TGCCACTAE COACTEG COACTAE SCACAAC TCCCAA STGC ACTOTOCATICA CAACACTEG COACACTEG COACTAE SCACAAC TO TCCCACATACACTECT GAACACACACGCCACTAE OF CACCACCES COACTAE AC CACAACGE AT A LOTTE GAACAACCCCCACTTECT I ACTOACCTCOA CA CACACCATGCCT SCACAACACCCCCACTTECT I ACTOACCTCOA CA CACTCCCATGCCT SCACAACCCCCACTTECT I ACTOACCTCOA CAC CACTCCCATGCCT SCACACACCCCCACTTECT I ACTOACCTCOACCTCCA CACTCCCATGCCT SCACACACCCCCACTTECT I ACTOACCTCCT COACCTCCT CACAACTAE I SCACACCCCC TGA TTACTOTOTTET TTS JEGACACCECCACTTUTT TR JEGACAACTACCACTOTO TE SCACACACTCCCCACTTECT TO TGCCACACTCCTT CACAACTAE CACACACCCCCCTTECT TTACTOTOTTET ACTOACTTCCT SCACACTECTUTT TR JEGACAACTACCACTOTO TE SCACACACTCCCCACTTECT TA CAACACTCC TAC AACTTOTTCAAAACCACCTOTOTTET SCACACTTECT COACCTCCT STACAACACCCCCCACTTCCT STACAACACCCCCCACTTCCT STACAACACCCCCACTTCCT STACAACACCCCCACTTCCT STACAACACCCCCACTTCCT STACAACACCCCCACTTCCT STACAACACCCCCACTTCCT SCACACTTCCT SCACACTCCTTCCT STACACTTCCT SCACACTCCCCACTTCCT STACACTTCCT SCACACTTCCT SCACTTCCT SCACACTTCCT SCACTTCCT SCACT
		SOC <u>GGAGGGGGGGGTTCC</u> CACCATCACCATCACTGATAA
59	gWiz-LS- mCXCL7 ⁴⁸⁻ 113_	ATGACCTTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	(Gly4Ser)2-	CCTGGCGTGAAGCGGATCGTGATGAAGATTCTGGAAGGCTACGGTGGAGGCGG
	1 (01) 4001 12	AGCGGAGGCGGAGGGTCG (MACCACACACACACACACACCCCCCATCA

	(Gly4Ser)- His6	CFCCACABAFCUTCATACCATCASCAUCCCAAAFDACTOCACABCDACACACC TEUGOAASGACGTGUTUTGOOGAFSAGTOFGUCGOCAACTUPACAASTCOOTT CRCACTUTUTGGAGAFAAGTUTUTGUCGATACCTUCGTGABAACTAT
		GUI GAACTEGO I GACTEGU, GI ACCAGAGALAAGAGGOOOGAGAGGAGACGAGATEGU I I C UTGOAACGUGAGGA, ISUGAACCCUGUDO I GCUGUCA I LUGAAGGOCGAGA FOI I CA-SECCATEGO CACCTEGUT TAAGGAGAACCCGAADUACCTTATICCCCAGA TAT TI SCATGAGGA STACCAETEG GAUTOT GECUCAGT STISU GOAGAGCUDOU JTAC TA USCITGAGGA STACCAETEG GAUGUT GAUCAGAGAAG CAUL GGUI CHA IC USTU OG I CAUGAGA I GAUGTEGO I COAGTA I GOAGAGA AG CAUL GGUI CAU IC USTU OG I CAUGAGA SACTEGO AG CUCAGTA I GOAGAGA AG CAUL GGUI CAU IC USTU OG I CAUGAGA CAUGUCAGGA CAUGUAAAG CAUL GO I COAGTA CUCAGAAAT CUCAGAAAT CUCAGAATAT GAGAAAAG CAUL GUI CUCAGAAAG U TU CUCAGAAGT CUCAGAAT TA CAU IT ILAAASCAT COODAST ACOTO SU CUCAGGACAGAGGO AG UTTE COAGAGT CAUGUCAGAA CITGE I GAAGAAGGCUUCU I GUI CUCAGGACGACUAGAGCU I GACACCAULCU GO I CAUCT COCOTO SCATTU OT PUT GATTU CUT CAUCAGCAU ISUU ACGCUUG I GAUCUCO TGATTACTET GUI CUT CUT CAUCAGCAU I SUU ACGCUUG GUI COCOTO SCATTU OT PUT CAUCAGGO ULAACTU UCUCAGAAAT TUGAA GOUTT GUI GGAAGAGEI GUI UUGU I GUAGUCUA I CUTU COCA I SUU ACGCUUG GUI COCOTO ATTACTET GUI CUCAGAGACUTAGGACUTI GOTAG GAUAAT TUGAT GUI DGOTT GUI GUAGAGACUT UCUCUU I GUI GUAGUCUAAGAACUTU CUT GAAGAAT TUGAT GUI DGOTT GUI CUCAGAGACUT UCUCUU I GUI GUAGUCUAAGACUTU CUCAGAAAT TUGAC GUI DGOTT GUI CUCAGAGACUT UCUCUU I GUI GUAACACUTAGGAU CUU GUI DGOTT GUI CUCAGAGACUT UCUCUU I GUI CUTU CUCAGAACUTU CUCUAGAACUTU CUCUU GUI DGOTT GUI CUCUUGU I GAUGUCUUCUU I GUI CUCUUAACUTU CUCUUAACUTU CUCUUAACUTU CUCUUU GUI DGOTT GUI CUCUUU I GUI CUCUUU I GUI CUCUUU I GUI CUCUUUU GUI DGOTT GUI CUCUUUU I GUI CUCUUUU I GUI CUCUUUUUUUUUU
		<u>TCC</u> CACCATCACCACCATCAC TGATAA
60	gWiz-LS-	ATGAGGELCCCUBULCACCTUULGECCUTUCE GOLIGUTULGECLUUDAGELGUA
	mCXCL9 ²²⁻ 126_ (Gly4Ser)2- mouse SA-	ACCECCAGAAGAAGAAGAAGCCCCAGAGGAACGCCCAGAAAAACGGGGACCAGCAG
	(Gly ₄ Ser)-	COSTALATCATTIGGGASAACAACATTICAAACSCCLAGTCCLSADDOCTTT
	His6	TOCCAGDA TOTOCAGAAA COUTOA TA COATA COATGOCA TOCCAAA CIAGD GOA SGAR GTAA CAGAOT UTGO AAAGA COUTGTGT TSOCGA TGA STOT GOOG UCAAO TO I GAC AAA TOODH I CACADI. OH HITTIGGAGA LEAGU I GHGTGOCAH HOGAAACO I CUST GAAAACDA HOCTCARCTCOOTCAUTCOTCA CAAAACARSAGC COCCAAACAARC
		GAAAADTA FOOTUART FOOTUATION FOOTUAR AAASCARDAGU OODRAADAAD GARAGU FA COTUART FOOTUAR FOOTUAR GAAAACCU AADACCU TAAGG CONGAGGU GAGGU ATTAAGGAAGACETCO TTAAGGAAAACCU AADACCU TAAG GGACACUETTI GORUGAAGT FOOUSAGAAGACETCO TTAUTTU ATGODOCUARA CTLO FELAUTALGO LUADOAG LAUGAL GAGATTUL GACCUACL GELOUDUAGAG COUSTACAACCARACCTOO TEACOCO SAAGATTUL GACCUACL GELOUDUAGAG COUSTACAACCARACCTOO TEACOCO SAAGATTUL GACCUACL GELOUDUAGAG COUSTACAACCARACCTOO TEACOCO SAAGTU CATGUS GAATU USA TESSTOUDATUTSI COGTU SGAAATSE SUCCITOTUS GACAUTU COUSAT GAUSS SAGOTTUT BAAGGAUSGO AGAATSE SUCCITOTUS GACUTU CACUAS GAATU USA GAGTGUL GCATGSI, GACUNOL GGAATGU CACUUTGAOCAR ASU CAAUAAG GAGTGUL GCATGSI, GACUNOL GGAATGU CACUUTGAOCARASU CAAUTU COTOCU

		CA DAAA COACTOTT DAAGAAC DOCACTOT DETACTOR OFFICIACION CACACIACIA ALGOOT SCITIS A FOT SCOTGODA DESCIDIOTES FEDEREL GAGGACOCIASIA AGE TWO AAGAACIA COUTGA ELACTOLIGE A LOUDLIGE EGUTGAGAC L'USOLIAAG AAALA EGAAGODA CLOTGGALAA STIGOLIGOGOTGAGOCIAATOO ECOUGA ESC TA DOGCAGACODOT DA TETTO ADOCTOTTOTAGA CACODOTAACAA DETE GTOSAAAAGAACTIGU GALECETE AOGAGA GOCTTOTAGAA CACODOTAACAA DETE GTOSAAAACCAACTIGU GALECETE AOGAGA GOCTTOTAGAACACODOTAACAA DETE GTOSAAAACCAACTIGU GALECETE AOGAGA GOCTTOTAGAACACODOTAACAA DETE GTOSAAAACCAACTIGU GALECETE AOGAGA GOCTTOGAGACACODOTAACAA DETE GTOSAAAACCAACTIGU GALECETE AOGAGA GOCTTOGAGACACODOTAACAA DE GOCATTOTAGOTOGATIGACACCOCACTOCAGGE GETE FONA COUCCAACTIC GEGGAGGO EGGAAGAACCTAGGAACACTIGEGOCACCAACES EEL STACACILICUT GAAGATOAGAGACTIGOO ELISTISTI GGAAGACTIGEGOCACCAACES EEL STACACILICUT GAAGATOAGAGACTIGOO ELISTISTI GGAAGACTIACOCACITICAACACILICUT GAAGATOAGAGACTIGOO ELISTISTI GGAAGACTIACOCACITICAACACILICUT GAAGATOAGAGACTIGOO ELISTISTI GGAAGACTIACOCACITICAACACILICUT GAAGATOAGAGACTIGOO ELISTISTI GGAAGACTICICOCACITICAACACILICUT GAAGATOAGAGACTIGOO ELISTISTI GGAAGACTICICOCACITICICACCITICAACACILICUT GAAGATOAGAGACTIGOO ELISTISTI GGAAGACTICICICICICICACICICICI GTOTOTICICICOCACIGAGACACICCACICICACOCACICICICAACICICICICICIC
		<u>GGGGGCGGTTCC</u> CACCATCACCATCAC TGATAA
61	gWiz-LS- mCXCL10 ²² -98_ (Gly4Ser)2-	ATG ATG ATCCCACTGGCCAGAACCGTGCGGTGCAACTGCATCCACATCGACGAT GGCCCCGTGCGGATGAGAGCCATCGGCAAGCTGGAAATCATCCCCGCCAGCCTG AGCTGCCCCAGAGTGGAAATTATCGCCACCATGAAGAACGACGAGCGGCGGCGG TGCCTGAACCCCGAGAGCAAGACCATCAAGAACCTGATGAAGGCCTTTAGCCAG AAGCGGAGCAAGAGGGCCCCAGGTGGAGGCGGTAGCGGAGGGCGGAGGGTCG
	mouse SA-	CCACRCRACTOR TRICCOCORPOCITATATOATIT COCACARORACA ETTO
	(Gly4Ser)-	Алкавоставлоотся терсорлеля телорлелаловлея тареле
	Hiso	GATGA ACTUTICOGO CEALTO TO A CAA A TO COTTICA ON OT UTTICT OF GEAGALEAG TTG EGUGAL ECCAALCE COGTGA AAAC LATGE EGAGUTGE EGAGUTCE ET ACABARCAACA SECCOARA SAAACCAATGT TTOOT SEAACACAAAACA TOA SAAC COURSE CEGO CREEKTES SA REGOORS & GOTGA GEAAUTGE EGEACTO STTT AR SSAAN AO CRAECA ACTUTIES BARGOORS & GOTGA GEAAUTGE EGEACTO STTT AR SSAAN AO CRAECA ACTUTIES BARGOORS & GOTGA GEAAUTGE EGEACTO CREEKE COURSE CEGO CREEKTES SA REGOORS & GOTGA GEAAUTGE EGEACTO CREEKE CETTO AT FTUTAL GOOCUAG RAOT TUTIETA ATA TSCI GROOP ACA CRAECE CETO CA STTTE DA A FRANKA CONTICOTO CATO FOR CEGO CAACACA CAATGAA CETO CA STTE DO AN FRANKA CONTICOTO CATO FOR CEGO CAACACA CRAETGAA CETO TO A SUCCESSA ACTIFICA ACAA GEAGAGAS CETTO FRANCESCHI ACAA CAA CETO TO ASCONDANTIC COORA TIC COORTING CAADAASTE NOORA HIE GOTA AC AGACTEGACO AAASTE AACAA GEAGTO CITIC CAACAAACTIFICAACAA TO AG CETO TO ASCONDANT COORATIGCI COACTACTIFICAACAAACCOCOL TITE CETO TO ASCONDACTIFICA ACAA GEAGTO CITIC CAACAAACCOCOL TITE CETO TO ASCONDACTIFICAACAA GEACTO CITIC CAACAAACCOCOL TITE CETO TO ASCONDACTIFIC TO COACTACTIFICAACAAACCOCOL TITE CETO AGACTEGACOCOLAACTIFIC COACTACACACTIFICAACAAACCOCOL TITE CETO STRAGOGUS ACCACTIFIC TO COACTACTIFIC ACTAAACCOCOL TITE CETO STRAGOGUS ACCACTIFIC TO COACTACTIFIC TO ACAAACCOCOL TITE CETO STRAGOGUS ACCACTIFIC TO COACTACTIFIC TO COACTACTIFIC TO COACTACTIFIC CETO ASCONTIFIC TO COACTAG COACTACTIFIC TO COACTACTIFIC TO COACTACTIFIC CETO AS FRANCISA ACATTIFIC TO COACTACTIFIC TO COACTACTIFIC TO COACTACTIFIC CETO AS FRANCISA ACATTIFIC TO COACTACTIFIC TO COACTACTIFIC TO COACTACTIFIC CETO AS FRANCISA ACATTIFIC TO COACTACTIFIC TO COACTACTIFIC TO COACTACTIFIC CETO AS FRANCISA ACATTIFIC TO COACTACTIFIC TO COACTACTIFIC TO COACTACTIFIC CETO AS FRANCISA ACATTIFIC TO COACTACTIFIC TO COACTACTIFIC TO COACTACTIFIC CETO AS FRANCISA ACATTIFIC TO COACTACTIFIC TO COACTACTIFIC TO COACTACTIFIC CETO AS FRANCISA ACATTIFIC TO COACTACTIFIC TO COACTACTIFIC TO COACTACTIFIC CETO AS FRANCISA ACATTIFIC TO COACTACTIFIC TO COACTACTIFIC TO COACTACTIFIC TO CET

		AACCOPDETCACAAADEACACCEDETECTCCASTCACCCECCAAACCEESTCAC ABAIGCABABACGCETTASCO <u>GGAGGGGGGGGTTCC</u> CACCATCACCACCATCA TGATAA
62	gWiz-LS- mCXCL11 ²² -100_	ATGACODECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	(Gly4Ser)2- mouse SA-	TGCCTGGACCCCAGATCCAAGCAGGCCCGGCTGATCATGCAGGCTATCGAGAA AAGAATTTCCTGCGGCGGCAGAACATGGGTGGAGGCGGTAGCGGAGGCGGAGG TCG.SAAGAACAACAAGAACAAGAACAAGGCCGATGGGTGAGAAAAAA
	(Gly4Ser)- His6	CAUTEC AAAGGEET AGTOETGAL TGOETTTL TOODAGTAL OTOEAGAAATGUEE TA CGATGAGEATGECAAATTAGTGAAGGAAGTAATGGEAL OTOEAGAAGESTG OTTGECGATGAGECGAGECGAACTGEGGAAAACTAL OG LGAACLOOC TGG GALAAGLI GI GTGOEALI ECGAGACCI COGTGAAAACTAL OG LGAACLOOC TGG GALAAGLI GI GTGOEALI ECGAGACCI COGTGAAACTAL OG LGAACACCAAGA COCTATAAAAAAAACAACACCOCCAAACCAACCAACTTE DETGCAACACCAACAACA CACAACCECGACCACCACCACCACCACACCCACACCACCACCACCACC
		GUIDROT SE FILIPPETUSAGGACOA SUBARTEU SUBARABADI AT ECTER SUCCEA SAUETO TI CUIDREC COUTO TUTAL PARTE TI CARGA GUIDROT SULTA TUL 9 E LOUDL 9 E EGUIGRARACUTOCI, ARGABATA EGA SUCACE COUTSALTA CASUCI CETEUR GARRAGUUTARRACTI SOTOARACIA OTO UT COUDRATT CASUCI CETEUR GARRAGUUTARRACTI SOTOARACIA OTO UT CA ARA SUACOTORASI EFORACCUCA ACTUTUCET FOR SOCTI ACTU SUI ACACIU CAACACITATE TO TO UT CASUCI CAACIUTUS AGATU AGAGACUSCOLI E LIST CAACACITATE TO TO UT CERATOOU GARCOTO UT CETEUR TO TO UT CEATARACAC CONTO TO TO TO CERATOOU GARCOTO UT CETEUR TO UT CEATARACAC CONTO TO TO TO TO ACTUTARACITATE COUCACACIUS COORAAGOO CONTO TO TO TO TO ACTUTATATO USURCACI TI CURGARASISTE DA SUIDRACAUCITI CACITITI CANTUTISAL ATO USURCACI TI CURGARASISAGAA CAGALLE ABGARCAARCOPOLICUTISAL ATO USURCACI TI CURGARASISAGAA
		ACASCGOACCACACACACACTC DOAT STATCACTT FECACACTT COTODALTAC TOTTESCAAGGCTESCTGACAAGGCACACCTESCTTOTUSACTGACGESTCCAAAGCT OTCACTAGATGCAAAGACGCCTTAGGC <u>GGAGGGGGGGGTTCC</u> CACCATCACCA CATCACTGATAA
63	LS- hCXCL1 ³⁵⁻ 107_	MRVEAQUECE LEURIE CARC ASVATELRCQCLQTLQGIHPKNIQSVNVKSPGP CAQTEVIATLKNGRKACLNPASPIVKKIIEKMLNSDKSNGGGGSGGGGSEASK ELAEKXNDLGEGEFKGLVLLAFSQTLQEGSDERAELVQEVIDEAKLOVADES ANODASIJETIFGDALCAIPNLREEMGELADCOTKGEPERVECFLQAEDOMPSI
	(Gly4Ser)2-	PFERPEAEACTSPEENPUTFMGRYLHEVAPEUPYFVAPELLYSAEQNEULT
	mouse SA- (Gly4Ser)- His6	COAEADRESOLIPRLEOVKEKALVESVRÖRREGS SIGRFÜJKAR KAWAVARES TEPEADRAEITELATOLITEVIKEOORODELEORDDRAELAATHOENQATISSK QICCOKPELERABOLISEVEROTINPADLEATAADEVROQEVOEDYASAKOVELG
	11136	FENERSER WEDY SVOLUE REALETIVATE ERICCAE AND PACYOTIVE ARE QUEVE

		CTLEEOQREFCVEOYESA LUNRVOLLHEKTEVSEHVTKOCSOS LVERRECESA) TVDET7VEKEFKRETFTERSOLOTUPERERQIKKOTALAELVKAKPESTAEQLE TVMDDFAQELDTOCKAADEDTOFFTEGPULVTROEDALA <u>GGGGS</u> HHHHHH
64	LS- hCXCL2 ³⁵⁻ 107_ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	MKYPAQLEGILL.W.EGARCAPLATELRCQCLQTLQGIHLKNIQSVKVKSPGPH CAQTEVIATLKNGQKACLNPASPMVKKIIEKMLKNGKSNGGGGSGGGGSEAHKE ETAHENNELGEQWEKALVITAFSQYLQKCSNEEAKLVQEVTEFAKTOVADEGE ANCEKSLHILFGDKLCALPELRKNYGELAUCOILCETERNECFLQEKDDNPISH PFERFEAEGMCTSEHEUPTTEMGHVIHEVAREUPTYAPELINYAEQVUETTY CCAEADEBSCLIFELDGVKEKALVSSVRQPMNCSSMQLFGTRAFKAWAVARLSG TYPNADFAELTKLAIFLTKVREEGGEDDLLEGAUDRAFLANGMOEAQATTSSKI QTCCUMPLLEEBUCLSEVENDTMPADLEAIAADEVEDGEVCENMAEAROVFLGT FINEYSREHEDTSVELLIKLAKKYEATLERDGAADFAEVSTVCENMAEAROVFLGT FINEYSREHEDTSVELLIKLAKKYEATLERDGAADFAEVSTVCENMAEAROVFLGT FINEYSREHEDTSVELLIKLAKKYEATLERDGAAARFPACYGLVLAEFQEDVER PKNLVETUCULYERLGENGEQMAILVRYTOREDOVSTETLEVEAARREGKAAR CTLEEMGELEOVEDYLGALLERVOLENKTPVGENVERVERFEUCESAA
65	LS- hCXCL3 ³⁵⁻ 107_ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	MEVE ACTLOLINIE CARE CASVVTELRCQCLQTLQGTHLKNTQSVNVRSPGPH CAQTEVIATLKNGKKACLNPASPMVQKIIEKILNKGSTNGGGGSGGGGSEABES ETAE RYNDIGEQOPKTEVIIAP SQVLQBOSYDEHAFLVQEVTEPART OVAD GSJ ANODASIJETT FODELCAIPPLEENYGELADOUTKOEREPARTELORIDONPSIJE PERPEABAMOL SEKENPLIERGEVIERVARE BUYETARELLY SAEQYNELLIG COAEADRESOLTEXILDGVLERALVSSVEQRMROSSMQKFGRAAFKARAVAELSG LEPMADEAELIE LAIDILEVNKEOCHGELLECARDEAELAKTHCENQATISSE QTOODEPUTKAACISEVERDTMPADILEAIARDTVEDQEVCKNYAEARDVPLOT FLYETSEE UPDYSVSELERLAELYEAT LEECCAEARPEACYGUVLAEFQDIVEL PKNEVEINCULTERLOEX DE QAATLORYTQRAFQVSTFLEVEARPHLORVDTKO CTILEEDGRIDOVEDYLSAIDENVOLLEEKTPVBENVTKOOSGEVERROFGAT TVDETYVPREFEARTETERSDICTERERQUKEGTALAELYERKEATAEQLE TVDETYVPREFEARTETERSDICTERERQUKEGTALAELYERKEATAEQLE
66	LS- hCXCL4 ³²⁻ 101_ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	MPVEAQUER LEARDROARCEAEEDGDLQCLCVKTTSQVRPRHITSLEVIKAGE HCPTAQLIATLKNGRKICLDLQAPLYKKIIKKLLESGGGGSGGGGSEAUKSEID ENYRDLCEQEEKGLVLIAESQELQKOSIDERAKIVQEVIEFAKIOVAEESAAG OKSLHTILFCOKLCAIENIRENDCELADOCTEGEPERNECFLQEKDDESIPPED EREAEAMOTSERENPTTEMGUYLREVAEEBEYETAFEILTYAEQXMEILOQCOM EADSESCLTEK LDOVKEKALVSSVPQRMKOSSMQKFCERAEKARAVARLSQTFE NADFAEIITKIATDLCEVNKECONGOLLECADDRAELAUYMOENQACISSKLQTG OKPILLEEAECLSEVEUU MPADLUAL AADEVEUQEVCENXAEAKDVFLGIFID EYSEREDIEN VSILIKLAREVEATLERICCAEANEPACYGTVIAEEQELVEEPKE IVATNOLITEELGEFGEQASIIVRICICAEANEPACYGTVIAEEQELVEEPKE IVATNOLITEELGEFGEQASIIVRICIKAAPESCSSISIVERREDESALTVO ETYVPLEEFKAEIFIFESDICTLEEKTEFVSEHVIKOCSISIVERREDESALTVO ETYVPLEEFKAEIFIFESDICTLEEKTEFVSEHVIKOCSISIVERREDESALTVO ETYVPLEEFKAEIFIFESDICTLEEKTEFVSEHVIKOCSISIVERREDESALTVO ETYVPLEEFKAEIFIFESDICTLEEKTEFVSEHVIKOCSISIVERREDESALTVO
67	LS- hCXCL5 ⁴⁴⁻ ¹¹⁴ -	MNYPAQUEGE GARCIRELRCVCLQTTQGVHPKMISNLQVFAIGPQCSF VEVVASLKNGKEICLDPEAPFLKKVIQKILDGGNKENGGGGSGGGGSEABEGE ABPYBOLGEQBFKGLVLIAFGQYLQCCSYDERAEL/VQEVTDEAETCVADESAA

(Gly4Ser)2-CDKS_LEULECES_LOAT PHILKEN KIELAFCOUKQEFERRECHLÇERODNPS_LEFF ERPEREAMOT SPRENT TIPMOR Y DEEVARREP Y FYAREL DYYARQ THE H L QOO mouse SA-ABADKESOLTPKILDOVREKALVSSVR (PREKOSSMOKFOERAPKAWAVARESOTF (Gly₄Ser)-PNADVARI TELLI I DI TAVIRECORGO I LECADORAR LAKYMORIQAT U SSELQT His₆ CODEULIKAARULSEVERDTEPADLPALAADEVENGEVOKRUARAKDVELUTEL YEYS REPOYSYSLIDESIARAYEA TI EROCAEANPPACYSTYI AEEQDIVEEDA NEVR THE DEVERIOR Y STORALL VEY TO A A POVSTOPTE VERARNE OF VETKOOT. EPROQPLE OVEDVLSALE NEVCLEBERCEVSEBVLRCCSOSE VEPRECESALEV DE LYVPKEE EARTY LEASOLUT LPEERRQIKKO LA LAELVKREF VALASQUNTV MUDEAGEDDICORAADKUIGEBUEGEBLVIRGKURLAGGGGSHRHEER MRYE AQUAGALAR ARCHON PORTONIC CLRVTLRVNPKTIGKLQVFPAGPQCS 68 KVEVVASLKNGKQVCLDPEAPFLKKVIQKILDSGNKKNGGGGGGGGGGGGGGGG LS-TARE PRODUCE OR PACIFIC TARSON LOK OS Y DE BAKLVOZ V TUPART CVAUESAA hCXCL6⁴³⁻ NODKSLETEFGDKLCALFNERENGSLADCCTKGEREREGFLGHEDDNFSLER 114_{-} PERFERENCUSFKENETUFACHYLARVARRAPYFYAPELLYZAEQSNEUUTQC (Gly4Ser)2-OR REPORTENT DEVICEDATION OVE GEMKONSKOPPOERAF NAVARU SOT mouse SA-FEMALFAELTK LATELTKVINGE CONCELLE CADERA ELANOMOENQAULISS RLQ TOODAP LUKKAROL SEVERD THPA DEPAILADFVED OF VORMARAED VELOTE (Gly4Ser)-LYEVSPREFOYSVSILLIRIJAKKYEATIJEKCC&EANPPACYCTVLAEFQFLVEEP His₆ RNDVKINOPI, KEKI GEVORQUALLVE KIÇKAPQVSIPIL VEAARDI GEVOLKOC LEPERGRERO ZEOY LOA LEBENTO V SEEVITKOO SOS LIVEREPOESALT VUETYVPEEFKAETEFFESDECTUPSKEAQIKVQTALAEUVKEKDEATASQLAT VEDDAAQMEDI. OOLASDKDI OFSTEDPREVIESUKDALLAGGGGSHHRHRR--MENTRACIDE GENERAL AND GARCAELRCMCIKTTSGIHPKNIQSLEVIGKGTHCNQV 69 LS-EVIATLKDGRKICLDPDAPRIKKIVQKKLGGGGSGGGGSEAEKSELAESYEDLG hCXCL7⁵⁹⁻ SQREKCLV LI AESQN LQKOS (DEBAKL)/QEVITO/AK (CVADESAANCEKSLIK) I. 121_ PODELCAIPHLEENYCELADCUTKQEPENECELQEEDDD25LPPERPEAEAM (Gly4Ser)2-CISPRENDIFFERENSEREDIFASIELETIARQNEELLCCARADERC mouse SA-LUPKLOGVESKALVSSYKÇEMELCSSMOKEGEFATKAWAVARESOTEPNADEASE TKLAHDJTKVSKECCEGULLECADORAELAE YMCNOQAL EUSKLQUCCOKPLLE (Gly4Ser)-INHCLGEVENDTEPALEA LAADEVEDQEVOKNYABAKDVDLGTELNEE ARED P His₆ D75V51LEREAEVYEATLEECCAEAEPPACYSTYLLEFOPLYEEPKELVEIDECU IN HIS LORIVER QNATI LVPN DORAPOVSTPITE ZHARKNEOR VOTKOOT LPHDOREP CVEDVESSIENEVOLUNEKTPVSERVIKCOSUSEVERRPUPSALTVEETTVPRE FKAR EFURESDE CELEEKEKQERRQTALAELVKEKPKALA AQLKEVMEOFAQEL DTCCWAADADTCFSTEGEEILVTROADALAGGGGSHHHHHH-- $L\overline{S}$ -MRVPAQUECE DELIVER CARCI**SAKELRCQCIKTYSKPFHPKFIKELRVIESGPHC** 70 $hCXCL8^{28-}$ 99 LAREYNDLGEGRYKGLVLLAFSQYLIGEUSYDEREE UVGEV HOFAKUOVADESAA MODESE HTEFORE CATENEREN MEELAOOUTKOEFERNECFLOORDDDFSEFP (Gly4Ser)2-FURPER EXAMPLES FOR THE WORLD EVALUATE SET AND ADD TO CONTRACT SET AND ADD TO CONT mouse SA-CARADRES CELERALDOV KEKALVSEV ROPHE CESMOKE CE KAS KAWAVA KUSO E (Gly4Ser)-FFREDFARITELATDETEVISKEOCACDLECADDRETEAKYMCENÇACI.SSKLQ His₆ LCCERFILEREARCE SEVERETREADLES LAADEVEEQEVORGMARARDVE LGTF I YEY SREEPON SVSLULKLAALKESTLEACCSESNEDAC MUTVLARE OP I VERF KREVA EBCDE YEMEGEYGEQNA LEVRYEQNAE QVSE PELVEAARREGEVGENCC

		TIPEOQRERCYEDYLSAELBRYJELHERTPYSEHYTRODSCSLVERRPCFSALT VDETYVPEEFKAETFTYESDICTLPEKERQIEVQTALBRU-KERPRATAEQLAT VMDDFAOFLDJCCKAADEDICFSTEOPRE/JRORDALA <u>GGGGS</u> EHERRE
71	LS- hCXCL9 ²³⁻ 115_ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	MKVPAQLEGELLEVELEGARCTPVVRKGRCSCISTNQGTIHLQSLKDLKQFAPSP SCEKIEIIATLKNGVQTCLNPDSADVKELIKKWEKQVSQKKKQKNGKKHQKKKV LKVRKSQRSRQKKTGGGGSGGGGSEABESELABPYDELGEGBESELVELABSQ ELGEGSYDEBAELVQEVIDPAKLOVADEGAARCDESLEELEEGDELGALPALSEN YGELADCCTEGEPERECFLQAEDDNPFLEPEERPEARAMCTSPRENFTTPMDB YEBEVRPEUPYFYAPELEYYAEQYNETLEGCCAEADRESCETPKLDGVWEKALV SSVRQPMBCSSNQEFUERAEKAWAVARLSQLEFHADEAEITKLAEDLIKVNKEC ORGELEECADDEAELAAYMCENQATISSETQTOCDETTIKRABCEGEVERDTMP ADLFAIAADEVERQEVCENYAEAKDVFLCTELENESKREPDYSVELLEPLASSY BATLERCCAEANPFACYGTVLAEFQPLVEEPENEVEVERDINFKLGEVGFORAI EVRYTQEAUQVSIFLEVEAARALGSVGEKCUTERDQRLEGVEDTESALEPVC LLBEVERQIKEQTAIAELDEVERPOFSALTVDETYVPREPRAETDFRADICT LPEVERGIKEGTAIAELDEVERPARAGELOVEDTAGFLDTCCKAADRDICTS TEGENEVTECKDALA <u>GGGGS</u> HNHNHH-
72	LS- hCXCL10 ²²⁻ 98_ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	<u>REVEAULEGE LENERGARCIVPLSRTVRCTCISISNOPVNPRSLEKLETTPASO</u> FCPRVETTATMKKKGEKRCLNPESKATKNLLKAVSKERSKRSPGGGGGGGGSE ANKSETANENNDLGEOUFKOLVLTAFSOVLOKOSNDERAETVOEVUDFAKTOVA UESAANCENSTERTLFOOKLOATEREKENTGELAUOOTECETERRECFLUKKEDIN SELPPFERPEAEANCTSPEERPUTFMGHYTHEVAREFBYNFVARETTNVARQVDE HITGGOARADEEGOLTPELEGVKERALVGSVRORMEUSSMOEFGERAFRAAMMA RISOTPPNADFARTUKLATELTEVRKEOORGDETEOADDFAETAKVMCENOATT SSKLOTCUDERELEERBUISEVERDTMPREDIEATAADFVEDGEVOENYAEAADV YTOTELNEYSERREDSSVSLILERLAKKYRATERVESTOUSSTOTUVEAARRIGEM GTROUTLEEDOGEUVERSTERVERDTMPREDIEATAADVSTOTUVEAARRIGEM GTROUTLEEDOGEUVERSTERVERDTMPREDIEATEVERTOTUVEAARRIGEM GTROUTLEEDOGEUVERSTERVERDTMPRODIEATEVERTOTUVEAARRIGEM GTROUTLEEDOGEUVERSTERTERVERTERVERTOTUVEAARRIGEM GTROUTLEEDOGEUVERSTERTERVERTERVERTOTUVEAARRIGEM GTROUTLEEDOGEUVERSTERTERBOTOTUPERERGERAGTATAELVERVPKATA EQUKTVMEOPAOFILDTOCKAADEETOFSTEICENEVTPOKEATAEAG USENERT
73	LS- hCXCL11 ²²⁻ ⁹⁴ _ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	MRVPAQUECE LELINDE CARCE FPMFKRGRCLCIGPGVKAVKVADIEKASIMYPS N NCDKIEVIITLKENKGQRCLNPKSKQARLIIKKVERKNFGGGGGGGGGGGGSEAHYS ELAFRYNDLGEQHFKGLVLIAF SOYLONGSYDERANDVGEVIDFAKTOVAPESA ANGERSINTIFGORIJCA IPPLRENVGELAO-DUTKGEPERNEGFLQBKDDNPSLP PFERPEAEANGTSPEENPUTFMGNYLHEVAPENPYFYAPEIIYYAEQYNEILTO CGARADEESCLEPELPGVKEKALVSSVRQPMEUSSMGEFGSKAFKAMAVARLSO TPPHADPARITELATIDLITEVNKEGORGDIECADDFAELANYKCENOATISSKI QTCODKPLLERANGLSEVENDTMPADLEAIAADVEDQSVGENAAKDVFLST FINEYSREHPDYSVSELIKLAKKYEATLENCGASHY FEDGYSYCENYAEAKDVFLST FINEYSREHPDYSVSELIKLAKKYEATLENCGASHYFRUSSNGEVGEVERKEVEFGFDYSFR CTLPEDQSEPCVEDYLEALINEVGEFNAILEARASYSEVERCESHVERKEGESAL TVDETYVPREFEASTFFPENSDICTLEENENGTAIAELVENKPKATAEQUK TVDETYVPREFEASTFFPENSDICTLEENENGTAIAELVENKPKATAEQUK
74	LS-	HEYE ALLER WERE APIANEL RCQCLQTMAGIHLKNIQSLKVLPSGPH

	mCXCL1 ²⁵⁻	CTQTEVIATLKNGREACLDPEAPLVQKIVQKMLKGVPKGGGGSGGGGSBARKS
	96_	IARTINPLCEQREFICIVI JAFSQYLQKOSYPEBAKLVQEVIDFAKCCVADESAS
	(Gly4Ser)2-	NODKSLETEFODKLCAIPNEPENYCELADCCTRGEPEPNECPIGEKDINPSLE
	mouse SA-	PREPEARANCUSPERNETUFIIGHYLERVARREPIEVAPELLYKAEONNEUUUG CARADKESCLUEKLOSVEEKALVSSVBGRMKUSSMGKFERAENAWAVARUUU
	(Gly4Ser)-	FURMORADULI E GIO FURMALI O DI FUGMENTI DI SUGRE E SUGRE AL MARCANA LOGI FUNADRAS I UKLATOLI KVINAS CUEGLLES SUDRAFI ANYMOENOA I I SISTI (
		TCCPAFLERKARCI SEVERDTREADI PALAADIVEDOEVUVNNARAEDVFLGTE
	His ₆	EVEYSPREGOZSVSILLIRI, PKYPRATI, EKCCAGAN PPACYCTVI, AMPOGEZEE
		ENDWINCH YERI GETGEQUATION YIQKAROVSTETI VEAAFHI GRVGIKOO
		TIPEOREPOYEDYISA ELENY DELENS TPVSEHVIRO OSOSI.VERRPCESALI
		VORTYVPKERKARTFTPESELOUDPEKENQUKKQUALAFEVKENPEAUARÇEN
		VMEDERGELOTICEASERETCESTECPHEVIECECALR <u>GGGGS</u> NNNNNN
75	LS-	NEVEROLEGI LL. SOL GARCAVVASELRCQCLKTLPRVDFKNIQSLSVTPPGPH
	$mCXCL2^{28-}$	CAQTEVIATLKGGQKVCLDPEAPLVQKIIQKILNKGKANGGGGSGGGGSEARC
	100	EIAHEYNDLGEQHFKGLVLHAFSQYLQKCSYDERAKUVQEVTDFAKUMVADE57
	-	ANCEVSIATIESUKLOAIPEERENYGELADOOTEQEPERRECELQEKDOOPSEF
	(Gly4Ser)2-	PFERFEREAMOISPKENFITTFWJHULHEVARPHONFYAPELLINYAEQZNEILIY
	mouse SA-	COREADEESCLIPPELDOVKERALVSSVROPPECSSMORFOFRAFRAMEVARLSO
	(Gly4Ser)-	TPPNADPAGITKLATELTKVHXEOCETDLLECAODRAELARYMCERÇATISSKI
	His ₆	OLCORRETEER ECTLEARED DE VOTBREVER AND
		HINEYSRREPOYSVIELEREAKKYRAILERCOAHABITAOTGIVEARSQPIVE
		PRIEVETIECULY ENLIGENCEPONALLVRY TOLD POVS TETLEVEARELISEVOTEC
		CTLERIOS LPOVENYLSAULREVOLI REATEVSEEVTELOSGELVEEFPCFDAI
		TVDETYVFREFKÆUPTPESDICTLPRKEKQIRGQTALABLVKEKPKATARQLB LVMDDFAQALFFUCKAADEFTUFSIEGENLVLPCEDALA GGGGSHHHHNN
76	LS- mCXCL3 ²⁸⁻	MRVPAQLEGITERS PGAFCAVVASELRCQCLNTLPRVDFETIQSLTVTPPGPH
		CTQTEVIATLKDGQEVCLNPQGPRLQIIIKKILKSGKSSGGGGSGGGSEABE
	100_	ELAERYBOLGEGEFKGLVULLAFSQULGEUSYDEBARUVGRVEFFARUVGADE54 ANODASINULFADRIUGAJPBLEEBYGELADCCUKORFESDECFLOEEDDDPSLJ
	$(Gly_4Ser)_2$ -	THE PRODUCT PRODUCT PRODUCT CONTINUES CONTINUES FOR THE PRODUCT OF
	mouse SA-	CCAEADKESOLJTPKLDOVNEKALVSSVFORMKOSSMOKFGERAFKAMAVAFLS(
	(Gly4Ser)-	TE FRADYAET UNLAUDI. TELVEKE OORGELE HOAD DAAET AR THOERDATUS SKI
	His ₆	OT COD KP LEXKAGOLSEVES OTSPADLE AT A XDEVEOOP VCKNYA EAKDYFLOT
		FLYETSPE UP DY SVELLE REALEMEAT LEEUCAE AN PPACYCTVLAEF QP LVEL
		- PREEVE INCOLLABELIGENGEGRAALEVERTEGESTUGVSTERLEVESSERIJGEVOTEG
		CTLPEDQRLECVEDYLSAIDHEVOLLEEKTPVSEHVIKCOSOSDVERRECKSAI
		evdetivereenaeleteesototleesengtregtalaelvaenerataegee
		TYMDDFAQFIDTCCEZADKDTCFSTECPRLVIRCKDALACCCCSHHHHHH
77	LS-	ARVEAGLEGELSERE PARTUTSAGPEESDGDLSCVCVKTISSGIHLKHITSLE
	$mCXCL4^{30-}$	VIKAGRHCAVPQLIATLKNGRKICLDRQAPLYKKVIKKILESGGGGSGGGGS
	105	EKSELARE YNDJGEGEFKGIVL LAFSOFLGECSYDERAED-OEVTOFACTOVAL
	-	SSAAROPSERELFGPRECALPRERSTGELLADUOEKGRESRAROPLQBKDBR
	(Gly4Ser)2-	SEPPEERFEREMUTS PRENPT UPMCHVLBEVARRHPYFYAPELENNASQVNE I
	mouse SA-	LIQUCARADESCI TPALDGVKERALVSSVRORMEUSSNORPGERAFRAVAVAT
	(Gly4Ser)-	LSGTFFNADFABITKLATDUTKVNKECCBCDLLECSPORAELASYMJENGATIS
		SKLQTOCDKPLLRAABCE SEVERDIMPADLES IANDEVEDQEVORMAEAKEVE

	His6	LGUP LYEYSBREOYSVSLLLRLAKKYEATLEKCCABANPPACYOTVLAEFQFI VEEPRALVETBODLYEKLCEYGEQNALLVEYTQKAPQVETFTLVEAAFDLORVO TRUCTLPEOQRLPCVEOYLSAHLNRVULLHEFTPVSEHVTRODSOSLVERPCF SALTVEETYVEEFKAETFTPUSDLOUDPEKERQLEKQUALAEDVKEKEDATAE QLETVMEDEAQFLULOCEASDKELCESTEOPHLYURGKUALAEDVKEKEDATAE -
78	LS- mCXCL5 ⁴⁸⁻ ¹¹⁸ (Gly ₄ Ser) ₂ - mouse SA- (Gly ₄ Ser)- His ₆	MPVFAQLECTLLIFTERCARCATELRCVCLTVTPKINPKLIANLEVIPAGPQCPT VEVIAKLKNQKEVCLDPEAPVIKKIIQKILGSDKKKAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
79	LS- mCXCL7 ⁴⁸⁻ ¹¹³ - (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	MKVPAQUEGELELINGEGARC IELECCENTISGIPFNSISLVNVYPPGVHCADV EVIATLKNGQKTCLDPNAPGVKRIVMKILEGYGGGGGGGGGGGGGGGGAANCEVALAHEYN DISEQBERGEVETAFFQYLQKCSYDERAKTOPTUDFAKTOVADESAANCEVAL BALLMERNERENGESLADOOIEQGFGGGGGGGGGGGGAANCEVAL FALMOUKLOALENERENGESLADOOIEQGFFGERAFEAMAVARLSQUPPNEDESEPPERENA EAMOTAFEENPTTFMSHVLREVAFRHPYSYAPETLYYARQVNETLOQCCAEADE ESCLIFFEDDGVKERALVSSVRQPMKCSSMQEFGERAFEAMAVARLSQUPPNADF ALITKLATELLKVAREDOHGDLLECAEDPAELAK/MCENQATLSSELQTODDKP ILIFFAHOLSEVENDTNPADDPATAADFVEDQEVCENYAFARDVFLOTFLTEMSR PREPYSVSLLESLAKKTEATLEKOCAEANEPACISTVLAESQEVTEDTINENT NCLLYERUGENGEGRAFIENVELTVETVEAAENEGEVATACOUTEPENQ REPVENDENTERVENDUNGENERVELUSSESIVEERVETVENT REPVENDENTERVENDUNGENDENTERVETVERGENDUNGETVE REPVENDENTERVENDUNGENTERVENDUNGETVE PREPVENDENTERVENDUNGENTERVENDUNGETVE PREPVENDUNGENTERVENDUNGENTERVENDUNGETVE PREPVENDUNGENTERVENDUNGENTERVENDUNGETVE PREPVENDUNGENTERVENDUNGENTERVENDUNGENT PREPVENDUNGENDUNGENUNGENUNGENUNGEN PREPVENDUNGENDUNGENUNGENUNGENUNGENUNGENUNGENU
80	LS- mCXCL9 ²²⁻ ^{126_} (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	MRVFAOLLGLUUNLEGARCTLVIRNARCSCISTSRGTIHYKSLKDLKQFAPSP NCNKTEIIATLKNGDQTCLDPDSANVKKLMKEWEKKISQKKKQKRGKHQKNMK NRKPKTPQSRRSRKTTGGGGSGGGGSEARESEIARAANDEGEOREGEVLEAR SQMLQEOSYDERARDVQEVIDFARTOVADESAANODASIETTEFØDELCAIPRLE ENYGELADOOLKQEFEKNEOFLQEKUDRPSLUUFERAEAROLSFEENELIER ENYGELADOOLKQEFEKNEOFLQEKUDRPSLUUFERAEAROLSFEENELIER ENYGELADOOLKQEFEKNEOFLQEKUDRPSLUUFERAEAROLSFEENELIER ENYGELADOOLKQEFEKNEOFLQEKUDRPSLUUFERAEAROLSFEENELIER ENYGELADOOLKQEFEKNEOFLQEKUDRPSLUUFERAEAROLSFEENELIER ENYGELADOOLKQEFEKNEOFLQEKUPAROYNELIENELIENEL GRZUBEVARRHPYFYAFELDYNAROYNELIIOOCAEAUNESOLUPKLDOVIERA LVSEVARRHPYFYAFELDYNAROYNELIIOOCAEAUNESOLUPKLDOVIERA LVSEVARRHPYFYAFELDYNAROYNELIIOOCAEAUNESOLUPKLDOVIERA LVSEVARRHPYFYAFELDYNAROYNELIGTTIYEYSEFEFDDISSELIRAE KYEAFILEBOOAEANFEADYGEVCRYAEBAKUPELGTTIYEYSEFEFDDISSELIRAELOSYDEQA KYEAFILEBOOAEANFEADYGEVCRYAEBAKUPELGTTIYEYSEFEFDDISSELIRAELOSYDEQA KYEAFILEBOOAEANFEADYSEPTIVEARNLOPVCTKOOTLEEDQRLPCVEDYLSAILENR YCLLBEKEPYSEEVIKOCSGEIVERPEPOPSALTYDEPAQTILOOCEAADKPTO YCLLBEKEPYSEEVIKOAEAENNREPVATAEQUETVNDEPAQTILOOCEAADKPTO YCLLBEKEPIKKDAEAENNREPVATAEQUETVNDEPAQTILOOCEAADKPTO YCLLBEKEPIKKDAEAEAENNREPVATAEQUETVNDEPAQTILOOCEAADKPTO

81	LS- mCXCL10 ²² -98_ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	MEVE AQULOLINUM POAP O IPLARTVRONCI HIDDGPVRMA I GKLE I I PASL SCPRVE I I ATMKKNDEQRCLNPESKT I KNIMKAF SQKRSKRAP GGGGSGGGGSE AHES BI AHPYDE LOEQHEE OLVUE AF SQYL QKOSYE BRACLY (BVTDEAE TOVA UESAARODMSURTUF SUKLOA IPMUREN Y GELADOOT NGEPERNEOF LOHKDON PSUEPPER UEREAMOUSE KERP TIPMER I LHEVAR BETEYAPELLY YABOY NE III TQCC ARADREGOUTERIDGVKERA DV SSVRORMKOS SMORE GERAPRAMAVA PL SQYF PRADEAELI, KLA UELTKVREE OUESDLLE OAU DRAELAKYMOENQAT I SSKLOT CODKPLUNEXHOUF EVENDTHE AD DRAI AADE VEDQEVORNYABAREDY FI GI FI YEYSRREEDY SVILLEPERKY EN TUEKOOREANPPACY OTVLAEF OF I VEEPEN UVKUROUD EKUSEY OF QHALEVEN TOKAPONS TYL LVEAARED OF GTECCTUPENOOF DE OVED YUSATI NE VOLL HERTEP VSEHVTEC OSGSLVEERT O FSA LTVDE TYVE REEKAEUP TP HISD I OT LPEKEEC I NROTALABLYKHKERATA EQUKTVMENDER AGELD TOCKAADED TOFS TEGENEV TROUDAL A <u>GGGGS</u> HNEHEN
82	LS- mCXCL11 ²² -100_ (Gly4Ser)2- mouse SA- (Gly4Ser)- His6	REVEROLDER LELIVIE GARC FLMFKQGRCLCIGPGMKAVKMAE I EKASVI YPSN GCDKVEVI VTMKAHKRQRCLDPRSKQARLIMQAI EKKNFLRRQNMGGGGSGGGG SEAEKSEL ARFYNDLGEORFKGLVLITAF SOMLOEIDS YDS RAELL VOEVIDFARTIC VADESAANODES LETLEGDFLCAIPALE ENMOELADOOL KOEFERNEOFLOUWD DNES LEPEERPEASAMOTSPRENPTIFMOE YLHEVANRHPYFYAGELLYNA SOF NEILTOOCAE ADRESCUTPRLEGVWEKALVSSVRORMEUS SMORFOEFAFKAVA VARLSQLFUNADFAELTKLAIDLTKVNKECOBGULESCAEDRAELAEYMCEN QA TISSVI GTOODEVELKKAHOLSEVERDIMPALLFAIAAUFVEDQEVOKN YAEAK DYFLGTFLITENSKRHPDISVELLERLAFKYRAILERGCAEARFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISVELLERLAFKYRAILERGCAEARFAOMGIN ZAEAK PVFLGTFLITENSKRHPDISVELLERLAFKYRAILERGCAEARFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISVELLERLAFKYRAILERGCAEARFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISVELLERLAFKYRAILERGCAEARFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISVELLERLAFKYRAILERGCAEARFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISVELERAIDENSKYRAILERGCAEARFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISVELERAIDENSKRAILERGCAEARFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISVELERAIDENSKYRAILERGCAEARFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISVELERAIDENSKYRAILERGCAEARFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISKER DEN DEN DYRCHAERAARFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISKER DEN DYRCHAERAAFFAOMGIN ZAEAK DYFLGTFLITENSKRHPDISKERAFFAR
83	gWiz-LS- mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK138- (Gly4Ser)- His6	ATGUACA EGA GAGEROO EGUTUAGO EGUTUGOOC LIGUTEO EGUTUGOO LIGUT GGUTURAA EGUGAARCA CAUAAGAGUTAGA EGUCUAL OSGUATAAL GAUTUG GGAGAA CARCATTEURAAGGOCTAGEOTGA ETGOCTTU ECC AGCATUUDOAG AAALGO LUATAOGA LUADOA EGUUAAAL EACTUUAGGAAUTAAOAGAUTUL GOA AAARCCHOTOTTGCCCATCACTOTOO COCCAACTATGACAAAL COCODOA DACT OT UTTERGAGATAAGTTGUTGOOAT TUCAAACO LUGGT BRAARCTADGGTGAA CTCCCTCACECOTOTRCRAAACARGACCACCACUTUGAAAACGACAGAUTUCCCHOGAA CACARRGA TGACARCCCCAGOCTACCACUTUGAAAGGUCAGAGGCTGAGGOC ATGLGCAGTGACARCCCCAGOCTACCACUTULA ELGUGACACULATTU GOAL CACARRGA TGACARCCCCAGOCTACCACUTULA ELGUGACACULATTU GOAL CACARRGA TGACARCCCCAGOCTACCACUTULA ELGUGACACULATTU GOAL CACARRGA TGACARCCCCAGOCTACCACCACUTULA ALGUGACACULATTU GOAL CACARRGA TGACARCCCCAGOCTACCAGOCTULA ALGUGACACULATTU GOAL CACARRGA TGACARCAGAL ECTGACOCAGEGTU ELGUGAGGOCILAUTU GOAL COCTORCCCCCGAACTTECTTATTTCTACGACGACGACOACULTUCACACULACTCCCCC CGUCACAGGACACTGUTCCAGCAGACACUTOCCAGACCTTCCCCCCCACACACU CCCTCACCAGGACTGCUTCCAGCACCACULACCACCACULTURACULTUCCCACAC AT CSCCACALAGCUCCCAGCACCACULCACCACCACULTUCCCACULT CACCTGOLIGGAATGCOCCAGCCCCCAGCGACCACULTUCCCACULTUCCCACULT CACCTGOLIGAATGCOCCCCCCCCCGCCCCCCCCCACULTUCCCACULT CACCTGOLIGGAATGCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

		CCTOCCAFTCCTCCTCATTTCTTFCACCACCACCATTTCCCACCACCACCACCACCACCACCAC
		COUPAT DAOT DE GEATOD DE SEDOCT DACACITO DE AACAAAC AT GAACO DACE OT SUAARAGE SUESCIGOE SEBSCICHA DO DE COOGUE ESCIENCISCO DACE DE CO GOLUAAL E E CAUCUL O E E GEAGAAGAGUUTAAGAGUTEGE CAAGAO CAADEUT
		GADOTTULCGAGAASCTIGGAGASTADGGAUTUCAAAUSCCADTULSUDOGO TACACOCLGAAAGCACUTCAGGUSTCAACOCCGACTOTUSUSCAGGUSTSCAAGA
		AROCTACORA DECECCOCORDUA ACTOUR CERCECULTORA DE CACACECULO COUTRU GEOGRA GACER E CEGUCEGORA DOCEGRA DOGUCEGO SECULODO DECAL GRORA CRUCOCACE DE GEOCRECE DE CORDUCE DOCULOCECULO
		GAAABOOGGCCATGOTTCODTGOTCOTGADAGTTGATBAAACATATGOTCCCDAAA GAGLELAAABOLGAGSUULLOACUTTOOACUUTGALALOTGOROACUTUGAGAG
		ANGCAGNACCAGATUANCARACNANCOSCIECTECICACOTECUCANCONCAGAC CECCAAGGEIACAGOGGAGCAACUGAAGACIGEENIGACIUGACUTECOACAGIIC CECCATAGAECTECIAAGOCECUEGACABCGAERCETECIECUCACUGACOTE
		CCAAACCTTGTCACTAGACCAAAGACCCCTTAGCC <u>GGTGGAGGAGGCTCTGGT</u> <u>GGAGGCGGTAGCGGAGGCGGAGGGTCG</u> GCTATCCAGATGACCCGGTCCCCGAGC TCCCTGTCCGCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAG
		TACCACGACGGTTCTGCAGCCTGGTATCAACAGAAACCAGGAAAAGCTCCGAAG CTTCTGATTTACGGTGCATCCTACCTCTACTCTGGAGTCCCTTCCCGCTTCTCT
		GGTAGCCGTTCCGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAA GACTTCGCAACTTATTACTGTCAGCAATCTTCTTATTCTCTGATCACGTTCGGA CAGGGTACCAAGGTGGAGATCAAAGGTACTACTGCCGCTAGTGGTAGTAGTGGT
		GGCAGTAGCAGTGGTGCCGAGGTTCAGCTGGTGGAGTCTGACGGTGGCCTGGTG CAGCCAGGGGGGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTTCAACCTCTCT TACTACGGTATGCACTGGGTGCGTCAGGCCCCGGGTAAGGGCCTGGAATGGGTT GCATACATTGCTTCTTACCCTGGCTACACTTCTTATGCCGATAGCGTCAAGGGC CGTTTCACTATAAGCGCAGACACACCCCGCCTACCAAAACACAGCCTACCTA
		TACTCTCCGTATTATTCTTGGTTCTCTGCTGGTATGAACTACTGGGGTCAAGGA GCCCTGGTCACCGTCTCCTCGGGAGGGGGGGGGG
84	gWiz-LS-	ATGCACATCASASIGCOTOCICACOTOCICCOCCOCCUSUCCOTOCUSUCCACOTOCUSUCCOCOCUSUCCOTOCUSUCCOCUSUCCOCUSUCCOCOCUSUCCOCOCUSUCCOCUSUCCOCUSUCCUSUCCOCUSUCCOCUSUCCUSUCCOCUSUCCOCUSUCUSUCCU
04	mouse SA- (Gly4Ser)3-	OCTINUTARATISE GAAGGACA CAARAGUSAGATOOCCURTOROLA HAADRATUHG GGAGAAAAAATUHCAAAGGUCLAG LOUTSAL LOCCAGUALOLOUAG RAATROUCAHAGRAUSAGCATOCCARATTAGUGCARRAASIRAAARACUTDOOA
	$scFv (V_L-V_H) CK157-$	AAGACGTUTUTUGCUATGAGTUTUGCGGCGASUTGTGAGAAATGCCTTUGACACT CTUTUTUGCGAGATAACTTUTUGCCGTUGCAAAGGUUUGAAACUACCGUUGAA CTUUTUGUUUUUACAAAAGAGAGGUUUGAAAGAACGAALUTUTUCUTUGAA
	(Gly4Ser)- His6	CHOSCHENCHOUND IN LARAMENTER COCCERNATIONS OF A LEATENER CROMMENT CACAR DOCCACCOURCE ACCACCHUT CAAR DOCCOURCACCOURCE AND FOR COURCE ACCACCOURCE ACCACCHUT AT SIGNAL ACCAUTE ACCAC SANGET GOURGARGACATOOF EATTTOEREGOURCE GAGACTTOLE LACTAL GOE CROSCACCHACAATGACATTOESE ACCOURCE GAGACAACTTOLE LACTAL GOE COURCE ACCACCAAR OF ECTOR OF GEGENOTORS GAGACTTOLE CAARGAAASC ECCUTGACCCCGAAR OF ECATORS 6 ECAAGGACAAGCAFE GEDUURCE FOISTC

		ARCORO DUGACERTO TO CACORAR TE CORORO TE COTO DUR TRABO DE CUCITO
		AACUAUVCCACTATUTCCAUCAAAT TRUBURCT FUUTUVATABAUVACTUTTU AACAAROUGCACTOTUTTAOTOAUCTOOROCETUROROCETUCOTOOTUATOTO
		ARCMANUEL NO DE LE LE LE COLORA DE LE CRUMUELLO DE LO DE L
		GALAN CALLOULAN LUXILLEEL LUXIMA CAUGANA CLUGANAACIAL AN GASSOCAAGGAISI CITICIISSOCAOSI ICUI GIAISAATATI CAAGAAGACAC
		COLGATIAO LORGIA E COORTI GO EGGAO E EGOTAAGAAA LATSAAGOUADT
		CIGRAAASSIGNTOCSCIGAAGCCBAIIONICCCGCATGCIACGGASCSSUGOTT
		SUIGARTTTCAGOUTUTTGTAGASGAGOOTASGAROTTGSTCAARACUAROTGT
		CRITCHTIACCAVAACCTT WAGAATATAWATTCCAAAATOCCAUTCHACTICK
		TACLOUCAGAALGCACCTCLGUIDTCLLCCCCAACIUICCTGCLGGCIDCAAJA
		ARCOTA-DARCECT DECACCARATECTICITATACTICOL DARCETCADACACIC
		CONTRESS GRAGACTATIONET CTSCAATOCTGAAOOOLGTGTATOUSCUGOAT
		GASAAGAGUOCAGEGAGTGAGCATGTLACCAAGTSCEGLAGTSGALCUULGGEG
		CAARGOODOCRECOPPOLICEOPOLIS CACETORICAAAORIRECIODOCRAA
		GAGETTRAAGCEGAGACCLEUACCEECCAULCEGATATCEGCACAULCCAGAG
		ARCORORAGOS CATTARGAS ACARACOCOTOTOTOS O TOTOCOCARO CAGAS
		CUCAROUTACAGOULASCARCIUSAGACIUTCATOGALUAUTOTOLAUGTTO
		CITIZEATA CARTOFFIC CRACIOCITCA CARCOA CARDOFCCITICUI COACITCA DOUT
		COARACOPTOUGACHAGAUGCAAAGAUGCCUTAOUC GGTGGAGGAGGCTCTGGT
		GGAGGCGGTAGCGGAGGCGGAGGGTCGGATATCCAGATGACCCAGTCCCCGAGC
		TCCCTGTCCGCCTCTGTGGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAG
		TCTTACGGTGGTGTAGCCTGGTATCAACAGAAACCAGGAAAAGCCCCGAAGCTT
		CTGATTTACTCTGCATCCTACCTCTACTCTGGAGTCCCTTCTCGCTTCTCTGGT
		AGCCGTTCCGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGAC
		TTCGCAACTTATTACTGTCAGCAACCATCTCATCTGATCACGTTCGGACAGGGT
		ACCGAGGTGGAGATCAAAGGTACTACTGCCGCTAGTGGTAGTAGTGGTGGCAGT
		AGCAGTGGTGCCGAGGTTCAGCTGGTGGAGTCTGGCGGTGGCCTGGTGCAGCCA
		GGGGGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTCCAACCCCTACTACTAC
		GGTGGTACGCACTGGGTGCGTCAGGCCCCGGGTGAGGAGCTGGAATGGGTTGCA
		TCTATTGGTTCTTACCCTGGCTACACTGACTATGCCGATAGCGTCAAGGGCCGT
		TTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
		TTAAGAGCTGAGGACACTGCCGTCTATTATTGTGCTCGCCATTACTACTGGTAC
		GATGCTACTGACTACTGGGGTCAAGGAACCCTGGTCACCGTCTCCTCGGGAGGG
		GGCGGTTCCCACCATCACCACCATCACTGATAG
85	aWi- IS	ATGGACATGAGAGIGOOTGUTUAGOTGUTGGOODUGUTGOTGUTUGGOUGUT
03	gWiz-LS-	GO JUUTAGA I GUBARGOAGE GARGAG JUBGAI COCUUAL COG LETARL GA JTTS
	mouse SA-	
	(Gly4Ser)3-	GGAGAACEECATTICEEAGGOOLEGICOTGETIGCOTTI FCCCEGIAICUCOEG
	$scFv (V_L-$	AAATGOTUATAOGATGAGOATGOUAAATTAGTGOAGGAAGTAAOAGAUTTJOOA
		ARVACCIDTOTIECCOATVASICTODDVCCAROTVEGACAARICCCUDOADACE
	V _H) CK129-	CTUTTICGAGATAACTTCUUTWOOATUUCARACCUUCAU SAAASULAUGUUGAA
	(Gly4Ser)-	CTCCCT/ACTCCTCTACAABACAAGACCCCG/AAACBAACGAATCTCCCCCCAA
	His ₆	CRORADE COCCARCENTICARA COCCARA CONTREMA A SECONDA COCCARA SECONDA COCCARA SECONDA CONTREMA A SECOND
	11100	ATSI SCACUTO EL BARGAAAGUDRACCACUTI ER EGBACACIAUTUSCAE
		GAASTIGOOASSAGAOAICCIIIATTICIAIGOOOCAGAAOTICIIIIAOTAIGCI
		GAGCAGLACAATRAGA ELCTRACCCAGTRTUS EGCAGAGOCECACAAGGAAAGC
		TOCOTOR COCIONA SCITICATO STUTICANOSA CARACCATTOC DOD DATIC DOTO
		CVICAGE/RATIGRACIESCICO/CVIATEGAGE/SUTTEGAGE/GAGAGAGCUTTITAAS
		COAFCCOQUERCETOOTEFCACCOQUEACATECO DUAATOOTEACUTECOACAA
		AT CACCNANT IGSC NAGAGA CCITANO CAANGT GAACAAGA AGU SCII GODA I GST

		GROOTO DE GGAATO DOCROATORORGOODO DRACUTOO DRACUADRU DE ODORA RACOROUURO DE TOTOCRORRAR OTOCRORUITE O TOCURE RAROCRUTO TO
		AASTAACCOCAUTATECECKUMMACTCCAUACTCCCCUCATERAMULAULUUTE AASTAACCOCCAUTCTCTTASECACCTCCACCATCAUCATCCUTGCTCAUCTC
		CCUSCCRITCCESCUGATITESUTGASSBCCAGGASSTGTGCASSACTATSCT
		GAGUGUAAGGATGTOLI COTGUGUCUTULI GLATGAALAL LUAAGAAGAGAG COTGATTA CTOPOTATCOOPOTOGUTAGAAGUTTGOTAAGAAATATGAAGCOAOT CTGGAAGA TGTOCOTGTATGOCOTGUGUGATGOTAAGAAATATGAAGCOAO CTGGAAGA TGTOCOTGTATGAAGACGATOCTAAGAACTATCAGGGAAGACGAA CTTTCACGAAGACTGGGAGCGAAGTOTGACGUTUCUTUCAGAGACGACTGT CACOTTCACGAAGACTGCOCOTCAGACGUTUCUTUCUTUCAGACCACT CACAOO DAGAAGACCTATOLGACACACTOTOCTGAAGACTGCTGCAGAC AACOTAGGAAGACCTATOLGACGUTUTACACTTOCTGAAGAATCAGAGACTG CULI GLUGAAGACTATOLGACGUTUCUTUCUTUCUTUCUTUCUTUCUTUCUTUCUTUCUT
		GTTGCATCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAG GGCCGTTTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
		AACAGCTTAAGAGCTGAGGACACTGCCGTCTATTATTGTGCTCGTGGTTACGGT
		CCGTGGTACGCTTACTCTTACTTCGCTTTGGACTACTGGGGTCAAGGAACCCTG
		GTCACCGTCTCCCCCGGGGGGGGGGGGGGGGGGGGGGGG
86	gWiz-LS- mouse SA- (Gly4Ser)3-	ATGCACATGACACTACTCOTORATTCOTOPECCICOTACTCOCOTACTCOCOT COTROTAGALCOGAAGCACAAGAGUGACATCGCOCACCGGUATAATGALTTG GGAGAACAACATTTCAAAGGOCTAGTCOTOATTGCOTTTTUCCAGTATUTOCAG
	$scFv (V_L-$	ARAFOCIDARAJGA DOACCA FOCORART FACTODASGAA OTRAJAGA OTDI OCA AAGAGASI STOLIEGIOSA FOSGI O DOCUSCI RACTORAGARAL GUULTOR DAUT
	V _H) CK138-	CEDTTP-PRGATAASEFCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	ds1	CTERRITGS CTERTETS CANADAS GAEROOGSAARAAACSAATETTTCUTROAA
	$(V_L 100^{Q>C} /$	CACAAAGSTGROAACUUCAGOC LSUCACCA LTTGRAAGGCUAGAGGCLGAGGGC
	$V_H 44^{G>C}$)-	AT SEGENOOT CUTEUNNOSENNA AOOCAS CONOOTULAE 9 99N CRUUNUT DUCAT GAASTTBOONGAAGAN NECUTTAE E E CTATBOOCCAGAAO E E CUTUNO EN ISUT
	(Gly ₄ Ser)-	CROCACTE CRATCE SET FOR CACHER CONTRACT STOCE CACACESCE CACACESCE ACCESCE CACACESCE ACCESCE CACACESCE ACCESCE CACACESCE ACCESCE ACCESC
	His ₆	TGCCTGACCGRAGGTTGATGGTSTGARGESGRAGGATEGCCCCCTCCGTC AGACAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
		COARSGEDACEASCHOCECEGACOOASSCALTOOCCAALCOECACACHULTCOASAA

		AT CACCARA HUCCDAACA CACCOUVAC CAACAACAAC CAACUCCU SCCA LCCU
		CACCTOCTACAA TOCCCACA TOA CACCOCCCCACUTFOCLAACTACA TOTA TOAA
		AA SYAGOOGA HATCTOOR/WAAACT MAGACTT MUTCCOATAPACCACT HTG
		AA MAAGGAA MA HOTO MARAMAGT KAASATTIK HOOGATAAR OSOTTIFFO AASAAGGOOGACUVUOTTASUGAGGTSSASCATGACACCATGCCUVOTGATCUS
		COLUCIA E GOIGOL GAELITTEL E AGUACOAGGAGIS E GOAGAAN E A LGUI
		GAGGOCALGENTETETECETEGESCACETTETESENTENATATUCANSAGACAC
		COTTERT TRUTCHET A TOCCHET TRUTEA BRUTTROTRABARTATEA & SOCACT
		CT PRAABACT PUTCODOT TRACCOBACTOR FOCTACE TACHWACACO IN TH
		octraatticarcottottgtaracarcottacaacattogtcararcotactict
		GA TOTTERCACAANOTECCACARTA TOCACECCRAAAC SCCACTOERSULCCO TACACCERSA AASCACCTCASCINTCAACCECCAACTOESTSCAASA
		AACCEAGUAASAGEGUSCACCAAUTULEGEAGAULECCEGAASAECAGASACEG
		COTTAGE CECCAR GROEATICI CECCAR ECCECAR COCUMENTO LO ECEMINICA
		GAGAAGACCCCACTGAGEGAGCAEGELIACUAAGEGCIGELAGEGGAUCCCEGGIG -
		GRASCO DAGOSTO DI TOTO DI VIOSOR DI TOSTORAZOS ILSTODO CORRE-
		GAGTTTARAGCTGAGAGCUTTCACCTHCCACTUTGATATCTGCACACTTCCAGAG
		AADTAGAACCATATIDAACAAACAAACDECTTCTTCTCGACCTCTUGAACCA JARG
		COCAAGEMTA CASCERA E CAALCAAN SA CIERTON (1964), IAN OL (1160 A ON 311 C
		CIGGATACAIGTTSCAAGGUTSCIGACAAGGACACUTSCIICLUGACIGAGGUT
		CCAAROCTTGTOROTAGATAOAAAGAOOOTTAGOO GGTGGAGGAGGCTCTGGT
		GGAGGCGGTAGCGGAGGCGGAGGGTCGGCTATCCAGATGACCCGGTCCCCGAGC
		TCCCTGTCCGCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAG
		TACCACGACGGTTCTGCAGCCTGGTATCAACAGAAACCAGGAAAAGCTCCGAAG
		CTTCTGATTTACGGTGCATCCTACCTCTACTCTGGAGTCCCTTCCCGCTTCTCT
		GGTAGCCGTTCCGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAA
		GACTTCGCAACTTATTACTGTCAGCAATCTTCTTATTCTCTGATCACGTTCGGA
		****CGGTACCAAGGTGGAGATCAAAGGTACTACTGCCGCTAGTGGTAGTAGTGGT
		GGCAGTAGCAGTGGTGCCGAGGTTCAGCTGGTGGAGTCTGACGGTGGCCTGGTG
		CAGCCAGGGGGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTTCAACCTCTCT
		TACTACGGTATGCACTGGGTGCGTCAGGCCCCGGGTAAG
		GCATACATTGCTTCTTACCCTGGCTACACTTCTTATGCCGATAGCGTCAAGGGC
		CGTTTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
		AGCTTAAGAGCTGAGGACACTGCCGTCTACTATTGTGCTCGCTC
		TACTCTCCGTATTATTCTTGGTTCTCTGCTGGTATGAACTACTGGGGTCAAGGA
		GCCCTGGTCACCGTCTCCTCGCGGGGGGGGGGGGGGGGG
		TGATAG
87	gWiz-LS-	ATGRACATGARARE GUURROE CAGUIRROE GGGUUL ROEGUTROL REGGULROOE
0/		COUNCE A CAPPRICA A CAPPA A CAPTA CAPTOR A CONCENT COULT A TAA TOA TEEC
	mouse SA-	GGA HAR CAACA THE CAAAGINGULAGTCUTGREET GOUTET FOOLASTRUCTUCAS
	(Gly4Ser)3-	ARATOCI VATACCATO SCARATTA VICCACCAAVTAACACACTI ICCA
	scFv (V _L -	AASTOLICA LAGUAL MAGA ISTEAASTI IATE A SOUAAT ASUAGACELLIGUA AAGAOGIISTSID1600SATGAG1CISCOGODASCI GPGAGAAATOOOTIICACAOT
	V _H) CK138-	CVL EFF GGAGAE AAGTTSL GEGCUATLOOKAACULOOG LGAARAO LAUGSL GAA
	,	CT SSCI GAOI SCIGUAGAAACAAGA SCCCGAAASAACGAAU SHUDOOL SCAA
	ds2	CACAAASA EGACAACCCCACUCLACCACUAL EEGAAASSOCIAGASSOL GACGUC
	$(V_L 43^{A>C} /$	ATOTOCASCECCTTTRAGCAAAASCCAACCACCETTATSSCACACTATETOCAT
	$V_{H}105^{Q>C}$)-	A FORCAUCTUUTTERACUBARAUCCASUBAUCTETRAT-SUAUSULATEEUGAT GAAGTTEUUAGAAGAUATOOTTATTTOTATGUUUCAGAAUTTOOTTAUTATGOT
	(Gly ₄ Ser)-	CAPITACIA CANA CACATTO FOR COON OF CHIDOLOCIA CACOOT A CAACOAA ACC
	His ₆	TOCTRACTORACCOST TO FRACTORY OF TO FORMACTORY A ANDRAAC TOCTRACCOSTAGOTEST COTOEST STANDARAS SCATTOETCT CATOEST C
1		

		Automates press, this is made by a three highers are any terms in parts or deriver and the second states of the
		COUCACASAA UCAASHOO UCCASHA HOCB CAACHUTCCASACA CAO UUTU HAAA
		COAPOSCUACTAOSTICITO A GUCACAOA TITOSO SA TUCTO A STUTUCA GRA
		ATCACCABATUGCCASCA PACCUCAC DAAACTCAACAACCACUCUUCCCAUCCU
		GACCINGINGGAS INGGAMASSINGAG GEGGGAACTINGC CAASTIS CATSINGAS
		AACUAGGOGACTATOLCCAGUAAACLGUAGACLLGURGOSLAAAACOACLGTTG
		aaeaaascockorettiikareassuegaaecaisaackiscorectisalore
		CUISCOATING TEGINARITITETINA GEACCENNA STOTNOA SEA UIA DOT
		CAMPCAACCAPCITC/TOCCCAC/UTCTCTAFCAATATI/CAACAACRCAC
		COUGAIDACECTUTAFCCCTUTUSCEGAGACEFYCCIAAGAAALATGAAGCCAUT
		CTCCAAAAACTCCTC DECTCSAC DEAA DOCT DECCCGATO DEACCOCA DAGTCCTT
		GCTGA2CTTCAGGGCCTTGGAGAGAGAGGGGGAAGAAGTGGGTCAAAAGCAAGTGG
		GAL CHE LAUGAGAAGUTTIGGAGASTAL GGA LTUUAAAA LGUUAL HO LAUTL OGO
		TASECCACAAESCACOTSECCOTCAECCCCAASTCECOTOSESCOCTOCAESA
		AACUTASSAAGSGTSSSCACUARSEG, INTERCACUTUCI, SAAGATCASGAGAGIS
		COUTOT DE GGASCA DE A FOTOT DE GCAATO DE GAACOOL DE GUOTOL DU LOCAT
		SAGAAGACCCCAGTGZGYGAGCATGTTIACCA2GTGCCACTGCACCCUUICGTG
		CAARGOCCODERTCOTTOUCTCOTOUCACOTTOATGAASCAURTCUCCODEAA
		BASTIFEAAAGCIGAGACCITECACCOTECECECTOCACACCITCCAGAG
		AAGGAGAAGCAGATI AAGAAACAAACGGUTOL I GCIGAGO I GGIGAAGCACAAG
		CCCAAGGETACAGOGGAGCAACTGAAGACTGTCATGGACGACUTTGCACAGTG
		CINSON HACAITOLI GCEAGOO I GCITGACAAGGACACO I GCITICI, COACUGAGOO I
		OCARACOTTOTOACUSCROWAABCROWCUTROOC GGTGGAGGAGGCTCTGGT
		<u>GGAGGCGGTAGCGGAGGCGGAGGGTCGGCTAGCGCTATCCAGATGACCCGGTCC</u>
		CCGAGCTCCCTGTCCGCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCC
		AGTCAGTACCACGACGGTTCTGCAGCCTGGTATCAACAGAAACCAGGAAAA ????
		CCGAAGCTTCTGATTTACGGTGCATCCTACCTCTACTCTGGAGTCCCTTCCCGC
		TTCTCTGGTAGCCGTTCCGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAG
		CCGGAAGACTTCGCAACTTATTACTGTCAGCAATCTTCTTATTCTCTGATCACG
		TTCGGACAGGGTACCAAGGTGGAGATCAAAGGTACTACTGCCGCTAGTGGTAGT
		AGTGGTGGCAGTAGCAGTGGTGCCGAGGTTCAGCTGGTGGAGTCTGACGGTGGC
		CTGGTGCAGCCAGGGGGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTTCAAC
		CTCTCTTACTACGGTATGCACTGGGTGCGTCAGGCCCCGGGTAAGGGCCTGGAA
		TGGGTTGCATACATTGCTTCTTACCCTGGCTACACTTCTTATGCCGATAGCGTC
		ARGGCCGTTTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
		ATGAACAGCTTAAGAGCTGAGGACACTGCCGTCTACTATTGTGCTCGCTC
		TACAGTTACTCCCGTATTATTCTTGGTTCTCTGCTGGTATGAACTACTGGGGT
		NROGGAGCCCTGGTCACCGTCTCCTCG_ <u>GGAGGGGGGGGGTCC</u> CACCATCACCAC
		CATCACTGATAG
88	gWiz-LS-	ATGEACALGAGESESCE GUTCASE L'OUTRESCE GUTERSE (GUTERSE L'OUT
	mouse SA-	COTOCASATAS COCOSO SA
	(Gly4Ser)3-	GGNGAACEACAPTCEARGAGOLEGUOTEATEGOTTUICCCAGDELUUDOAG
		AAALGO JUARAOGA JUAROA EGUUAAALEAGTEUAOGAAGTAROAGACTULIGOA
	$scFv (V_L-$	ANSACCIMPOTESCORAPSACENCESCORACESESCARAL COLUMNIACE
	V _H) CK157-	CELTTTB9AGATAAGEEGIST900AELISUAAACOLISUSE9AAAAUTALG9IIGAA
	ds1	Сторот за сторота са какоажба ороб за за окако бак потопострока
		CACAAAGE ISACAACUCCASSOCIECCASSA DE FISAAAGE CLASGAGE USAGGE
	$(V_L 100^{Q>C}/$	AT VER AGET SCHELAAD VAAAAGGGAACCAGET HATCOGA SACTATTE NAT
	$V_H 44^{E>C}$)-	CASTINGOAGASASAOATCOTTATTOTATGOOCEASAAOTTOTTTAGTATSOT
	· · · · ·	

(G) His	(27)- CACAGO ACAATCA CRETTCICOLOGICA CONTENTICA CALCULAGA DE L'ECADADE A ACOLOGICA CONTENTICA POLICITO CALCULAGA DE L'ECADADE DE CARGENER DE CARGENER EN CONTENTICA POLICITO DE CARGENER DE CARGENER EN CONTENTICA POLICITO DE CARGENER EN CONTENTICA POLICITO DE CARGENER EN CONTENTICA POLICITO DE CARGENER EN CONTENTI CONTENTICA POLICITA DE CARGENER EN CONTENTI CONTENTICA POLICITA DE CARGENER EN CONTENTI CONTENTICA POLICITA DE CARGENER EN CONTENTI CONTENTI DE CARGENER EN CONTENT DE CARGENER EN CON
89 gW mo	SA- GGUACTAGALGOGAAGCACACAAAGACCGCCCAUCGUATAAUGADTTO
	Ser)3- SGAGAACEAUAL E ECEAAGGOO LEGTOO EGATTGOO E LITUUCAG LATUU DOAG AAATGOTOATACGATGAGGATGOOAAATTAGDOOASGAAGTAACEGAOTOITGUA
V _H , ds2	K157- CTUTTTESSAGAPAASTECUTOCCATUCCAACCUTCCC SABAACTAUCCUCAA CUGSOTSECISCTSUECAAAACA2SASCOCCEAASAAACSAESTUUUUUSCAA CASC/ CASTAACATOASAACCOCRECCACOTUTATGSGAACSCUACTUSCEA

	V _H 105 ^{Q>C})- (Gly ₄ Ser)- His ₆	CAACITECCIACAACACATECCITATITECTATICCICACAACTECITCACAACACCI CACCACITECCAACATECICACITECTCICACACITECTCICACACITECTACACACCAACCI TOCCICACACITECCICACITECTCICACACITECTCICACACITECTCACACITECTCACACITECTCICACITECCICACICACICACICACICACICACICACICACICACI
		TTCGCAACTTATTACTGTCAGCAACCATCTCATCTGATCACGTTCGGACAGGGT ACCGAGGTGGAGATCAAAGGTACTACTGCCGCTAGTGGGAGTAGTGGTGGCAGGT AGCAGTGGTGCCGAGGTTCAGCTGGTGGAGTCTGGCGGTGGCCTGGTGCAGCCA GGGGGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTCCAACCCCTACTACTAC
90	gWiz-LS- mouse SA- (Gly4Ser)-V _L CK157-His6	ATGCACATERCACTECCTCAECTECTOESCOTOCTCOTECTECCCCOESCUPOT GGL 90 FAGATECCAASGCCTACTCOTECTCOTCCTECTECCCCCCCAE GOAGACAACATTECAASGCCTACTCUTCATCCTTLTTOCCAETACOCCCAE AAATGCL CALACGAL GAGCATGCCCACTTAGEGCAEGAAGEAACAGAC FL LEGA BRCACCTCTCTTCOTCCCCACTCCCCCCACACTCCCCACACACCCCCCCC

		A TOTOCASC FOUTTUA ACCAAAASC CAAODACCE DITAT DECACAODAD TUDOAT CAAOTTUDUACAAGA CATCOTTATITOTATUDUCCCAGAACUTECT CACTALOOT CAAGAC CAGACCAGE CATCOTTATITOTATUDUCCCAGAACUTECT CACTALOOT CAAGAC CAGACCAGE CATTOTER COCCAST GEDOTO CAGACOCTACACCAACCAACC TOCCTS ADDOCCGAGOTTER TEGOTOTER AGGAGAAR SCATTOSUCTOA TOUSTC CGUUAGAGAAU CAAGE SCUULAGE A EQUAGAAG E DEGACAGAGAGAGE SUCTOA TOUSTC CGUUAGAGAAU CAAGE SCUULAGE A EQUAGAAG E DEGACAGAGAGAGAGE SUCTOA TOUSTC CGUUAGAGAAU CAGACOCTGACCAGACATUCCCCAACT SCUTGACCAGAA ATCACCAACTECCTCATCOCAGACOCTGACCAACATUCCCCAACTACACCACUS COCCAUCAU 997 CACTGCTCC RATCOCCAGACOCTGACCAGACOTTGCCCAACTACACCACUS COC CCURGOAUTGCTCCATCACCACGACOCTGCCCAACTACCACCACUS COCC CCURGOAUTGCTGCTCTCC FECCACGACCAGGACOCTGCCCAGGACCTCCTGACCACCACUS COCCACUS COCCACUS COCCACUS COCCACUS CAAGAACUS COCCACUS CAACAACUS CAACCACUS CAACCACUS CAACAACUS CAACCACCACUS COCCACUS CAACAACUS COCCACUS CAACAACUS COCCACUS CAACAACUS COCCACUS CAACAACUS COCCACUS CAACAACUS COCCACUS CAACAACUS COCCACUS COCCACUS CAACAACUS COCCACUS COCCACUS COCCACUS CAACAACUS COCCCACUS COCCACUS CAACAACUS COCCCCUCUS COCCACUS COCCACUS COCCCUCUS COCCACUS COCCCUCUS COCCUCUS COCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUC
		GAGAAGACCCAGTG2GTGAGG2TGTUAGG2GTGGGGGGGGGGGGGGGGGG
		CCCAACHUTACACOHUAGCAACUUAACACUUTCADCCAUUACUUTCUACACUUT CTGRATACAUGTTGCRAGGOTGCUGACACGGCACOTGCUTCUGRACUUAGGAT CURAACCUUTGUCACUEGAUGCACGCOUCUUTABOOC <u>GGTGGAGGAGGCTCTGGT</u> <u>GGAGGCGGTAGCGGAGGCGGAGGGTCG</u> GATATCCAGATGACCCAGTCCCCGAGC
		TCCCTGTCCGCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAG TCTTACGGTGGTGTAGCCTGGTATCAACAGAAACCAGGAAAAGCCCCGAAGCTT CTGATTTACTCTGCATCCTACCTCTGGAGTCCCTTCTCGGCTTCTCGGT AGCCGTTCCGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGAC TTCGCAACTTATTACTGTCAGCAACCATCTCATCT
91	gWiz-LS- mouse SA- (Gly4Ser)- V _H CK157- His6	ATGUAGATEACACT-RECTORER TOOTORRECTOOTALTGC TODRECTOOT GUIROTAGATEACACT-RECTORER TOOTORRECTOOTALTGC TODRECTOOT GUIROTAGATEACACACAAGACCTEACTCOCACTUCCAGTATUTORAG ARATOCIDATACCADOACCATOCCAAATTACTCOASGAACTAACAGACTCICCA AAGAGUIGTEETGUCGATGAGTCTEGOUGUCAACTUTGACARA.UUULICAUAUT CTITTT-DIAGATAACTTCICTCOCATCOCAAACCIDOOCCUAAAACCACCICCICAA CTEROTGACTGCTECRCAAACAAGAGCCDOOCCUAAAACCACCICCICCAA
		CACAAAGATGACAACCCCAGCCLACCACTTEGAAGGCCGAGAGGCUGAGGC ATGTSCACCTTEAAGGAAACCCCACACTTETGAAGGCUGAGAGGCUGAGGC ATGTSCCAGAGAGACALCCTTALLECTATGCCCCAGAACLLCCTTACLALGUT GACCTGCCAGAGACALCCTTALLECTATGCCCCAGAACLLCCTTACLALGUT GACCTGACCCGAAGCTTGATGCTGCACACGCTGCAGACGCACGC

		A CACCARA TOCORACE CACOUNT CONCERNENT CONCER
		AA STACAACOASAT DAACAAACAAAC SECTETTO TECACOTO TECAACOA DAAC OODAAGGOTA DE SEGRAGODAAC DAAAGE ET GEOALDEGAT ASOLDEGOACA SETE ET GUATROA I GETEGOAAGGETEO FOACAAGGAACCETEO FICIL OBACILGA SUUT CEAACOUTECTOACE AGGEGGAGGGETEO GGAGGEGGTAGEGGAGGEGGAGGGETEO GGAGGEGGTAGEGGAGGEGGAGGGETEO GGTGGCCTGGTGCAGCCAGGGGGGETEO GGTGGCCTGGTGCAGCCAGGGGGGGETECCCGGTTGTCCTGTGCAGCCCGGGTGGG GGTGGCCTGGTGCAGCCAGGGGGGGETECTACCCGGTTGTCCCGGCGGGGGGGGGG
92	gWiz-LS- mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK129- ds1 (V _L 100 ^{Q>C} / V _{II} 44 ^{G>C})- (Gly4Ser)- His6	ATGMACATGMACAGEGORGOTICAGET CONSTRUCTION SUPERITICIES TERMENTISUES GATERIA ATTO-DAACCOCTAGET CONSTRUCTION CONSTRUCTIONS AAATGOTICAT AGGATIGAGEA TERCIDAATTAGTEG AGGAAGEACTIC TOCAC AAATGOTICAT AGGATIGAGEA TERCIDAATTAGTEG AGGAAGEACTIC TOCAC AAATGOTICAT AGGATIGAGEA TERCIDAATTAGTEG AGGAAGEACTIC TOCAC AAATGOTICAT AGGATIGAGEACTICICAAATTAGTEG AGGAAGEACTIC TOCACACT CTUTTTEGAGGATAGET TOUSTGOCAT TOCAAACTTCOVITGAAAGEACTIC CONSTAA CTUTTTEGAGGATAGET TOUSTGOCAT TOCAAACTTCOVITGAAAGEACTIC CONSTAA CTUTTEGAGGATAGET CONSTRUCTION CONSTRUCTION TAGTEG CACAAFGET GAGAACCOC AGOOTE COACCACUTTEGAAGEACGAACTTCOTTIC CONSTA CACAAFGET GAGAACCOC AGOOTE COACCACUTTEGAAGEACGACTIC TUTTGAT CAAFTT COCASTAGEACACTTCITE COACCACUTTET AT SEAC ACCACUTTEGAT CAASTT COCASTAGEACACTTCITE COACCACUTTET AT COCOCACCACUTTET TO TTEGAGEACACUT TOCOTOACCOCCACUTTEGT COTTECT COACCACUTTET TO TOTICACUT COTOACCCCCACUTTECT TO TECT CAACAACCACUTTET TO TO CGTOACGACUCCCCCACUTTECT COACCACUTTET TO TO CGTOACGACUCCCCCACUTTECT COACCACUTTECT COCOCATE TO TO CGTOACGACUCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

		CCTCATTECTCTCTCTCTCTCTCSCCCTCTCSCCCCCTCTCCCCCCCC
		CTOGARAZCTOCTOCUCTOAAGCUAATOCTCUCCATOCTACCOCACLUTOCTT
		COLVAATOTOASCCIOTTVIAGAACASCASCASCASCTICCIOAAAACCAA ITST
		GATCTEDAOGAGAAGOTEGGAGAATATGGATTOCAAAATGOCADECTAGTECGC
		LACACODAGAAAGCACCECAGALGECAACCOCAACIUECGEGGAGGCLGCAAGA
		AACOTAGGAAGAGTGGGCACCAAGTGTTGTACACTTOCIGAAGATCAGAGACTG
		CULTERGRAGACIAICTETUTSCATOUTSRACCELSISUETCUSUESCAT
		CRYRAGACCCCACHOS OF PACCAPCTOR COACCAS OF SUCCESSION AUCCOC NUTC
		GRARGOGGOCRIGOTTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO
		GROTTTARAGOTOR RECEIPOR DETECORDECTOR TATCHOCA CACELUC CACAC
		ANGANGAR GCAGASTIRAGAAACARACGGGT CTTGCEGAR CTGGTGAASCACAAS
		OCCAACCUTACAGCCUAGCAAC JUAAGAC LOTUAL GGA LUACLI I GCAUAG ELC
		CCAAAODEEG JUACI, AGA JUUAAAGACUKUJ, EAGCU GGTGGAGGAGGCTCTGGT
		GGAGGCGGTAGCGGAGGCGGAGGGTCGGATATCCAGATGACCCAGTCCCCGAGC
		CCCCTGTCCGCCTCTGTGGGCCGATAGGGTCACCATCACCTGCCGTGCCAGTCAG
		TACGGTGGTTACGTAGCCTGGTATCAACAGAAACCAGGAAAAGCTCCGAAGCTT
		CTGATTTACGGTGCATCCCTTCTCTCTGGAGTCCCTTCTCGGCT
		GGCCGTTCCGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGAC
		TTCGCAACTTATTACTGTCAGCGAGGTCATGCTCTGATCACGTTCGGA 7867GGT
		ACCAAGGTGGAGATCGAAGGTACTACTGCCGCTAGTGGTAGTAGTGGTGGCAGT
		AGCAGTGGTGCCGAGGTTCAGCTGGTGGAGTCTGGCGGTGGCCTGGTGCAGCCA
		GGGGGGCTCACTCCGTTTATCCTGTGCAGCTTCTGGCTTCAACATCTCTTTAC
		GGTTCTATGCACTGGGTGCGTCAGGCCCCGGGTAAG®GCCTGGAATGGGTTGCA
		GGTTCTATGCACTGGGTGCGTCAGGCCCCGGGTAAG%GCCTGGAATGGGTTGCA TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT
		TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT
		TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAAACACAGCCTACCTA
		TCTATTTACCCTTACTCTAGCTCTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAAACACAGCCTACCTA
		TCTATTTACCCTTACTCTAGCTCTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
- 93	a Wiz-I S-	TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
93	gWiz-LS-	TCTATTTACCCTTACTCTAGCTCTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
93	mouse SA-	TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
93	-	TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
93	mouse SA- (Gly4Ser)3-	TCTATTTACCCTTACTCTAGCTCTACTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAAACACAGCCTACCTA
93	mouse SA- (Gly4Ser)3- scFv (V _L -	TCTATTTACCCTTACTCTAGCTCTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAAACACAGCCTACCTA
93	mouse SA- (Gly4Ser)3- scFv (V _L - V _{II}) CK129-	TCTATTTACCCTTACTCTAGCTCTACTACTATGCCGATAGCGTCAAGGGCCGT TCCACTATAAGCGCAGACACCTCCAAAAAACACAGCCTACCTA
93	mouse SA- (Gly4Ser)3- scFv (V _L - V _{II}) CK129- ds2	TCTATTTACCCTTACTCTAGCTCTACTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
93	mouse SA- (Gly4Ser)3- scFv (V _L - V _{II}) CK129-	TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
93	mouse SA- (Gly ₄ Ser) ₃ - scFv (V _L - V _{II}) CK129- ds2 (V _L 43 ^{A>C} /	TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAAACACAGCCTACCTA
93	mouse SA- (Gly4Ser)3- scFv (VL- VII) CK129- ds2 (VL43 ^{A>C} / VH105 ^{Q>C})-	TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAAACACAGCCTACCTA
93	mouse SA- (Gly ₄ Ser) ₃ - scFv (V _L - V _{II}) CK129- ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})- (Gly ₄ Ser)-	TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACTCCAAAAAACACAGCCTACCTA
93	mouse SA- (Gly4Ser)3- scFv (VL- VII) CK129- ds2 (VL43 ^{A>C} / VH105 ^{Q>C})-	TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAAACACAGCCTACCTA
93	mouse SA- (Gly ₄ Ser) ₃ - scFv (V _L - V _{II}) CK129- ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})- (Gly ₄ Ser)-	TCTATTTACCCTTACTCAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACACCCAAAAAACAAGCCTACCTA
93	mouse SA- (Gly ₄ Ser) ₃ - scFv (V _L - V _{II}) CK129- ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})- (Gly ₄ Ser)-	TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACATCCAAAAAACACAGCCTACCTA
93	mouse SA- (Gly ₄ Ser) ₃ - scFv (V _L - V _{II}) CK129- ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})- (Gly ₄ Ser)-	TCTATTTACCCTTACTCAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TTCACTATAAGCGCAGACACACCCAAAAAACAAGCCTACCTA
93	mouse SA- (Gly ₄ Ser) ₃ - scFv (V _L - V _{II}) CK129- ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})- (Gly ₄ Ser)-	TCTATTTACCCTTACTCAGGCCTACTTACTATGCCGATAGGGCCAAGGGCCGT TCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
93	mouse SA- (Gly ₄ Ser) ₃ - scFv (V _L - V _{II}) CK129- ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})- (Gly ₄ Ser)-	TCTATTTACCCTTACTCTAGCTCTACTTACTATGCCGATAGCGTCAAGGGCCGT TCACTATAAGCGCAGACACCATCCAAAAACACAGCCTACCTA
93	mouse SA- (Gly ₄ Ser) ₃ - scFv (V _L - V _{II}) CK129- ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})- (Gly ₄ Ser)-	TCTATTTACCCTTACTCAGGCCTACTTACTATGCCGATAGGGCCAAGGGCCGT TCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA

		CACCOCAACCAACTECTTCCTCCCCCACCCTTCCTCTCACAACTATCAACCACACCCCACCCCACCCCCACCCCCC
94	gWiz-LS- mouse SA- (Gly4Ser)3- scFv (V _H - V _L) sm3E-ds (V _H 44 ^{R>G} / V _L 100 ^{G>C})- (Gly4Ser)- His6	ATGRACATSAGARTSCCTROTCASCTROTGRSCCTROTROSSCCTROTROSSCCROTROSSCCROTROSSCCROTROSSCCROTROSSCCROTROSSCCROTROSSCCROTROSSCCROTTER GGDPOTASSATROGRAGOSACACAAGAGGGGGAATCOCOCACGGGTATAATGATTE COASAACAAGATTECAAA DECCHACTOCTATTODUTETTOODAGTADOD DCAG AAGACGUGATACGADAAGCATGOCAAATTAGTROSGGAARTAACAGAOTOTIGCA AAGACGUGATACGADAAGCATGOCAAATTAGTROSGGAAATAACAGAOTOTIGCA AAGACGUGATACGADAAGTGOCGATDOCAAACCTOOOTGAAAACTATGGJGAA CTCROTGECTGOTROTECGATDOCAAACCTOOOTGAAAACTATGGJGAA CTCROTGECTGOTROTECGATDOCAAACCTOOOTGAAAACTATGGJGAA CTCROTGECTGOTROTECGATDOCAAACCTOOOTGAAAACTATGGJGAA CTCROTGECTGOTROTECGATDOCAAACCTOOOTGGAAAACTATGGJGAA CTCROTGECTGOTROTECGATCTCOCCCACAACTACCCCCA AAGACTTOCCACAACACACCCACACTTCAAGGGAAAACTATCOCCC ATGTGCACAACACACACCCTATTTECTATCCCCCACAACTTCCTTACTACTATCCCT GACACTACCAACACACTCOCACACTTGTGCAGAGGCTTGGJGACAGGACAACTATCCT COTCAGAGAACGAACACTCCAGTATTGCGACAAGGAGGAGGACGACACTATCCCA GACACTACCAACACTCCCACGACACTTGGGAGAGGAGGAGGACTCTGAAA GCATGGGCAGTAGTCGACCCAGTATGCCGCAAACTAGGGAGAGGACTCTCAAA GCATGGGCAGTAGTGCCCCCAGTATGCCGCGAAACCTCCCCCACACTCCCCCCCC

		CACCERCIAL CONTROLOGICULAR CONTROLOGICA ACTIVE A CAACE ACCARES CONTRAL ALCONDUCTOR OF CONTRALACE CONTROLOGICULAR CAACE ACCARES CONTROLOGICULAR
95	LS-mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK138- (Gly4Ser)- His6	MOMENTAQLIGLILIZIPGARCEAUKSEIAHEYNDLGEONTKGLVLIAVSQTLQ KOSYDEHARIVQEV DEPAKTUVAEESAARODESIHTIECERI DALEN LRENVGE LADOOTKOEREENECPLOHEDDNESLEPPTEREEAESACTS PRENETTPMOHYDE EVARKEETETAEELLITTAEQYNELLIQOOAHADEESULTPALEOVKEKALVESV RORMROSSMOKEGEESTKAPAVAELSOTERESDTAEITELATELTEVNKEOOFO DILEORDBRAELAEYHCENOATISSKLOTOODKPLLARAAROISEVENDTMPADI PATAADEVED QEVOKMYAEAKEVPLOOFIAETSSRLOTOODKPLLARAAROISEVENDTMPADI PATAADEVED QEVOKMYAEAKEVPLOOFIAETSSRLOTOODKPLLARAAROISEVENDTMPADI PATAADEVED QEVOKMYAEAKEVPLOOFIAETSSRLOTOODKPLLARAAROISEVENDTMPADI PATAADEVED QEVOKMYAEAKEVPLOOFIAETSSRLOTOODKPLARAAROISEVENDTMPADI PATAADEVED QEVOKMYAEAKEVPLOOFIAETSSRLOTOODKENTIODIYEKKIAET LEAUGAEAREPAUNGTVLAEVQELVEEPKNIJKINDELYEKKIAETOPROTOILE SKOTEVERNYTKOOSGSIVERREOFSALTVDETYVEKERIAETFOFREDTOILEE KEKQLAEQTALAELVEEKEKAIAEQIKIVEDEVAQELDIOKAADEDIUFSIEG PALIVTKOKDALA <u>GGGGSGGGGGGGGGGGS</u> ASAIQMTRSPSSLSASVGDRVTITCRA SQYHDGSAAWYQQKPGKAPKLLIYGASYLYSGVPSRFSGSRSGTDFTLTISSLQ PEDFATYYCQQSSYSLITFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESDGG LVQPGGSLRLSCAASGFNLSYYGMHWVRQAPGKGLEWVAYIASYPGYTSYADSV KGRFTISADTSKNTAYLQMNSLRAEDTAVYCARSGYSYSPYYSWFSAGMNYWG QGALVTVSS <u>GGGGS</u> BHENDH=-

96	LS-mouse	MEMENPAQUE GULE LALP CANCEAAN SE FARRY REDUCE OR PROLYL FAR SOYEA
90		ICSYDEEARLYCEVIDEAETCVADESAENCDRSLETLEGDRICATPNLRESSIG
	SA-	LADCOT KOEFEENE OF LOFF OONPALLEF FERPEARAMOUSE KENFUUFMORY L
	(Gly4Ser)3-	EV ARREPYEY AREA DY MAROVARE I DTOCORRADKES OF TER KED GVERMALV SSY
	$scFv (V_L-$	RORMOSSIQKSGERAFXAMAVAS LOOISPILADI AS LES LATULS E VIKS OCH
	V _{II}) CK157-	DILECALBRAELAKYNORAQATUS SELQTCOERFLUKKAROLSEVERDTERAD
	(Gly ₄ Ser)-	PALAAUSVERQEVCKNTAEASOVSEGEREYETSREETUYSVSLEEREAREYEA
	His ₆	I BROOMESNIPPACYSTYLAEROPUYEEPARUVKTNODLYEKT CEYGRQUAUUV
	11136	YTOKAPOVSTPILVEBARNLORVSTKOCILFEDORLPOVEDYI SAILDRVOLL
		SKLEVSREVTKOOSOS LVERPECEVALE VELTYVEKEE KASTELERSE ULLEP
		EREQIKKQTALSEI VKARPEATAEQIETVEDDEAQFLDUCCHASDKDUCESTE
		PALIVTRUKDALLA <u>GGGGSGGGGGGGGGGGGG</u> AS DIQMTQSPSSLSASVGDRVTITCR
		SQSYGGVAWYQQKPGKAPKLLIYSASYLYSGVPSRFSGSRSGTDFTLTISSLQ
		EDFATYYCQQPSHLITFGQGTEVEIKGTTAASGSSGGSSSGAEVQLVESGGGL
		QPGGSLRLSCAASGSNPYYYGGTHWVRQAPGEELEWVASIGSYPGYTDYADSVI
		GRFTISADTSKNTAYLQMNSLRAEDTAVYYCARHYYWYDATDYWGQGTLVTVS
		GGGGSNNNNN
97	LS-mouse	<u>MMEYPAQLIGUU IMIPGARI</u> EARISEIAHRYNDUSEQRFEGUVIIAFSQXL
	SA-	KCSYOEHAKINGEVIDERKTOVADERAANOOKSIHTLPODKICAIPNLPENYO
	$(Gly_4Ser)_3$ -	IADOCTEQUPERRECFLQERDENE SI PRECE EAEAMOLSZKENPUTEMSEVI.
		SVARPHEYFYAPELLYYAEQIDEILIQOOAEADKESOLLEKEUSVEEKAEVSS
	$scFv(V_L-$	ROBINCSSWORFGERAFEAWAVARLSQTFPNADFAELIKLATELIKVNAECCH
	V _H) CK129-	DILLECADDRAE LAKYMOENGAT I SSELIGTOODAPLI LIKAHOL SEVEED I EPAP
	(Gly4Ser)-	PALIAADEVEDQEVCERMAEAADVELGTELYEMSREAPDYSTILLELEKKSEA
	His ₆	I SKOCREBUPPACYGTVI ARSON LVSEPACLYKUPCOLYEKI GEYGFQUALLU.
		XIQKAFQVSTF1VEAARBEEVCTCOC1.FEBQREECVEDYSABRV DEE
		ENTRY SERVICES GELVER RECESSIONER VEREFRAME TRESPICTATION CONTRUCTS CONTRUCTS AND A CONTRUCT AND A CONTRUCTS AND A CONTRUCT AND A CONTRUCTS AN
		ELEQIKKQIALABEVKHEPEATANQLETVRODINQFEUU COLAADKOL OFSTU PMEVIERUSDALAGGGGSGGGGGGGGGGSASDIQMTQSPSPLSASVGDRVTITCR
		SQYGGYVAWYQQKPGKAPKLLIYGASLLYSGVPSRFSGGRSGTDFTLTISSLQ
		EDFATYYCQRGHALITFGQGTKVEIEGTTAASGSSGGSSSGAEVQLVESGGGL
		QPGGSLRLSCAASGFNISSYGSMHWVRQAPGKGLEWVASIYPYSSSTYYADSV
		GRFTISADTSKNTAYLOMNSLRAEDTAVYYCARGYGPWYAYSYFALDYWGQGT
		VTVSS <u>GGGGS</u> HHHHHH—
98	LS-mouse	MDMRVFAQIA.CLUEIWIJPCARCEAHKSBIAHRYNDELCECHEKCEVEI AESCYL
90		KONYDEREKI VOEVIDVAKTOVADES RANODKSI BILESDKI CALENIASEN IS
	SA-	LADOC ENGENERGEON LORKDORF DE PERTERE KARAROLIS (KENPLLIPTISE VE
	(Gly4Ser)3-	EVAP REPYPYAPELLY YAEQYNELLI QCCAEADRESCI UPRIECSVKERALVSS
	scFv (V _L -	RORMECSSROAFGERAFARAMARLSOTFFEADEAEITKLAEDEIKVERECCE
	V _H) CK138-	DILLECADDPARLARYMCENQATI SSKLQTO DKPLLERKAHCI SEVENDTHPAG
	dsl	PAJAAOFVEDGEVCEBYAKAKOVFLGTELTEYSRREPOYSVSI LLELAKKYEA
	$(V_L 100^{Q>C})$	LERCCARANGERCYCTVLAREQELVEREKNLVKTUCHLYEKLYRCQRALIA.
		TTOKAPOVOTOTUVEAADMUGRVOTECCTEDEDODELTOVEDTUSAJILMAVUUL
	$V_H 44^{G>C}$)-	EELE VSEEVEROUSGSLIVERREONSALLIVONE VVPNLEKANEE INTESDECTER
	(<i>Gly</i> ₄ Ser)-	EELEVSERVERGISSEVERSPORSALTVORETVERBEKAREELVESDECTE KEKOERIGTALAELVERKKATAEGEKTVEDDRAGFEDI.COMAADEDIOFSTE

		SQYHDGSAAWYQQKPGKAPKLLIYGASYLYSGVPSRFSGSRSGTDFTLTISSL PEDFATYYCQQSSYSLITFG©GTKVEIKGTTAASGSSGGSSSGAEVQLVESDG LVQPGGSLRLSCAASGFNLSYYGMHWVRQAPGK©LEWVAYIASYPGYTSYADSV KGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARSGYSYSPYYSWFSAGMNYWC QGALVTVSS <u>GGGGS</u> HHHHHH
99	LS-mouse SA- $(Gly_4Ser)_3$ - $scFv (V_L-$ $V_H) CK138$ - ds2 $(V_L43^{A>C} /$ $V_H105^{Q>C})$ - (Gly_4Ser) - His_6	MDME VPAQLEGEDILMERSECEARS BETABRYNDEGEGRENGEVILTAF SYNT ECSYDDEAAL VGEVIDEAE TOVADESAANGEKSLETEFØDALCA I PNEPENYGE TADOOTEGEFERRECELOBKODDEGIFFEREPEREAMOUSFKERETEMEN VES KORRACSBERKEGERFKAMAVAKES (IEFRADEAELIE EATUELEVERETOMEN VE NORRACSBERKEGERFKAMAVAKES) IEFRADEAELIE EATUELEVERETOME DILECADDRABEAXYMOENGATIS SELGTOODRELEVKAROLEEVERDTMEAD FA LAADE VEDGEVORNYAELSKOVELGIPLYENSEREFOYSVSILLERLAKKYRA TEKOCHEMPPACEGTET AEFOETVEEPRIEVETNODE ZEVIGE OF GEDALEVE YTOKAPOVETELEVERANNER VETKOOTEDEREVENDE ZEVIGE OF GEDALEVE IEFOIFKOTALASIVKREFFATAEGEETVEDDE VEREFKARTETETESETOTEFE IEFOIFKOTALASIVKREFFATAEGEETVEDDE AGSTOTOCEAADKDOOFSTER PNLVTECKDALA <u>GGGGSGGGGGGGGGSAFAIOM</u> TRSPSSLSASVGDRVTITCRA SQYHDGSAAWYQQKPGKOPKLLIYGASYLYSGVPSRFSGSRSGTDFTLTISSLO PEDFATYYCQQSSYSLITFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESDGG LVQPGGSLRESCAASGFNESYYGMHWYQAPGKGLEWVAYIASYPGYTSYADSY KGRFTISADTSKNTAYLQMNSLRAEDTAVYCARSGYSYSPYYSWFSAGMNYW CGALVTVSS <u>CCCCS</u> HNNHNH
100	LS-mouse SA- $(Gly_4Ser)_3$ - $scFv (V_L-$ $V_H) CK157$ - ds1 $(V_L100^{Q>C} /$ $V_H44^{E>C})$ - (Gly_4Ser) - His_6	MMRMPNQLLGLUL MLRGARCEARE SETARBITAD LGEGREEG LVIL AE SQYLA KC SY DERBEKI VOEVUDPAKTOVADUS AANODEST BILLEDDYT CALENDEEN YOJ LADOOT LGEPERRECE LGERKEDNE SI PPEEPE BAEAMOUS TKENPUTERBEN YOJ LADOOT LGEPERRECE LGERKED YAARD ARLS OT LOT LEKKAROLSEVERD INFADE PALAADF VEDCEVCENYABAAR VELOUTEL YEN SKREPPYSNELLELAFKYRAAD LEKOOABAND PACT GUVLABE OF DE LVEEPKALD VELOUEN STALLNY YOVAP (VATPT LUVEAAENDGRY OTHOUTT PEOPEEPCVEPTISALLNY YOVAP (VATPTLOCSGELIVEE ROOF BALLYKEN NODL YE SIGAL NY KENQI KKOTALASI VKHEPSATAEQI NY VEREFKASTE UPEDITOTIST KENQI KKOTALASI VKHEPSATAEQI NY VEREFKASTE UPEDITOTIST KENQI KKOTALASI VKHEPSATAEQI NY SQSYGGVAWYQQKPGKAPKLLI YSASYLYSGVPSRFSGSSGSSGAEVQLVESGGGLV QPGGSLRLSCAASGSNPYYYGGTHWVRQAPGE CLEWVAS IGSYPGYTDYADSV GGGGS SATANY GGGSLREN
101	LS-mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK157- ds2	MDMRVFRQIROLLI IMIROARGEAHESBIAHRVHDLOBOHEKOLVEI AESOTU KOSYDEHEKI VQEVIDVAKTOVADESRARODESI HELEGDELOAIPNIKEN YO LADOO EKQEVERECE IQHKDIDEEL YRELKE KARAMOIS EKERELIPHONEN EVAR RHYYFYAPETIIYYABQYNELLIQOOAEADRESCI TRREDSVKERALVIST PQEMKOSSHQAFGERAFRAMAVARLSOTFURADESELTKLA ID UTKVRKEOCO DI LEOADDRAELAIYMCENOATIS SKLOTOODKYLLIKAAHOI SEVEHDIMPAD. FALAADFVEDQEVCENYABAKDVELITELEYSREPISVSI. LLELAKKYEA

	(V _L 43 ^{A>C} / V _H 105 ^{Q>C})- (Gly4Ser)- His6	LERCCAEANFFACY TIVLASFQPEVEEF KNUWTINOPI YEKLOBYCEQNA LEW YTOKAPOVSTPTLVEAARNLOEVOTKOOTLPEDQRLPOVEDYLSA LLBRVOLLA EKTPVSERVTKOOSOS LVERPPOPSALTVDETYVPKEEKASTFTEHSETOTIJE KEEQIKKOTALSETVKAEPENTAEQLETVRDPAQFEDTOORAADKLOOPSTEG PALVTNOKDALA <u>GGGGSGGGGSGGGGS</u> AS DIQMTQSPSSLSASVGDRVTITCRA SQSYGGVAWYQQKPGKOPKLLIYSASYLYSGVPSRFSGSRSGTDFTLTISSLQP EDFATYYCQQPSHLITFGQGTEVEIKGTTAASGSSGGSSSGAEVQLVESGGGLV QPGGSLRLSCAASGSNPYYYGGTHWVRQAPGEELEWVASIGSYPGYTDYADSVK GRFTISADTSKNTAYLQMNSLRAEDTAVYYCARHYYWYDATDYWGOGTLVTVSS <u>GGGGS</u> HNNHNH
102	LS-mouse SA- (Gly4Ser)-V _L CK157-His6	<u>MOMENT AQLIGITI IMIPGARC</u> EARABEIABRYRDIGEOBEIGUVI DAEBOYLQ KOSYDEBAKLYQBYTDEAETOVADESAANODKSIBTLP DKICA I PRIPENYOE LADOTEGEPERRECELORKDONESI PEEEPEEEAMOTSEKENETTEMGRYLE SVARPREYFYADELLYYARQ MELLTQOCAEAUKESOLLE KLDBVEEEALVSSY ROEMYCOS MOREGERABIAWAVARLBOTTENADEAEITKLATELTKVRRECOUG DLIEGADDRAELAKYMOENGATIS DELGTCODRELUKKAROLSEVEHDTMEADI PA LADOEVEDGEVOKHYAEAROVELGTELYENSPREPOYSYLLL REAKYN CAT LEKOCAEANPPACYGTVI AEFOEUVEERARUVKINODLYEVI GEYOFQUATIVE YTQKARQVSTETIJVEAARDESPVOTROOTIPEOQREROVEDYI SAILDRAYDIAL REEVGERVTECCEGS IMPERPORAUVUETYVEREKARTE TEHSEYOTUPE REEQIKKQI ALAGUYKAEAROVELGIGI TVRODEACEUU. OCEAADKU. OESTUG PNLVTROEDALA <u>CCCGSSCCGCSGCCCS</u> AS DIQMTQSPSSLSASVGDRVTITCRA SQSYGGVAWYQQKPGKAPKLLIYSASYLYSGVPSRFSGSRSGTDFTLTISSLQP EDFATYYCQQPSHLITFGQGTEVEIK <u>CGGGS</u> NHNNNH
103	LS-mouse SA- (Gly4Ser)- V _H CK157- His ₆	MEMRYPAQLIGLILLMUPGARCEAUXSEINHE MEDLGEGEVKGLVLIGESOVLQ KUSYDEBARI VQEVILFAKI OVALESAARCDESI EILECHKLOAIPELKENTGE LROCUTKGEDEENECELGHEDDNEBLDD PERPEREMUTSEEREUTTFMOHYLM EVAB KREYFYAF BILLYTAEGYNEILI I GOUAEADEESULI EKLEGVKEKALVGUV RORMACSSMOKFGEFAFKAMAVAF LGOTEENS DTAEITITLATLITEVEKED OFG UILECADEKAELAEMMUENQAIISVKLQI CCERFILKEABUI SEVEREPTREADI PALAADEVEDGEVCKNYAEAKUVELGTEENEN DTAEITITLATLITEVEKED OFG UILECADEKAELAEMMUENQAIISVKLQI CCERFILKEABUI SEVEREPTREADI PALAADEVEDGEVCKNYAEAKUVELGTEENEN PREUPDYS VOLUERLAARVEAT LEECCAEARFFACYGTVLAEFOOLVEEF KNLYRTNODI YERLGEYGFORATUVR YTGSAFQVSTEELVERARDLCRVUTKCOTI PEDGREFOVEDYLEATEDERSDICTLEE KEKQIERGTALAELVEEKERAIAEGI KIVEDEFAQELDI CUKAADEDIUFSIEG PALVIKCRDALA <u>GGGGGGGGGGGGGGGGGASAEVQIVESGGGLVQPGGSLRLSCAA</u> SGSNPYYGGTHWVRQAPGEELEWASIGSYPGYTDYADSVKGRFTI SADISKN TAYLQMNSLRAEDTAVYYCARHYYWYDATDYWGQGTLVIVSS <u>CCCCS</u> NNNNNN
104	LS-mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK129- ds1	MEMOVFAQUICLUL INTEGARCEANS SETANEVED LODONEKCUVETAESON LO KOSYDEREKEVQEVIDUAKEOVADUS AARODESTRELEGDET CATENDREESE LAGOOTEQUEERACE LORKDDE SEERELEE BAAROLS FRERELIPHONESE EVAPREESE VARUUT ABOVNET LOQUAEADEBOITERED SVERALVSJV PORMOS SEQLEGERAFEAMAVARISOTENADE ABITKLATE LIKVRECORG UT LEOADDRAELAEVMCENOATISGELOTODERPLIKRAHOT SEVERDIEPADE PALAADEVEOQEVCENYAKARD VELOLETTERREPYSVST. LIRLAKKYEAT

	(V _L 100 ^{Q>C} / V _H 44 ^{G>C})- (Gly4Ser)- His6	LER COMEMPERCY ITVLAR POPLYELE BREVKINGELYEKLORY OF ONATEVR YTORAPOVSTPTLYEAARNLOPYOTKOOTLEBOORLPOVEDYLSATEDRVOLLA ERCEVSERVTKOOSOGEVERPPOPSALTYDETYVPKEEKASTETEHSETOTIE REEQIKKOTALSETVRAEPEATAROLETYREOFAQETOTOGAASDKOOOPSTEG PALVTROKDALA <u>GGGGSGGGGSGGGGS</u> AS DIQMTQSPSPLSASVGDRVTITCRA SQYGGYVAWYQQKPGKAPKLLIYGASLLYSGVPSRFSGGRSGTDFTLTISSLQP EDFATYYCQRGHALITFGOGTKVEIEGTTAASGSSGGSSSGAEVQLVESGGGLV QPGGSLRLSCAASGFNISSYGSMHWVRQAPGKCLEWVASIYPYSSSTYYADSVK GRFTISADTSKNTAYLQMNSLRAEDTAVYYCARGYGPWYAYSYFALDYWGQGTL VTVSS <u>GGGGS</u> HHREMM
105	LS-mouse SA- $(Gly_4Ser)_3$ - scFv (V _L - V _H) CK129- ds2 $(V_L43^{A>C} / V_H105^{Q>C})$ - (Gly_4Ser) - His6	MMENT AQLLGETI LYLPGARGEAREBETARRYRDEGEGREEGEVI TAF SQYLQ KOSYO ERAKUVQEVI DEARTOVADESAARODKSURTUP DKI CATPRIPER OG LABOOTEQEPERRECETQRRDORFST PEPEPEREAMOI SYKERETIEMGRYLB EVARERYYY ABELLYYARQ (RETUDOCAEADKESOLTE KUD9VEEKALVSSY EOEMKOSSMOEFGERAFERMAN ARLSOTEPNADERETTKLATDETKVRRECCEG DLIBCADDRAEDAKYMOERQAT DEBELQTCODREDUKKAROLSEVERDTMERDT PA TAADE VEDQEVORKYAEAROVELGITELYENSPREEDYSVST. ELRIAKKY GAT LEKOOREARPERACYCITVI AREOPTIVEEPRREVETRODI YEKT CEYOFQNATUVE YTOKAFQWETPTIVEARREEPVOIR OTTIPEOQREPOVENTI SATLDRAVILE EETEMSERVIECCEGES LVEERPOPRALTYRDETYVEKEFKARTE DEBEDICITEE LEAGTKKOTALAGEOKOCGESCOGGESASDIQMTQSPSPLSASVGDRVTITCRA SQYGGYVAWYQQKPGKOPKLLIYGASLLYSGVPSRFSGGRSGIDFTLITISSLQP EDFATYYCQRGHALITFGQGTKVEIEGTTAASGSSGGSSSGAEVQLVESGGGLV QPGGSLRLSCAASGFNISSYGSMHWVRQAPGKGLEWVASIYPSLDYWGOGIL VTVSS <u>GGGGS</u> HENNENH
106	LS-mouse SA- $(Gly_4Ser)_3$ - $scFv (V_{II}-$ $V_L) sm3E-ds$ $(V_{II}44^{R>C} /$ $V_L100^{G>C})$ - (Gly_4Ser) - His ₆	<u>MMRVPAQLEGELELW_PGANORAHESELAHRTRIDEGEGESEGEUVELANSOVEQ</u> KCSYDERAYLVORVIDVAKTOVADEGAANORGEHTLEGDVICALENERENYGE LADOCIEGEBERECKLORKBERESEPPEREREAKAMOLSSKENTIEREDVICALENEREVGE PADARREYFYAPELLYYARQYNEILTQCCARADRESCUTEREDGYKEKALVSSY RORMUCSSMOEPGERAFIAWAVARLBOTPINADEAEITKERTEETKVNREDCEG BILLECADDPAELANYMCENGATISSKLOTODDKPLENNAHCISEVEHDTHPAGI PATAADFVEDOEVCEDYARANDVPLGTELTEYSKRRPDYSVSILLELZKKYRAT LEKOCARANPACIGTVEARREYFYDTOCTUPEDQEDPOCVEDYISATINR YTOKAPGVSTPTTIVEARRESRYGTNÖCTUPEDQEDPOCVEDYISATINRVÜLDH RELEVSERVERCUSGSLIVESRPOFSALTVURETYPESFKAREFITESDECILLE KENCLINGTALAREVKYRATARGINTVURETYPESFKAREFITESDECILLE KENCLINGTALAREVKYRATARGINTVURETYPESFKAREFITESDECILLE KENCLINGTALAREVKERATARGINTURETYPESFKAREFITESDECILLE KENCLINGTALAREVKERATARGINTDPENGDTEYAPKFORATFTTDTSANTA YLGLSSLRPEDTAVYCNEGTPTGPYYFDYNGQGTLVTVSSGGGGSGGGGSGGG GSENVLTQSPSSMSVSVGDRVTIACSASSSVPYMHWLQQKPGKSPKLLIYLTSN LASGVPSRFSGSGSGTDYSLTISSVQPEDAATYYCQQRSSYPLTFGCGTKLEIK

	hCXCL1 ³⁸⁻ ¹⁰⁷ -G3-c- myc-Aga2	AAGACAGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
108	pCHA-LS- hCXCL2 ³⁸⁻ ¹⁰⁷ -G ₃ -c- myc-Aga2	ATG ATG ATG AGACOGE AGACOGE AGACACCCAGAGCCTGAGAGCCAGCAGTCCCCAGCCCAG
109	pCHA-LS- hCXCL3 ³⁸⁻ ¹⁰⁷ -G3-c- myc-Aga2	ATGAAGOTTTCGAT CODE TOTTCOOLATCITCOURSCITTCOURSCITTCOURSCITTCOURSCITCOURSCITCOURSCITCUUS ATGAAGOTTATTTATACTACOTTOUS ARCACAGTGACCGAGCTGAGATGCCAGTGCCTCCAGACACTCCAGGGCATCCAC CTGAAGAACATCCAGAGCGTGAACGTGCGGGAGCCCTGGCCCTCATTGTGCCCAG ACAGAAGTGATCGCCACCCTGAAGAAGGCCTGGCCTGACCCGCCC AGCCCTATGGTGCAGAAGATCATCGAGAAGAGCCTGCCTG
110	<i>pCHA-LS-</i> <i>hCXCL4³²⁻</i> ¹⁰¹ - <i>G</i> ₃ - <i>c</i> - <i>myc-Aga</i> 2	ATGAACCTTTCHAT DOTOL HER DOOD A HOT DOD HER DODOLIGACIONO DETA COLCAACCOOLIAT DOTAL TACOOLOGICATO TOD HER DODOLIGACAACCOOLITE SCAC AAGAGAGAGGCTGAAGAGGGCGCGATCTCCAGTGCCTGTGCGTGAAAACCACC AGCCAAGTGCGGCCCAGACACATCACCAGCCTGGAAGTGATCAAGGCCGGACCC CACTGTCCTACCGCCCAGCCGATCTCCCAGCCTGAAGAACGGCCGGAAGATCTGC CTGGACCTCCAGGCCCCCCTGTACAAGAAGATCATCAAGAACGGCCGGAAGATCTGC CTGGACCTCCAGGCCCCCCTGTACAAGAAGATCATCAAGAACGGCCGGAAGATCTGC GGCGGAGGCGAACAAAGCTTATCTCCGAAGAAGACTTGCACCAACTAACAACT ATATGOGAGCAAATOOOC JOADOAAC JTTASAATCGACGACTTCTCCAATATTAC ACCACTATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
111	<i>pCHA-LS-</i> <i>hCXCL5</i> ⁴⁴⁻ ¹¹⁴ - <i>G</i> ₃ - <i>c</i> -	ATGAAGGETELGALIGEOLEGELGGOLATOLTOGOLGGOLTTGODALIGGODELA OODCAAGOOOTTATTTOTACTACOOTDGGELGGODEGCAGAAGGCCCOCTOLGGAC AAGAGACTGCGCGAGCTGAGATGCGTGTGCCTGCAGACCACCCAGGGCGTGCAC

	myc-Aga2	CCCAAGATGATCAGCAACCTCCAGGTGTTCGCCATCGGCCCCCAGTGCAGCAAG GTGGAAGTGGTGGCCAGCCTGAAGAAGAGCGCAAAGAGATCTGCCTGGACCCCGAG GCCCCATTCCTGAAGAAAGTGATCCAGAAGATCTGGACGGCGGCAACAAAGAG AAC GGCGGAGCGAACAAAAGCTTATCTCCGAAGAAGACTTGCB SUAACTUBUA AC DATAL SUGAUCAAATCUUTTACCAGAAGAAGACTTGCB SUAACTUBUA AC DATAL SUGAUCAAATCUUTTACCAGAUTLI AGAATUSAOGCUUTACTUTUB TCAAOGACTACTATCTTCGOOAACSGGAAGSCAATGAAGGACGTCUTUBAATAT TACAAASTUBUTAACGTTTGTCGAGTAACTGCGGGTTCTTCGAAGAACTAGC AAAGSCAGOOCCATAAACGACAGTACUSTTUTTT
112	pCHA-LS- hCXCL6 ⁴⁴⁻ ¹¹⁴ -G ₃ -c- myc-Aga2	ATGAAGGETT, GALLGET, IGLLGGCLAIC, TUSCIGO, TTSCCA, GGUCCIIA OD, CAACUUCI, IAL, TUTACI ACCUTOSCI, CUCCIGCAGAACSC, CUTTOSCA AACACACTGACCGAGCTGCGGGTGCACCTGTCTGAGAGTGACCCTGCGCGCGTGAAC CCCAAGACCATCGGCAAGCTCCAGGTGTTCCCTGCCGGCCCTCAGTGCAGCAAG GTGGAAGTGGTGGCCAGCCTGAAAAACGGAAAACAAGTGTGCCTGGACCCCGAG GCCCCATTCCTGAAGAAAGTGATCCAGAAGATCCTGGACAGCGGCAACAAGAAG AAC <u>GCCGAGCC</u> GAACAAAAGCTTATCTCCCGAAGAAGCTTGCA GGAACUUACA ACCATACTSCGAGCAAATCCCCTCAACAACGCAACCTTGCAGAGCGGCAACAAGAAG TCAACCACTACTATCTCCCCAACACCCCTCAACAACCTTGCAAATT TACAAACCACTACCTTTCTCCCGAACACCCCTCAACAACCTACT AACGCACTACTATCTCCCCAACCCCCTCAACAACCCCCCCC
113	<i>pCHA-LS-</i> <i>hCXCL7⁵⁹⁻</i> ¹²¹ -G ₃ -c- <i>myc-Aga2</i>	ATGAACGETTELGALLSTALLEGELSGOLATCITUSOTGOLETEGOALLSGOLETEGOALLSGOLETEGOALLSGOLETEGOALLSGOLETEGOALLSGOLETEGOALLSGOLETEGOALLSGOLETEGOAC SULCAACUGSLEAELTUTACEACUGTOGOLUCUSOTGOAGAAGGOLOUTTISGAC AAGAGGETTELGALLSGOLATGTGCATCAAGACCACCAGCGGAATCCACCCC AAGAATATCCAGTCCCTGGAAGTGATTGGCAAGGGCACCCACTGCAACCAGGTG GAAGTGATTGCCACACTGGAAGGGCCGGAAGATCTGCCTGGACCCTGACGCC CCCAGAATCAAGAAAATCGTGCAGAAAAAGCTG GGCGGAGGCGAACGAAAAAGCTTATCTCCGAAGAAGACTTGCOACAACUGAACUTCTTUTCA ACGACTACEACCACCGCAACUGGAAACUGCAACUTCTTUTCA ACGACTACEACUTCACCAACUGGAAGGUGAACUCCACUTCTTUTCA ACGACTACEACUTCACUACUACUCUACUCUTCCACOCUTCAACAACUTAGOAAA COCACCCUCALAAACGUACUACUCUACUTCTTUEEETAA
114	pCHA-LS- hCXCL8 ²⁹⁻ ⁹⁹ -G ₃ -c- myc-Aga2	ATG AAGSTITISATISTIC FOTUSSI ATCUTUGO FOOTUGO ACCORDING ON THE SACONA CONTRACTOR ON THE SACONA CONTRACTOR ON THE SACONA CONTRACTOR ON THE SACONA CONTRACTOR OF THE SACONA C
115	<i>pCHA-LS-</i> <i>hCXCL9</i> ²³⁻ ¹¹⁵ - <i>G</i> ₃ - <i>c</i> -	ATG

	myc-Aga2	AGCTGCGAGAAGATCGAGATTATCGCCACACTGAAAAACGGGGTGCAGACCTGC CTGAACCCCCGACAGCGCCGACGTGAAAGAACTGATCAAGAAATGGGAGAAACAG
		GTGTCCCAGAAGAAGAAGAAGAAGAAGAACGGAAAGAAGCACCAGAAAAAGAAAGGA
		CTGAAAGTGCGGAAGTCCCAGCGGAGCCGGCAGAAGAAAACCACAGGGGGAGGG
		GAACAAAAGCTTATCTCCGRAGAAGACTTGCACCAAUTCACAACTACATOUAC
		CARATOCCUTORODARCHITAGAATCOROGCUSTROTOLIHGUORACGACIROT
		ATTITOGUCAAOGGAAGGOAATGCAAGGAGTTTTTGAATATTACAAATCAGTA
		ROUTITOTOA-MAAUTCO-MUTEOTOA-DECCUCAR-DRACUACCARAGOCAC DCC
		AFAAAGACACACIAL BEELTIT TAA
116	pCHA-LS-	ATGAAGATTTUSAEURTOLESEURROUSECUTOOSIESCUTTQSSAEURROSEER
	$hCXCL10^{22}$	COLCAACOGOTIAILINOTACIACOGTOGGIIDOOCIGCAGAAGGUICITISGAC
	⁹⁸ -G3-C-	AAGAGAGTGCCTCTGAGCAGAACCGTGCGGTGCACCTGTATCAGCATCAGCAAC
	myc-Aga2	CAGCCCGTGAACCCCAGAAGCCTGGAAAAGCTGGAAATCATCCCCCGCCAGCCA
	mye nguz	TGCCTGAACCCCGAGAGCAAGGCCATCAAGAACCTGCTGAAGGCCGTGTCCAAA
		GAGCGGAGCAAGCGGAGCCCAGGCGGAGCGAACAAAAGCTTATCTCCGAAGAA
		GACTTE CARGAACE GACARCEA LA BOOGAG CAAAL COOCH CACOAACLEU AGAA
		TO GACOODSTACTO DE ESDO AROSACITACETA E EL DEGOCIA OS EGAA SISCAATO
		CARGONOTTELIGNATATERCRARTCRGENACUTELIGECONTRAFE.CCCGG. (C)
		CACCCCTCAACAACTAGCAAAGGCAGCCCCATAAACACACAC
117	pCHA-LS-	ATGAACCITICSAFICTOICFGFICCCCTTCCCALICCCIFF
	$hCXCL11^{22-}$	COLCARODOCTEREDICTRCERCOCTOGGEDOCCEECCAGAROCCOCTO XGR
	⁹⁴ -G ₃ -c-	AAGAGATTCCCCATGTTCAAGCGGGGCAGATGCCTGTGCATCGGCCCTGGCGTG
	_	AAAGCCGTGAAGGTGGCCGATATCGAGAAGGCCAGCATCATGTACCCCAGCAAG
	myc-Aga2	AACTGCGACAAGATCGAAGTGATCATCACCCTGAAAGAGAACAAGGGCCAGAGA
		TGCCTGAATCCCAAGTCCAAGCAGGCCCGGCTGATCATCAAGAAGGTGGAACGG
		AAGAACTTC <u>GGCGGAGGC</u> GAACAAAAGCTTATCTCCGAAGAAGACTTGCABBAA
		CIGAGANCIA LETYOGAGGEAAL COCCTUACCARCTITAGRA LUSACGOOSTAG
		ICOTTOCCAACGACCERCTTOCGGCCAACGGGAAGGGAEGCAACGESUUTTG
		GRATATUS CARATCAUTA ACETUIUT CAGEAA TEGOSCITUT CACCUU VAACA
		ACTAGCAAAGGCAGCOOCATAAAAACACAGGCATGTTTTT TAA
118	pCHA-LS-	ATGAAGGTTTL GAELISTULEGELISKULAECLIKGUEGULTTGUUALLISKUUEEA
	$mCXCL1^{28-}$	COUCAACOCOTHA HITCTACHACCOT DECHICCO DECCACAAD SCUCTUT SCAC
		AAGAGAGCCAACGAGCTGCGGTGCCAGTGCCTGCAGACCATGGCCGGCATCCAG
	⁹⁶ -G ₃ -c-	CTGAAGAACATCCAGAGCCTGAAGGTGCTGCCCAGCGGCCCTCACTGCACCCA
	myc-Aga2	ACCGAAGTGATCGCCACCCTGAAGAACGGCAGAGAGGCCTGCCT
		GCCCCCCTGGTGCAGAAAATCGTGCAGAAAATGCTGAAGGGCGTGCCCAAGGG
		GGAGGCGAACAAAAGCTTATCTCCGAAGAAGACTTGCAGGAACAAGACAAC
		TRUBAS CAAA UURUCHCA CUAACHTTA BAALICGA CRUCSTACLUHUUGHCAAGA
		ACTA OTA FEFTODO DRACCOCA A WKAS TO DRAGOS OTT FEFTOATA THA CAAR
		TO A 9 TRACGITUT OF CAST RATE GUOGUITOT CACCO O TO AS CAROTA SCARAOOC
		ao de catarajaca casta e cuttu taa
119		ATGAAGGEEEDGA EUGECU POEUSSCUA FOUECRO POU FEROOR DUSSCOPE?
±±/	pCHA-LS-	GUI CAACUSSI, FA FUTUT AC FACUET OBGE JUUSCESCA SAASSO, CUTTU SGA
	-	AACACAGAGCCAGCGAGCTGCGGTGCCAGTGCCTGAAAACCCTGCCCCGGGTGGA
	- CVCI 31-	
	$mCXCL2^{31}$	TTCAAGAACATCCAGAGCCTGAGCGTGACCCCCCCTGGCCCTCACTGTGCCCA

	myc-Aga2	GCCCCCCTGGTGCAGAAGATCATCCAGAAGATCCTGAACAAGGGCAAGGCCAAC
		GGCGGAGGCGAACAAAAGCTTATCTCCGAAGAAGACTTGCAAGAACUGACAAC
		ATAFOCOAODAAATOOODICACGAAODITTAGAAT DIACCOODI ACUOTTI JTCP
		ACGECTACTECTTCGGCCAECCGGCAEGCAEGCAEGAGTTCTTCGAATATTAC
		AAATUASEAACUTTUSECAUTAAEEGCUUTUSECAUGUOECAAGAACLAGGAA
		CCCACCCCCATARACZCACACEA ICTUFFE TAA
120	pCHA-LS-	ATGAAONINI MATERICETETERK DATOCHCCCTOCHICCCACTERCETTA
	$mCXCL3^{31}$	CUDAACCSCITATIICIAOTACCSICAGTICCCCTGCASAAGADICIIIIGGAC
	¹⁰⁰ -G ₃ -c-	AAGAAGAGCCCCCGGGTGGAGATGCCAGTGCCTGAACACCCTGCCCCGGGTGGAC
		TTCGAGACAATCCAGAGCCTGACCGTGACCCCCCCTGGCCCTCACTGTACCCAG
	myc-Aga2	ACAGAAGTGATCGCCACCCTGAAGGACGGCCAGGAAGTGTGCCTGAATCCCCAG
		GGCCCCAGACTCCAGATCATCAAGAAGATCCTGAAGTCCGGCAAGAGCAGG
		GCCGCAGCCGAACAAAAGCTTATCTCCGAAGAAGACTTGCAAGAACCUACAACT
		ATRESOGAGORAAECOUL CACCAAULEEAGAATOSAOGOUSLACECITUSECA
		ACCENTATITTCCCCAACCCCAACCCAATCCAACCAATTCTTCAATATTAC
		ARA TCAGTARCUTTURFCA START FOCUST UNFORCESUND FORA CARO PAGOAA
		SGCAGOCCCADAACZCACAGEAISTDITE TAA
121	pCHA-LS-	ATGAASSEEELSAIN GEOLINGIN GGOLAINTE OGORSOLEEGOCALL GGOOTIY
	mCXCL4 ³⁰⁻	CC TCAN/DECE TTATENCES OT A DEFECTED CONTROL FAACCOOL DEFECTA
		AAGAAGA GTGACATCTGCCGGCCCTGAGGAAAGCGACGGCGATCTGTCTTGCGT
	105 -G ₃ -c-	TGCGTGAAAAACCATCAGCAGCGGCATCCACCTGAAGCACATCACCAGCCTGGA
	myc-Aga2	GTGATCAAGGCCGGCAGGCACTGTGCCGTGCCTCAGCTGATTGCCACCCTGAA
		AACGGCCGGAAGATCTGCCTGGACAGACAGGCCCCCCTGTACAAGAAAGTGAT
		AAGAAGATCCTGGAAAGCGGCGGAGGCGAACAAAAGCTTATCTCCCGAAGAAGAC
		TTGOAOGSADL GACASUTREA EGUSASCARATUUCCECACUARCE LISSARECC
		ADDOCC LEUTORACCACTACLA EL ITODOCAACOCCAACCCAA
		998 STUTTERS TATERCARATOR GERECOTTECTARTER SOCIECTOR
		CCCTCARGAACEAC/AARCCCARGACECACECACECACECACECACECACECACECACECACE
122	pCHA-LS-	ATGAAGGE E CATLOEC LTOTLOGO LATULE OGCTGULEEGO CALLOGO CTTZ
	mCXCL5 ⁴⁸⁻	GOLCARDOSSITATI, HORACTADOS FORGTLOOGCINGARAAGROLOL FLORA
	¹¹⁸ -G ₃ -c-	AAGAGA GCCACCGAGCTGAGATGCGTGTGCCTGACCGTGACCCCCAAGATCAA
		CCCAAGCTGATCGCCAACCTGGAAGTGATCCCTGCCGGCCCTCAGTGCCCCAC
	myc-Aga2	GTGGAAGTGATTGCCAAGCTGAAGAACCAGAAAGAAGTGTGCCTGGACCCCGAG
		GCCCCCGTGATCAAGAAGATCATCCAGAAGATCCTGGGCAGCGACAAGAAGAA
		GCC_GGCGGAGGCGAACAAAAGCTTATCTCCGAAGAAGACTTGCAGGAACUGAC
		ACTATATINGAGORAS TOCOCTOS CORACTUTAGRATORS OSCOCIA UTO ETC
		TOAACGAUTADIAI ITTOGOCAACGOGAAGGGGAALGOAAGGAGI. ELIIIGAAAA
		TACABADOAGDBACGTTTGECAGTAADESCGGTTGECACOOCLCABOAAGDBS
		ARAGCCASCCCCATAAACACACASTATCTTTTTT TAA
123	pCHA-LS-	ATGAASSITTUARUSTOLISIIDSSCHERCHTOSCHERCHTOSCHER
	mCXCL7 ⁴⁸⁻	GOLICARDOGGLITATILEO EACTROOGECIGUTLOOGCITSCAGRAGGULOLELIGGA
		AAGAGAATCGAGCTGCGGTGCCGGTGCACCAACACCATCAGCGGCATCCCTTTG
	¹¹³ -G ₃ -c-	AACAGCATCAGCCTCGTGAACGTGTACAGACCCGGCGTGCACTGCGCCGACGT
	myc-Aga2	GAAGTGATTGCTACACTGAAGAATGGGCAGAAAACCTGCCTG
		CCTGGCGTGAAGCGGATCGTGATGAAGATTCTGGAAGGCTACGGCGGAGGCGAA

		CARAAGCTTATCTCCGAAGAAGACTTGCAGGSACUGACASCTACACGCGAGGA ALCOCCUGCCAACUTTACAATCUGCCCCCCCUCUTCTTCTCAACGACUGCTACTAC TTOFCCAACCOFAACCCAAFCCAACCACTTTTCTAATATTACAAACCACCTACCATT TTOFCCAAGCOFTAACCCACCACCACAACTAGCAAGGCAGGCCCATS AACSCGCACAGEATCTLEEE TAA
124	<i>pCHA-LS-</i> <i>mCXCL9²²⁻</i> ¹²⁶ -G ₃ -c- <i>myc-Aga2</i>	ATG
		CTGGACCCCGACAGCGCCAACGTGAAGAAACTGATGAAGGAATGGGAGAAGAAG ATCAGCCAGAAGAAGAAGCAGAAGCGGGGGCAAGAAACACCAGAAAAACATGAAG
		AACCGGAAGCCCAAGACCCCCCAGAGCCGGCGGAGATCCAGAAGACCACA <u>GG</u> <u>GGAGGC</u> GAACAAAGCTTATCTCCGAAGAAGACTTGCACCAACTCACAACTATT TOOSAGCAACTCCCCTCACCCACCTACACTTASSALTOGACSCCCTACTCTTATCAACC ACTACTATTTTCSCCAACGCGGAAGCCAATSCAACGCGGTTTTTCGAATACTACTACAA
		TCAOTAACCEUTOT-DACEAATT-DOCCUTOT-DACCCOTOAACAACTA-MOAAACO/ AGOOOCAEDAAOACACAGASLA EGUTETEL TAA
125	pCHA-LS-	ATGAADSTILL BAT STC. TOT SSC. ATT. LOSCEPC. TLOCOAL SSCOTT
	$mCXCL10^{22}$ -98-G ₃ -c-	ATCCCACTGGCCAGAACCGTGCGGTGCAACTGCATCCACATCGACGA GGCCCCGTGCGGATGAGAGCCATCGGCAAGCTGGAAATCATCCCCGCCAGCCT
	myc-Aga2	AGCTGCCCCAGAGTGGAAATTATCGCCACCATGAAGAAGAACGACGAGCAGCG TGCCTGAACCCCGAGAGCAAGACCATCAAGAACCTGATGAAGGCCTTTAGCCA
		AAGCGGAGCAAGAGGGCCCCA GGCGGAGGCGAACAAAAGCTTATCTCCGAAGAJ GACTTGOAGGAACTGAGAAACTADATGOSAGCAAATGOCCCTGAGGAAGATTGASAA
		TOGA GOODEA CHUTTTOTIGAA OBACHA UFNETT I SGUCAR OG SGAR BODAATS
		CAAGGAREEE JEGAARAELAGAAARCAGWAACGELINGTCAGRAATUROOG JEU CACCCC TUAACAAC IEGCAAAGGURGOOCCARAANCACAGAGIARGTIET H TA
126	pCHA-LS- mCXCL11 ²²	CAAGGAGE E E ITGAAE AE LECARAE CASTAROE E ITSTORGEASTIGOOG LTU
126	1	CAAGGAGETTECTGAGETCAAGGAGETTECCAAGGAGETTECCCAGGAGECGAGAGETTECCCGGCGCGCGCGCGCGGCGCG
126	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CAAUGABEEEETUGAAEAEELAGAAAECAGUAGOELTUTOTOAGEAATUGOOGUTU CAOOOOTUGACAAOTIAGUAAAGGUAGOOCOAETAAOGELTUTOTOAGEAATUGOOGUTU AAGAOOTTUCTGATGUTCAAGCAGGGCCGGTGCCTGTGCATCGGCCCTGGAAT AAGGCCGTGAAGATGGCCGAGATCGAGAAGGCCGGCGGGGCTGTCCACCAGCAGAGGGCAGAGGGCAGAGGCCGGCGGGGCAGAAGGCCAGGGCAGAGGCCAGGGCAGAGGCCAGGGCAGAGGCCAGGGCGGGCGGGCGGC

128	LS- hCXCL2 ³⁸⁻ ¹⁰⁷ -G ₃ -c- myc-Aga2	MKVLIVILAIPAALETALAGEVISTIVGSAAEGSIDER ATELRCQCLQTLQGIH LKNIQSVKVKSPGPHCAQTEVIATLKNGQKACLNPASPMVKKIIEKMLKNGKSN <u>GGG</u> EQKLISEEDLQELTTICEQIPSETLESIPYSISTITILANSKAMQGVEEVY SSVTEVSNOGSHPSITSESSPINTQEVF-
129	LS- hCXCL3 ³⁸⁻ ¹⁰⁷ -G ₃ -c- myc-Aga2	MEVELVILLA LEXAL PLALAQEVIS TTVÖSAARGBIDKE VTELRCOCLQTLOGIH LKNIQSVNVRSPGPHCAQTEVIATLKNGKKACLNPASPMVQKIIEKILNKGSTN <u>GGG</u> EQKLISEEDIQELTTIDEQIPSPILLBADFASIS TTITLANGRAMQSVPRYY KSVTEVBECGGREBITGKOSEINTQYVE
130	LS- hCXCL4 ³²⁻ ¹⁰¹ -G ₃ -c- myc-Aga2	MKVLIVILALFAALFLALAGEVISTUVGSAAEGSIDAR EAEEDGDLQCLCVKTT SQVRPRHITSLEVIKAGPHCPTAQLIATLKNGRKICLDLQAPLYKKIIKKLLES GGGEQKLISEEDLQELTTICEQIFSPTLESTFYSISTTTILANJKAMQCVFEYY SSVTFYSNOGSHPSTTSEGSPINTQYVF-
131	LS- hCXCL5 ⁴⁴⁻ ¹¹⁴ -G ₃ -c- myc-Aga2	MAYEIVILAIFAAIPLALAQWYISTTVSSAARGSIDYR LRELRCVCLQTTQGVH PKMISNLQVFAIGPQCSKVEVVASLKNGKEICLDPEAPFLKKVIQKILDGGNKE N <u>GGG</u> EQKLISEEDLQEITTICEQIPSPTLESTPYSLSTITTILABORAMQCVPSY YKSVTPYSNCGSAPSTTSKGAPINTQYYP-
132	LS- hCXCL6 ⁴⁴⁻ ¹¹⁴ -G ₃ -c- myc-Aga2	MEYLIVILA FRAAL PLALACOVISTIYORAAEGS LEAR LTELRCTCLRVTLRVN PKTIGKLQVFPAGPQCSKVEVVASLKNGKQVCLDPEAPFLKKVIQKILDSGNKK NGGGEQKLISEEDLQELTITEECHESPILESTEYSLSTITIE AMGKAMQOVEEY YKSVIEVSBOOSHRSTISKOSRINTQZYE-
133	LS- hCXCL7 ⁵⁹⁻ ¹²¹ -G3-c- myc-Aga2	<u>KKVLIVILAIFPALPLAIROPVISTTVISAAEOSIDKPAELRCMCIKTTSGIHP</u> KNIQSLEVIGKGTHCNQVEVIATLKDGRKICLDPDAPRIKKIVQKKL <u>GGG</u> EQKLISEEDLQELTTIOSQIPSPILESIPVSISTTITIAASSAMQCVPBYY YSYTPVSNCCSBPSTTSFCSPIRTQYVP-
134	LS- hCXCL8 ²⁹⁻ ⁹⁹ -G ₃ -c- myc-Aga2	MEYLIVILA FRAAL PLALAGEVISTEVOSAARGOLF RR AKELROQCIKTYSKPF HPKFIKELRVIESGPHCANTEIIVKLSDGRELCLDPKENWVQRVVEKFLKRAEN SGGGEQKLISEEDLQELTITERGIESPILESTEYSLSTITIL ANGKAMQOVEEY YKSVIEVSBOOSHPSTISKOSPINTQYVE -
135	LS- hCXCL9 ²³⁻ ¹¹⁵ -G ₃ -c- myc-Aga2	MKVEHVILAIFPALPLAFAQPYIGTTVISAABOSIDKPTPVVRKGRCSCISTNQ GTIHLQSLKDLKQFAPSPSCEKIEIIATLKNGVQTCLNPDSADVKELIKKWEKQ VSQKKKQKNGKKHQKKKVLKVRKSQRSRQKKTTGGGEQKLISBEDLQEHTDIGE QIPGETIBESTPYSESTTEILANDKAMQOVPENVKSVTPVSNCCS6PSITSKCSP INTQIVE-
136	LS- hCXCL10 ²²⁻	MKVALIVILLALIPAALIPLALAQOVIISITIVOSAABSSIDAEVPLSRTVRCTCISISN QPVNPRSLEKLEIIPASQFCPRVEIIATMKKKGEKRCLNPESKAIKNLLKAVSK

	⁹⁸ -G ₃ -c-	ERSKRSPGGGRQRLISERDLQRLITHCEQLPSPTLESTPYSLSTTTLLAMARAB
	myc-Aga2	QOVEEYKESVIEVERCOSEPETIEKCEPINIQAVE-
137	LS- hCXCL11 ²²⁻ ⁹⁴ -G ₃ -c- myc-Aga2	MKVLIVILALPAALPLALAGAVISTIVASAAEGSLOKR FPMFKRGRCLCIGPGV KAVKVADIEKASIMYPSNNCDKIEVIITLKENKGQRCLNPKSKQARLIIKKVEI KNF <u>GGGEQKLISEEDLQ</u> ELTTICEQIPSPTLESTPYSLSTTTILANCSAM)TV3 EYZKSVIFVSNCGSHPSTISKGSPINIQYVP-
138	LS- mCXCL1 ²⁸⁻ ⁹⁶ -G ₃ -c- myc-Aga2	MEVERYLLAIFAALPLALAQWVISTTVÖSAABOSLDKR ANELRCQCLQTMAGIH LKNIQSLKVLPSGPHCTQTEVIATLKNGREACLDPEAPLVQKIVQKMLKGVPK <u>GGEQKLISEEDLQ</u>KLEELCEQIPSPELLESTPISISTTTLLANGKAMQOVEEYYT SVTFVSNCOSHFSTTSKOBFINTQYVF
139	LS- mCXCL2 ³¹⁻ ¹⁰⁰ -G ₃ -c- myc-Aga2	MKVLIVIJAIPAALPIALAOPVISTIVGSAAEGSIDKE ASELROQOLKTLPRVI FKNIQSLSVTPPGPHCAQTEVIATLKGGQKVOLDPEAPLVQKIIQKILNKGKAN <u>GGG</u> EQKLISEEDLQELTTICEQIFSPILESIFYSISTITILAROKAMQOVEEN SSVIFYSNOGSEPSITSEGSPILTQYVE-
140	LS- mCXCL3 ³¹⁻ ¹⁰⁰ -G ₃ -c- myc-Aga2	REVELVEEA FRALPLALAGEVES FEVOGAARGS EKKR ASELROQOLNTLPRVI FETIQSLTVTPPGPHCTQTEVIATLKDGQEVCLNPQGPRLQIIIIKKILKSGKSS <u>GGGRQKLISEEDIQ</u> EETTIOOOOLESPILESTEMSESTTIIIANGAAMQSVEET KSVIEVSHCGSEPSITEKGSPINTQYVE-
141	LS- mCXCL4 ³⁰⁻ ¹⁰⁵ -G ₃ -c- myc-Aga2	MKVLEVILAIPAALPLAERQPVISTTV9SAAEGSIDKP VTSAGPEESDGDLSCV CVKTISSGIHLKHITSLEVIKAGRHCAVPQLIATLKNGRKICLDRQAPLYKKVI KKILES<u>GGGEQKLISEEDLQ</u>SETTECEGIPSPTLESTPYSLSUTTILANGEZER GVEEYYKSVLEVGNO9SHPSTTSK9SPINTQIVE-
142	LS- mCXCL5 ⁴⁸⁻ ¹¹⁸ -G ₃ -c- myc-Aga2	MEVETVILLA IFZAL PLALAOPVISTIVOSAAEGSIDVE ATELROVCLIVTPKIN PKLIANLEVIPAGPOOPTVEVIAKLKNOKEVOLDPEAPVIKKIIOKILGSDKKI AGGGEORLISEEDLO EITTIGEGIPSPILLESTYYSLETTITIANGLAMOOVPE YKSVIEVSBOGSRESTISKESPILETGYVE-
143	LS- mCXCL7 ⁴⁸⁻ ¹¹³ -G3-c- myc-Aga2	MXVLIVILAIFAALFLAINOSVISTIVOSAAEGSIDRPIELRCRCTNTISGIPI NSISLVNVYRPGVHCADVEVIATLKNGQKTCLDPNAPGVKRIVMKILEGY <u>GGG</u> QKLISEEDLQELTTICEQIFSPILESTFYSLSTITILANGAAMQGVFETTESV FVSNGGSRPSITSKSSPLNTQXVE-
144	LS- mCXCL9 ²²⁻ ¹²⁶ -G3-c-	MUVLINILALEMALPLALAGEVISTIVISAAMOSIDKETLVIRNARCSCISTSI GTIHYKSLKDLKQFAPSPNCNKTEIIATLKNGDQTCLDPDSANVKKLMKEWEKI ISQKKKQKRGKKHQKNMKNRKPKTPQSRRRSRKTT <u>GGG</u> EQKLISEEDLQ

	myc-Aga2	CECIESPILESTEX SLSTITILANGKAMQOVEENNS SVIEVSMOOSHPSTIESC SPINTQVVF-
145	LS- mCXCL10 ²² -98-G ₃ -c- myc-Aga2	MKVLIVILAIPAALPIALAOPVISTIVOSAAEGSIIAKA IPLARTVRCNCIHIDD GPVRMRAIGKLEIIPASLSCPRVEIIATMKKNDEQRCLNPESKTIKNLMKAFSQ KRSKRAP <u>GGG</u> EQKLISEEDLQEIITIIDEQEPSETIESTEYSESITTIILABIKAM QOVFENYKSVIFYGNOGSHPSTIFROSPINICYVF-
146	LS- mCXCL11 ²² -100-G ₃ -c- myc-Aga2	MNVEIVILLAIEMAIPLALAQPVISTIVSSAAEMEIDKE FLMFKQGRCLCIGPGM KAVKMAEIEKASVIYPSNGCDKVEVIVTMKAHKRQRCLDPRSKQARLIMQAIEK KNFLRRQNM<u>GGG</u>EQKLISEEDLQELTIICEQIPSFTLESTEYSLSTTTELANOK AMOGVPEYYKSVTEVSUCGEAESTISKASEIDTONVE-
147	pCHA-LS- hCXCL1- G3-c-myc- Aga2	ATGAAGGTTITGATTGTCTTGTTGGCTACCTTCGGTGCTTTGGCA TTGGCGTTAGCTCAACCGGTTATTTGTAGTACGGTGGGTTGGGT GCAGAAGGCTCTTTGGACAAGAGAGGCCACCGAGGCTGAGATGCCAG TGCCTGCAGACCCTGCAGGGCATCCACCCCAAGAACATCCAGAGC GTGAACGTGAAGTCCCCTGGCCCCCACTGCGCCCAGACCGAAGTG ATCGCCACCCTGAAGAACGGCCGGAAGGCCTGCCTGAACCCCGCC AGCCCCATCGTGAAGAACAGCGGCGGAAGGCCTGCTGAACAGCGAC AAGAGCAAC <u>GGCGGAAGACCGCGAACAAGGCCTGCCTCACCAAGCA</u> TTGCAGGAACTGACAACTATATGCGAGCAAATCCCCTCACCAACT TTAGAATCGACGCCGTACTCTTGTCAACGACTACTATTTCGCC AACGGGAAGSCAATGCAAGGAGTTTTTGAATATTACAAATCAGTA ACGTTTGTCAGTAATTGCGGTTCTCACCCCTCAACAACTAGCAAA GCCAGCCCCATAAACACACAGTATGTTTTTT TAA
148	LS- hCXCL1- G3-c-myc- Aga2	MKVLIVLLATFAALPLALAOPVISTTVGSAAFGSLDKPATELRCQ CLQTLQGIHPKNIQSVNVKSPGPHCAQTEVIATLKNGRKACLNPA SPIVKKIIEKMLNSDKSN <u>GGG</u> SQKLISECDLQELTTICEQIFSPT LESTFYSLSTTTLLANGRAMQGVEEYYKSVTEVSNCGSHPSTTSR GSPINIQYVF-
149	mouse SA- (Gly4Ser)3- scFv (VL- VH) CK138	ATGSAAGAAAAACCGAAGAGTGAGAACGAAACTACCGAGAGAACAA CAUTTURAAGGCCTAGTCCTGAUTGCCCAUCGGAGATCGACCAGAACAA TACCATGACCATCCCGAACTGUGACAAACACACCTTTCCGAAAGACCTCT GTUGOGGTGAGTCUGCCGCGAACTGUGACAAATCOOTUCACACTCUUTUGGA CALAAGUTGTCIGCCGCGAACTGUGACAAATCOOTUCACACTCUUTUGGA CALAAGUTGTCIGCGCGAACTGUGACAAATCOOTUCACACTCUUTUGGA CALAAGUTGTCIGCGCGAACGACGACGAACTACCACACTCUUTUGGA CALAAGUTGTCIGCGCGAAAGAAACGAATGTTCCCTCAACUUCCUGC TGCTGTAAAAAACCAAGACCCGAAAGAACGAATGTTTCCCTGCAACACAAAAGAT GACAACCCCGACCGAACGACGACGACGACGGCUALGIGCGUG TCCTTTAAGGAAAACCCAACGACCTTCUTTCATCCATCAACUUCCC AGAAGACCCCCACCGCCGAAGAACTTCUTTACTATCCTGAGCGCGCGAGAGTCC AACGACCCCCCCCCC

		CCCARCOTTCATCCTOTCASCCAJAAACCACHCCTCATCTCUCCOTCACACA
		ATCANGLUUTCONGLATUCAGAAUTTICGAUAGAGAGCI TTTAANGUATUCGCA
		CTRECTOTOTORCOACACATICOCORATOCTORCETTICOACEAATORCIAAA
		TTSSCAADAGACCHGADGABGUDAACEBGGAGTSCH9CDATSGHGADDI SCHG
		GAATSUSCAGATSACAGGUGGAACI ISUUAAGIAUATGIGIGAAAACCAGGUG
		actatotecagoahactgoagactigotgogataaaooactgitgaagaaagoo
		CACTETUTIAETEAGUIGAECAIGACCAIGCCTECIGATCIECCIGCCATT
		COLECTION CATTLEGE DOAC FACCACODAN FEODOCANEAAC TAT SCEGACOO DAAG
		GATISTETTYOETISSGENOGTTETTETATISAATATTEXAGAAGAERENCEOTGATTAC
		HOUCTACCCCCCTT DE CACACITUC DA CARA HATCAR DE CACTOD DE AAAC
		TGOTEOSCTGANGOCIATOOTOCOSCATECTIA COGONONSTGOTTOCTISA ATTT
		CASCO ECHTUL AGAAGAGOO EAAGAACE EGGEUAAAACCAACL GEGALULL EAC
		CASKAGOTTOSAGANTATOSANTIODAAKAHOMMATEGEAMTEGGULMMAGSGAG
		AAASUADD ECAGGTGE CAACUDDAAC LUTUGE GGASBOL GCAAGAAADD LAGSA
		AGAGTO DEVACORADISTICTR JANFICOT PAGATOR FAGACIOO UTO DOTO
		GAAGACTE NUTGTOTISCRATOOTISAACOGTGTGTGTGTGTGTGCATGASAAGACO
		CONFIGNOTONSCATOTTACCANOTOCHCHACTOCATCCOTOCUCCAAAC XCCC
		ooa escuroz descuorea casutea usa a acata ese coccasa santicida a
		GC ISAGACCE ISACCE ECCASITO EGA LETUL COACAUTL COAGEGAGGAGEAG
		CAGATTANGANACAARCOGOTOUIGCUGAGCIGGUGRAGCACAAGOCCAAGOOT
		ACAGOGGAGCAACEGAAGACEG ICATEGAEGACHI EGCACAGUI. CO ICGALACA
		TOURCEASOOD COUCACERCECES OF COUTOR DESCUCES OF COERE OT F
		GTCACERGATGUAARGACGUCELAGGU GGTGGAGGGCTCTGGTGGAGGCGGT
		ACCCCACCCCACCCTCCGCTATCCAGATGACCCGGTCCCCGAGCTCCCTGTCC
		GCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGT
		GGTTCTGCAGCCTGGTATCAACAGAAACCAGGAAAAGCTCCGAAGCTTCTGATT
		TACGGTGCATCCTACCTCTACTCTGGAGTCCCTTCCCGCTTCTCTGGTAGCCGT
		TCCGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGACTTCGCA
		ACTTATTACTGTCAGCAATCTTCTTATTCTCTGATCACGTTCGGACAGGGTACC
		AAGGTGGAGATCAAAGGTACTACTGCCGCTAGTGGTAGTAGTGGTGGCAGTAGC
		AGTGGTGCCGAGGTTCAGCTGGTGGAGTCTGACGGTGGCCTGGTGCAGCCAGGG
		GGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTTCAACCTCTCTTACTACGGT
		ATGCACTGGGTGCGTCAGGCCCCGGGTAAGGGCCTGGAATGGGTTGCATACATT
		GCTTCTTACCCTGGCTACACTTCTTATGCCGATAGCGTCAAGGGCCGTTTCACT
		ATAAGCGCAGACACATCCAAAAACACAGCCTACCTACAAATGAACAGCTTAAGA
		GCTGAGGACACTGCCGTCTACTATTGTGCTCGCTCTGGTTACAGTTACTCTCCG
		TATTATTCTTGGTTCTCTGCTGGTATGAACTACTGGGGTCAAGGAGCCCTGGTC
		ACCGTCTCCTCGTGATAG
150	mouse SA-	ATGUSARSCACAUARSAG IDAGAS COCUAL COG LATARS GA LITERSSAGASUA
	(Gly4Ser)3-	ACATTE CARACOODIAGECOTOATECCCTTTECCCSCTATCECCACARATCOTO
		AINOSAUJAGOA TECCARATTA SIGCAGSAA SIANOA SA CITUGOA AS SA OSTE
	$scFv (V_L-$	THE FOCUARSASE CREESOCASCHEESACEAAL COLLICACACE CUTTLESS
	<i>V_H</i>) <i>CK157</i>	AGAHAAGIYOTSIGOOATTOCKAAQOTOOGTQAAASCHAFGOTSASOTSGS
		CEGUISI, ACAABADAAGAGUUGAAAGBAAGBAA INITI, OO EGUAACAAABA
		CADOTIO FACTO ACCOADA ACCOADA ACTURADO ACCOADA COMO TO
		CHOCTTURASGARASOCOACUTUTATESSACACTATHTOCOCCERASUTOC
		CA-MAGAGAR OUTEATT CHAEGOOD CAGAACTT CHTEACTAL WITGAGGAGEA
		CAATSAGATTCESACOOASESTUOTOCESAGOODESECAAGGAASECUROCUSAC
		and a name of a standard of the standard stan

		CCCCBA-DUTECATO TECHCEAC-DAGAABCCATEGCTCT DATCUCTCDDETCACAC
		AATOAR GEOUTOOR GEATOOR GAAR GYDYDOOR JAGAGROCHTHTAAR GUATOOOG
		ACTROCIDOT DEGAGOGA JAVA DEGO DEALEMOTERCELETO A SAAA DOA DOA
		AUTAR TOUT DEPOCIA PARTITO DE ANTONI ACTINE TEROSA DA ANTONIA A PA
		GGASTAGOGAGSTGAGAGGGGGGGAACITGCCAAGISCIGIGGIGAAACCAGGG
		GRAMMENT CHORAGE CONTRACTOR CAN CARACTER CARACTE
		CCACTOTUTIA9T9ASST69A9C2T6ACACC2T6CCT6CT6ATCT6CCT6CCAC
		TO PROTOCATE FOR TO ACCACCARCE OF CTOCARCARCTAE SCHOOL CAA
		GGA ISICITCCIGGGOACGTICTIGTA IGAALAATICAASAAGA CACCOTGATIA
		CTOTOTALCCOTOTOCCASCACETCOCDA-SPARILATCARCCACCEUCGAAA
		Greatecscreakeccaainaticocoatecraceaakeasteatinscreaktri
		TORGEC LUTTELAGASGAGEC LASGARELLGUTURARACURACUS GLGSTELLLA
		CCACAACOTTECCACAATATCCATTCCAAAATCCCATTCTACTTCCCCTACACCCA
		GAAAGCACCECEGELGECCAACCCCCAACCUCCEGEGECEGCAAGAAACCLAEG
		ARCECT-DECECCACATOTTOTATACTTOOTSAACETCASACECTO-DETTOTOT
		SGRAGECTRTOTOTOTOCARTOCTGARCOGTUTOCOTOCUCTOCA CGRUBARGRO
		CORRECTOR CONTRACTOR CONCERNMENT OF CONTRACTOR CONTRACT
		GOCARGONTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT
		ACCEGAGACO LEUROLE ECURULO EGAERETO ESCAURULE OCAGAGAASGAGAA
		GCAGATUAAGAAAGAGATUTIGOTGAGUGAGUAAGUACAAGUUCAAGGU
		TACAGOGUAGOAAC INAAGACEGTUAL GGA INACLEEGCADAGLECCINSAEAC
		AT STUCCARD OUT OCTOR DRAGCA CA DUT OCTTOT COAC TOR DOUT CORRECT
		TATE PROCEEDING OF THE AND A CONTRACT OF THE AND A CONTRACT. A CONTRACT OF THE AND A CONTRACT OF THE AND A CON
		TACCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
		CGCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGT
		TGGTGTAGCCTGGTATCAACAGAAAACCAGGAAAAGCCCCGAAGCTTCTGATTTA
		CTCTGCATCCTACCTCTGGAGTCCCCTTCTCGCTTCTCGGTAGCCGTTC
		CGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGACTTCGCAAC
		TTATTACTGTCAGCAACCATCTCATCTGATCACGTTCGGACAGGGTACCGAGGT
		GGAGATCAAAGGTACTACTGCCGCTAGTGGTAGTAGTGGTGGCAGTAGCAGTGG
		TGCCGAGGTTCAGCTGGTGGAGTCTGGCGGTGGCCTGGTGCAGCCAGGGGGGCTC
		ACTCCGTTTGTCCTGTGCAGCTTCTGGCTCCAACCCCTACTACTACGGTGGTAC
		GCACTGGGTGCGTCAGGCCCCGGGTGAGGAGCTGGAATGGGTTGCATCTATTGG
		TTCTTACCCTGGCTACACTGACTATGCCGATAGCGTCAAGGGCCGTTTCACTAT
		AAGCGCAGACACATCCAAAAACACAGCCTACCTACAAATGAACAGCTTAAGAGC
		TGAGGACACTGCCGTCTATTATTGTGCTCGCCATTACTACTGGTACGATGCTAC
		TGACTACTGGGGTCAAGGAACCCTGGTCACCGTCTCCTCGTGATAG
1		
151	mouse SA-	ATGUAAGOACACAAGAGTUASAUOGOCCATOGGTATAAUGATUUSQGAGAACAA
151	mouse SA- (Gly4Ser)3-	CALTTURARGUUT REFOURELLEGOUTETLECCASTAL CTOURGRATEURUR
151	(Gly4Ser)3-	CALTEURAAGGUUTAGEOURALEGOUETELCOCASEAL CEOLAGAAAEGUIUA ERCOAT-DACCAEGODAAETRACCENACGAA/FERCORAASACOTOT
151	(Gly4Ser)3- scFv (VL-	CALTECAAAGGUUTREEOUEGALTEGOUTETLECCOASTAL CECUASARAEGUEUA TACCAE PAGCAEODAAA TEACEGOAASTAACAGAADEEECGAAAJACCEEC GEDROOSEEGAREOEGOCAASTGDRAGAAAECOREECACAETCEEEEEGA
151	(Gly4Ser)3-	CALIFIC RAAGGUIT REFOUTGAL FEOLITITICOCASTAL CHOLAGARA FEUTUR FACCAT CROCATOD CARA DIACUDO A CORACTAR CACACUTTEC CARACTACOTOT GUIDROOGE FERRITOTISCOROCAEUTECERE ATOROTIC CAC NOTOTITUT LEGA GAL ARG LIGIGE SOCATICOCARA ULTOOGE GAAAROTAL GETERACUTSCL GRO
151	(Gly4Ser)3- scFv (VL-	CALTTURAAGGUUT AGTOUTGALTGOUTTULOOCAGTAL OTOUAGAAATGUTUA TACCAT-SAGCATCO-SAAA DTACUSUACCAACTAACACACATTTECCAAASACOTOT GTUGOOSATGAGTOUSUCGOCAACTGUGACCAAATCOOTUCACACTGUUTULOGGA GALAAG JIIGIIGI GCCATTOOAACUTOOGI GAAAROTALGGUGAACJIGGULGAC TGUTGI ACAAAA CAAGACCCCGAAAGAXACGAATGUTUCOTGCAACACAAAGAT
151	(Gly4Ser)3- scFv (VL-	CALIFIC RAAGGUIT REFOUTGAL FEOLITITICOCASTAL CHOLAGARA FEUTUR FACCAT CROCATOD CARA DIACUDO A CORACTAR CACACUTTEC CARACTACOTOT GUIDROOGE FERRITOTISCOROCAEUTECERE ATOROTIC CAC NOTOTITUT LEGA GAL ARG LIGIGE SOCATICOCARA ULTOOGE GAAAROTAL GETERACUTSCL GRO
151	(Gly4Ser)3- scFv (VL-	CALTTURAAGGUUT AGTOUTGALTGOUTTULOOCAGTAL OTOUAGAAATGUTUA TACCAT-SAGCATCO-SAAA DTACUSUACCAACTAACACACATTTECCAAASACOTOT GTUGOOSATGAGTOUSUCGOCAACTGUGACCAAATCOOTUCACACTGUUTULOGGA GALAAG JIIGIIGI GCCATTOOAACUTOOGI GAAAROTALGGUGAACJIGGULGAC TGUTGI ACAAAA CAAGACCCCGAAAGAXACGAATGUTUCOTGCAACACAAAGAT
151	(Gly4Ser)3- scFv (VL-	CALTTURAAGGUUTAGTOUTGALTGOUTTULOOCASTALOTOUAGAAATGUTUA TACCAT-SAGGATOOSAAGTACCESCACCAGTAACACACETTECCAAASACOTOT GTUGOOSATGAGTOUGUCGOONACTGUGACAAATOOOTUGACAOTOUTTUUGGA GALAAGITETTGUGCCATUOGAAGUUTOOGUGAAAAOTALGETGAACIISGUGACA TGUTGTAOAAAGCAAGAGCCCGAAAGARACGAATGTTTUCOTGCAACAOAAAGAT GACAADOOCAGUUTAOCACCATUUGAAGGOCAGAGGULGAGGUUALGUGCAC
151	(Gly4Ser)3- scFv (VL-	CALTTURAAGGUUTAGTOUTGALTGOUTTURCCAGTAL CTOUAGAAATGUTUA TACCAT-SACCATOUGAATTACUSCACCAAUTAACACACUTTUCCAAAGACOTOT GTURCOGATGAGTOUGUCGOOAAUTGUGACAAATCOOTUGUCACAOTOUTTURGA GALAAGIITGTGE GOCATTOOAAAUUTOOGE GAAAACEA IGGTGAACIIGGUI GAC TGUTGTACAAAAGCUGGAAAGAAACGAATGTTECCOTGUAACAAAAGAT GACGAGOOCAGUUTAOCACCATLE GAAGGGOOAGAGGUI GAGGUUAL GEGGAUC TCOTTTAACCAAAAGCCCAACACUTUCATOGUACAOTACUTUCCATCAACUTICOO

[
		ATCAACTOCTCCACTATCCSCAADTTTCCCACACACSCCTTTTAAACCATCCCCA
		CIRCCTCUTUTORCCUACEACETTUCCCEETCCUTORCTTUCCECEEE
		TT ACAACACCECCCCAACTCAACACCCCT AT CCCCAT AT CACCOC AT C
		SPATECEDAGATSACAGGSCEGRACTISCCAAGTACATETETSAAACDASSCG
		AC LATUL COAGUAARCH GCEGACH HGCTGUGAHAAACUACH GLIIGAAGAAAGUU
		CACTETCTTAGTEASSIGENEOAISACACCATECCTECISAICCECCISCOATT
		SCI COT GATH I TOT I GAGOACCA BGAACTO I BCAACHATOCT CA BOCCAAC
		CREWE THOSE ACCESSION WITTOTHE WAA DETTE CAAGE CA CACE COORT TAC
		TO USTAL COCUSTING OF CALCUT SCURAGAA ATA TKANGCOA CITCU SCRAAAS
		IGCTCODCTCAACDDRATCOTDDOUCATCOURCGCCACASIGCTTODTCRATTT
		CAGOOTOTTGTAGAAGAGOOTAAGAACITIGGTCAAAACCAACTIGTGATCTTTAC
		GAGAAGCTIGGAGAATATGGAL JUUARAALGUUAL LOLASTITOGOLAGAGOGAG
		AMAGGACOTCAGGECTOMACCCCANCECCTCOCOGGCECOMAGAAAOOEAGGA
		AGAGTGGGGACCAAGEGELIGTACACELICUTGAAGATCAGAGCTGCCLEGIGTG
		GRAGACTA HOTOTOTOWA A TOOTGAA COOT SHEHOTOT STEGGATOA GAGO
		CCAGTOAUTGAGOAUUTTAOCAAUTOCTOTAUTGGATOCUTGGTGGA&AGGOGG
		CORFECTIVOT DE OCIDOTORIA GITTORI SARA CRETE E E COCORRA CA OTILIARA
		eousagadoruda correcta el organiz i cuseda da culu dea sa assa baag
		CAGATTAAGAAACAAAOGGUTULI SOLIGAGOI SGLIGAAGOACAASCOCAAGGUT
		ackaoogascakongaasckongucareskuungekeksuungekeksuukek
		TSLEGCAAGGEECINACAAGGAUACCEGCUTUTCGACUSAGGECCAAACCEE
		CTCTACTESCAT PEAASCAC PORTING OF CGTGGAGGAGGCTCTGGTGGAGGCGGT
		AGCGGAGGCGGAGGGTCGGCTATCCAGATGACCCGGTCCCCGAGCTCCCTGTCC
		GCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGT
		GGTTCTGCAGCCTGGTATCAACAGAAACCAGGAAAAGCTCCGAAGCTTCTGATT
		TACGGTGCATCCTACCTCTGCGAGTCCCTTCCCGCTTCTCTGGTAGCCGT
		TCCGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGACTTCGCA
		ACTTATTACTGTCAGCAATCTTCTTATTCTCTGATCACGTTCGGA %%CCGGTACC
		AAGGTGGAGATCAAAGGTACTACTGCCGCTAGTGGTAGTAGTGGTGGCAGTAGC
		AGTGGTGCCGAGGTTCAGCTGGTGGAGTCTGACGGTGGCCTGGTGCAGCCAGGG
		GGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTTCAACCTCTCTTACTACGGT
		ATGCACTGGGTGCGTCAGGCCCCGGGTAAG®GCCTGGAATGGGTTGCATACATT
		GCTTCTTACCCTGGCTACACTTCTTATGCCGATAGCGTCAAGGGCCGTTTCACT
		ATAAGCGCAGACACATCCAAAAACACAGCCTACCTACAAATGAACAGCTTAAGA
		GCTGAGGACACTGCCGTCTACTATTGTGCTCGCTCTGGTTACAGTTACTCTCCG
		TATTATTCTTGGTTCTCTGCTGGTATGAACTACTGGGGTCAAGGAGCCCTGGTC
		ACCGTCTCCTCGTGATAG
		ACCOLOCICATAC
1.50		λ. Δ.
153	mouse SA-	ATGGAAGGACACAGAGTGAGATGAGCCCATCGGTATAAUGATUUGGAGAACAA
	(Gly ₄ Ser) ₃ -	OA UTITURAAGGUUT REPOUTERIL PECCITITU COCA STAL OTOLA SARA TOUTUR
	$scFv (V_L-$	TACCAT/JACCATCO/JAAN/JTACU/CACCAA/JTAACACA/JTTTCCAAA/JACCTCT
		GELBOOGA IGAATOLISCOGODAACTGUBADAAA EODATLOACADTOLIELEBBA
	<i>V_H</i>) <i>CK138</i> -	GALAAG LEGTGE GOOSTTOOAAG CUTOOGE GAAARO EA LIGTTGAAO LIGOL GAO
	ds2	TOCTUT MOADAS CRAGAGOCCCGARAGASACGARTSTTTCOTOCSACAOADAGAT
	$(V_L 43^{A>C} /$	GACAADDOCAGUUTACCACUATU EGAAAGGOCAGAGGUU GAGGUUAL GEGCADD
		TCOTTTAP COARAA SCOR ACCA SCTUTATO SCAC ACTACI UTCO ATCAA SUITCOO
	$V_H 105^{Q>C}$)	AGAAGACE EUCTTATETUTATGUTUN AGAACEEUTTAGEATGOTGAGUAGTAC
1		[1] K. KUUWAZ S SUPPLY TO SAFARA S STUDIES AND STUDIES AND STRATEGIES AND STRANGES AND STRANGES AND ADDRESS AND ADDR ADDRESS AND ADDRESS AND ADDRE ADDRESS AND ADDRESS AND ADDRE ADDRESS AND ADDRESS AND ADDRES
		ANDPAGATTOURACODAUT/FFOTODA/FACCOTON/FAACOAN/FCUDODU FACC OOSASCOTTGA FSCUDTGASCARAASCAUTGSUUTCATOTSUUCGUDA SASA

		ATCAACTIFCTCCACTATCCSCAR/ITTTCCA/JRGACSCOTTTTAAACCATCCCCA
		UTACCTOUTUTCACCUAURCATIUCUCAATOUTUACTTI UURCAARTURUCAAR
		TT FROAAGACACCEGS CCAAAGTCAA CAAGGS OT REEGC GAT DE GS COT REEG
		GAATSCONGATSROAGGSCSGAACTISCCAAGTACATGTGTGAARACCASGSCG
		ACTATUL COAGUAAACEGCAGACEEGCIGUGAEAAACUACEGLIIGAAGAAAGUU
		CACTET CTTAETER SETGEREDATER CACAGE TECCTECT SATE TECCTECONT
		SCIPPOP GRIVIT PETTRASOACCA SGRACEPOLISURACERAC HATGO FEASSOCCARG
		CALIFIC TROCT SUCCESSION TO TATISAA LA TETA AGA CA SA COTOAL FAC
		TO INTROCOUNT SOTOR MAUTORIAN CARTA TRANSCOR DE COLONI, PRO
		FOOTOD FOTGAADD FRAHOOTD DOGCATCOLROGCCADASHOC TTO FUGRATIT
		CARCOTOTIONARASARCOTAASAACTIOSTCAAAACCAACTIOTRANCIUMTAC
		GAGAAGCHTGGAGAATAHGGALLUUAAAALGUUALLOLAUTTOSOLAUACIOAG
		AAAOCAODDAGUTOPAACCCOAACTUTCOTOCAGCUTODAAGAAADDIAGGA
		AGAGTOGGGACCAAGEGELCTACACELCUTGAAGATUAGAGACTOCOLEGICTG
		GRAGACUA FOUCIDUMRA ICOLUAACOCU DEGECICU DEGECICAGACACOC
		CCASTGAUNGAGCAUNTACCAAUNGCTGTAUNGCATCCUNGSDGGAAAGGCGG
		OCAFOCUTOT DEOCUCTORCAGUTORCGARAGAGTATOTOCOCCARAGAGTCURRA
		OCTUAGAOCTTUACOTTUACUTORAUA ECTROAUAUETOCA GAGAAGAA GAAGA
		CAGETTAAGAASEGAAACGCUTULI GO LUADOI GO LUAAQQACAAGOOQAAGGUT
		acagogsagcaadigsagronducategraigs chutegsagroupgessanaa
		TSLEGGAAGSCEGCISACAAGGACACCEGCITUTCGACLGASSGECCAAACCEE
		CTEDACTACAR DOAAACAC CONTENACE COCCOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
		AGCGGAGGCGGAGGGTCGGCTAGCGCTATCCAGATGACCCGGTCCCCGAGCTCC
		CTGTCCGCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGT
		CACGACGGTTCTGCAGCCTGGTATCAACAGAAACCAGGAAAA
		CTGATTTACGGTGCATCCTACCTCTACTCTGGAGTCCCTTCCCGCTTCTCTGGT
		AGCCGTTCCGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGAC
		TTCGCAACTTATTACTGTCAGCAATCTTCTTATTCTCTGATCACGTTCGGACAG
		GGTACCAAGGTGGAGATCAAAGGTACTACTGCCGCTAGTGGTAGTAGTGGTGGC
		AGTAGCAGTGGTGCCGAGGTTCAGCTGGTGGAGTCTGACGGTGGCCTGGTGCAG
		CCAGGGGGGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTTCAACCTCTTAC
		TACGGTATGCACTGGGTGCGTCAGGCCCCGGGTAAGGGCCTGGAATGGGTTGCA
		TACATTGCTTCTTACCCTGGCTACACTTCTTATGCCGATAGCGTCAAGGGCCGT
		TTCACTATAAGCGCAGACACATCCAAAAACACAGCCTACCTA
		TTAAGAGCTGAGGACACTGCCGTCTACTATTGTGCTCGCTC
		TCTCCGTATTATTCTTGGTTCTCTGCTGGTATGAACTACTGGGGT M%CGGAGCC
		CTGGTCACCGTCTCCTCGTGATAG
154	mouse SA-	ATGSAAGAAA SAAGASTSA SATOSOCCATOSSTATAATISATI TSGGASAACAA
1.04		ATGODAY PERSONAL APPOCATOR PERSONAL APPOCAT
	(Gly4Ser)3-	
	$scFv (V_L-$	FROCATOR CONTROL CARACTERCE CORRESPONDENCES CARACTER CONTROL CONTRO
	V _H) CK157-	GETGOOSATGAGTOTISCOGODAACEGTAGAAAECOOFTICACAOTOTITETEGGA
1		GALAAG ITETEE GOCATTOOAAADUPOOG EGAAAO EA LEETGAAO IEGOL GAO
	dal	
	ds1	TOCTSTROAMASCANGAGCCCGRAAGASACGAATSTTTCOTOCSACAGAAASAT
	$(V_L 100^{Q>C} /$	GACAADDOCAGUUTACCACCAITLEGAAAGDOCAGAGGUL GAGGUUAL GEGCAUD
		GACABODDCAGCUTADCACCATLEGAABGODAGAGGULGAGGULLGEGCAUD TCCTTTAACGAAABOCCARCCACCATTATCOGACACTATTFCCATCAACUTCCC
	$(V_L 100^{Q>C} /$	GACAADDOCAGUUTACCACUAIL EGAAAGGOCAGAGGUL GAGGUUAL GEGCAUD TCCTTTAPCGAAAADOCRADQADOTTTATOSPACAQTACTTCCATCAPCUINCOC RIGRAGACATCCTTATTTCCATGCUCCAGAACTTCCTTACTATGCTGAGCAGTAC
	$(V_L 100^{Q>C} /$	GACABODDCAGCUTADCACCATLEGAABGODAGAGGULGAGGULLGEGCAUD TCCTTTAACGAAABOCCARCCACCATTATCOGACACTATTFCCATCAACUTCCC

		TTOPCAACACACCEC&OCARACCCAACTACC&CTOUTCCCATOUTCACCCOCCCTC CAATSCGCAGATSACCGGGGGGGGGGGGGGGGGGGGGGGG
		GUIGOT GATTET DET EGAGGACCA SGARGTGESCARGAN TATGOT GASSOCAAG CREDTCUDOCUSCOS COLECTED TATGAA DATTETA GAA CA-DACCODORETAC
		TOTSTATIOCOUSTIGOTGAGACITICO LA GAALAA A TANAGO A CUTORITIAN TOTSTATIOCOUSTIGOTGAGACITICO LA GAALAA TANAGO A CUTORA ATTT CAGOOTOTGAGA COTOCOGO A TOCCACOCO A COUSTO LUCA A TTT CAGOOTOTGAGA CA TANGGA A LUCARAA A GOUALI E LA STTOGO LA CACOCAG AAA GCACOTOA GUTOTGAA COCOAROUCTOCO COCAGOCU ODAA GAA A OODA GOA AGACTGAGO COAROUCTOCO COCOAGOCU ODAA GAA A OODA GOA AGACTGAGO COAROUCTAA COCUSTAA GATUAGAGACIGOOLI GUETG CAACACOTATCICOTOCISTA TOCCUSTAA CACTOTOTOTOTTCCATCASA CACO COAROUTOTGTGAGO USTTACCACITICACIGA COCUSTGAGO CUTSCOGA A GAGO COAROUTOTGTGAGO COTOCACACITICACIGA COCUSCOGA A GAGO CUTSCOGA A GAGO COAROUTOTGTGACACITICACIGAA CATATIGTCOCOARA GA COCULARA GOUGAGACOTUCACOTTCCACITICACIGA CACULI COAGA GAAGACITICAAA
		CAGATTRAGAAAURRACGGUTUL EGUISAGOLGGUIGARGCACAAGUUT ACAGOGSEGCAACTGEAGAOTOTUSTGGATGEUTUTGGACAGUIOOCUGGADAOA TGLEGCAAGOLEGCUGADAAGGACADDEGCUTUTCGACUGAGGEGECCAAADDEE
		CTOTACTACATONAAACAD DOCTIDACDO <u>GGTGGAGGAGGCTCTGGTGGAGGCGGT</u>
		AGCGGAGGCGGAGGGTCGGATATCCAGATGACCCAGTCCCCGAGCTCCCTGTCC
		GCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGT
		GGTGTAGCCTGGTATCAACAGAAACCAGGAAAAGCCCCGAAGCTTCTGATTTAC TCTGCATCCTACCTCTACTCTGGAGTCCCTTCTCGCTTCTCTGGTAGCCGTTCC
		GGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGACTTCGCAACT
		TATTACTGTCAGCAACCATCTCATCTGATCACGTTCGGA
		GAGATCAAAGGTACTACTGCCGCTAGTGGTAGTAGTGGTGGCAGTAGCAGTGGT
		GCCGAGGTTCAGCTGGTGGAGTCTGGCGGTGGCCTGGTGCAGCCAGGGGGGCTCA CTCCGTTTGTCCTGTGCAGCTTCTGGCTCCAACCCCTACTACTACGGTGGTACG
		Cactgggtgcgtcaggccccgggtgag ????Ctggaatgggttgcatctattggt Tcttaccctggctacactgactatgccgatagcgtcaagggccgtttcactata
		AGCGCAGACACATCCAAAAAACACAGCCTACCTACAAATGAACAGCTTAAGAGCT GAGGACACTGCCGTCTATTATTGTGCTCGCCATTACTACTGGTACGATGCTACT GACTACTGGGGTCAAGGAACCCTGGTCACCGTCTCCTCGTGATAG
155	mouse SA-	ATGRAAGUAGAGAAGAGTRAGA JUGODOA EOGUTAERA LUAIT. LIGGAGAACAA
	(Gly4Ser)3-	CACHTCAAACARCEACTOCHEACTCCCHTECCCCRFFACCTCCACAAATCCFCA
	$scFv (V_L-$	TACSATGAGGATGJGAAALTAGJGGAGGAAGTAAGAGACTTEGGAAAGAGJTGT Aunggguts in natoriji nagogga natiriji na gana taggats in nagogutu ngga
	V _H) CK157-	GERCOODEAEGACEDERCCOCCAASEGECACAAAECCOCEEGACACECEEEEECCA GARAACEEGECACECCAAAACECECAAAAACECCOCEEGAAACEACEGACEGACE
	ds^2	TGCESEACAARACAASASOOOGAAAGAAACGAATGEEECCTSCAACACAARGAE
	$(V_L 43^{A>C} /$	GACAACCOCASCCEACCASCTEGAAAGGCCAAGAGGCCACGTGCACC
	$(V_H 105^{Q>C})$	ECCTTTAAGGAAAACCCAACUACCEELATSGGACACTALEEGCATGAAGLEGUC AGAAGASAFCCTTATTFCTATCSSCCAGAASTFCTTTASTATCGTCASCAGTAG
1		ARTSAGATICTGACCUASTSTETERVAGAGUTGACRAGAARGCCCUTSAC
		COPAACOTTCAECCIOTCAASCAGAAASCA DICCUUTCATCI SUCCODCA PACA

Г		والمحافظ والمراجع والمتحاف والمحافظ
		GTACCT-DITCICAC-DIAGACATUSCCCAAT-DITGACTTUSCACAAATCACCAAA
		TTOGORA CAOROTCA CORAROTCAR ORROCA CI COTOC CATO OTOA CULLOOTO
		CAATGCCCACATGACSCOTCCCACTCCACCACCACCACCACCCCCCCCCCCCC
		ACUMPCIDOAGCAARATGCAGAATTGCTGCGATAAACCAATGIIIGAAGAAAGCC
		CACINICI FACTURES EGGEGUALGACEUCALGOCIGULGA ECISCOL SOCATI
		CURATSXIIITETISAGENOONSGANETOISCANENOITENENSSCONNE -
		GAUGTOUTOUTGGGGZOUTTGTUUTAUGAAUZTTGARGARGACACCUTGAUTAC
		TOTOTA TODOUNT FOOTOR SACUTOOL A GRAATAFOA SOCCAUTO LOORBARG
		TOCISCOTOASGCCATCOTOCOGCATGOTACOSCACASTOCITSCOSAATIT
		CACCCT DETCUBCRA-FACCOTRA-FACCTTO DECAGAGO DESCUCTORUCULTRA
		GAGAAGCIIIGGAGAATAIIGGAMACCAAAAIGCCAIIIMIAGUICGANACACOOAG
		AAAGCACUTCAGGIGTCAACCCCCAACLCTCCTUUAGGACUURGGA
		ACAGEGCACACCCATEGEACACTECECAACAECACACAECECCETEEG
		GAAGACLA EC IGTOL SCAATUCL GAACOGTGE GEGTUTSCEGCATSAGAAGACO
		CCACTCANTGACCACUTEACCAANTCCTCTANTCCSTCCNCCCCCCAAACCCCCC
		COATECTICITCITCACACTICATEAAACATASEECCCCAAAEASHI IAAA
		CODUCACACOTTO CACOTTO CAUTO TO CACOTO CONTO CONTO CONCORTO CONCORTO CONTO CONTO CONTO CONTO CONTO CONTO CONTO C
		CASETHAAGAARCAAAGESCHCUITGCUSAGOTGGUSAAGOAGARGCOGARBSCH
		ACAGUGGAGCASUIGAAGACIGI, CALGUATGAC LITIGORCAG LIUCI, GGA LAUA
		TETTECAS GEORGEUGACAAGOACA COTGETTETERA OLGAGESTECIAA COTT
		CTCACEAUAUSCAAAUACSCCELLAUCC <u>GGTGGAGGAGGCTCTGGTGGAGGCGGT</u>
		<u>AGCGGAGGCGGAGGGTCG</u> GATATCCAGATGACCCAGTCCCCGAGCTCCCTGTCC
		GCCTCTGTGGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGT
		GGTGTAGCCTGGTATCAACAGAAACCAGGAAAA ???CCCGAAGCTTCTGATTTAC
		TCTGCATCCTACCTCTACTCTGGAGTCCCTTCTCGCTTCTCTGGTAGCCGTTCC
		GGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGACTTCGCAACT
		TATTACTGTCAGCAACCATCTCATCTGATCACGTTCGGACAGGGTACCGAGGTG
		GAGATCAAAGGTACTACTGCCGCTAGTGGTAGTAGTGGTGGCAGTAGCAGTGGT
		GCCGAGGTTCAGCTGGTGGAGTCTGGCGGTGGCCTGGTGCAGCCAGGGGGCTCA
		CTCCGTTTGTCCTGTGCAGCTTCTGGCTCCAACCCCTACTACGGCGGTACG
		CACTGGGTGCGTCAGGCCCCGGGTGAGGAGCTGGAATGGGTTGCATCTATTGGT
		TCTTACCCTGGCTACACTGACTATGCCGATAGCGTCAAGGGCCGTTTCACTATA
		AGCGCAGACACATCCAAAAACACAGCCTACCTACAAATGAACAGCTTAAGAGCT
		GAGGACACTGCCGTCTATTATTGTGCTCGCCATTACTACTGGTACGATGCTACT
		GACTACTGGGGT XXXCGGAACCCTGGTCACCGTCTCCTCGTGATAG
156	mouse SA-	ATGGAAGUAGACAAGAGIGAGAUUSUCCAICSGIAFAAUSAIUOGGGAUAACAA
	$(Gly_4Ser)-V_L$	CAUTTCARAGEOGTA SICCIER DISCOTTI DOCUMENTI CIUCAGRARISOTOR
		TA-DIATCCCATCCCCAACTACTCCA/DIAACDAA/JACACTTT-DIAAACAC TTU
	CK157	GENERAL SECTOR CARCES AND ANTER CRAATER CHILDEN TO THE SEA
		CA DAACT FOF CECC DA FECCAAACC FOODT CAAAS CTAT COFCAACT COC DOAC
		TSOTETA CAARACAA SAGOOOBAA3 GRAROSAATETTTE CTSO ARCA CAARACAT
		SACAACCUUASCO LACUACCA E ITSARAGCUASAGGO I SAGOCCA ISTS CACC
		TOSTEE AAGGAAAACOONACCACOTTEE EGGGACACEAE FEGGATAAGTEGCC
		AGAAGADA FOOTTALE FOLATOOOCAGAADE FOLTTACEA FOOTGAGGAGTAC
		ARTICACATECTICACIOCECECECACACIOCECECACAACICACICACICACIC
		COGAAGUTIGATGGUJIGAAGGAJAAAGCAUIGGTOTGAIOTGCOGULAGAGA
		AR-PACTOOT COACES TO CACAGACITY COACECS TAGOET TTAAACCETC SOCA
		GTASCHORTOUSAGONGACAHUGOOCAAHGOTGACHHURONSAAAHONOCAAA
L	1	1

		THOOCAACACCOT PACCASACT CAACABO PACTODO ATCOTCACCTOOTC
		CARFOCCIACATORCECCOCOCAECTTOCCAECTACETCTCCAEBACUACOCO
		ACTATOROGA DIAAACTO DEFACTTO FECCATRARCCA CTC: FEAACAARCCC
		CACESIOTAGISAGATOGASCATOACACOATOCISCIOATCISCOCOCAET
		CONSUMPLY FIRST GAGGECCARGAACINE FOASBACEA FOUTGARSCOLAAG
		GADGTOTECCTGGGCACGTTOTEGTADGAACZTTOARGAZGACAOCCTGALTAC
		TUTETA TUCUTETEGUTOAGACTIGUTAAGAAATAPEAAGUCACTCIGGARAAG
		TO TECCTORRECORD STCCCCCRETCE CONCRETCE TO TECTORATTE
		CAGCUTCTTGUEGEAGAGCUTEANGARCUTUGETCAALAUCARCUSTGACCUUTTAU
		GROBAC STTCCBCBARTATCCATTCCBABBT SCCRTTCTBSTTCCCCTBCBCCBC
		AAAGAACCECKGGESECAADDOCAACIIDEDGEGGGGGGGGGAAGAAACCIIAGGA
		AGAGEGGGGACCAAGTUTLGEACSUTLCCEGSAGAECAGSGACLGCCTTGLGEG
		CAAGACTATCTCTCCCCAAACCCCCCAACCCCCCCCCCC
		CCASTGAGEGASUAL GE LACUAAGEGCTGTAGEGGATOOCEGGUGGAAAGSUGG
		CCATCCTFCTCTCTCTCACACCFCATCBRA/AFATCTCTCTCTCACACACFTTBRA
		SUTGAGADOTTCACCTTCCACTCTGADATCTUCACACTLCCAGAGAAGUSAGAAG
		CA-VATTEACAAACAAACO-NTCUTCOUFACCICUTAACCACAACCCCAA NCCT
		ADAGOGGAGDAACEGAAGACEGTOAEGSAEGADETEGCADAGOTOCTAGATACA
		EGUTECRAGGOTECL GACAS GERCACOTECL E CECSACL GAGGETCORANCOTT
		GTOACTAGALGOAAAGACGOOTUAGCO <mark>GGTGGAGGAGGCTCTGGTGGAGGCGGT</mark>
		<u>AGCGGAGGCGGAGGGTCG</u> GATATCCAGATGACCCAGTCCCCGAGCTCCCTGTCC
		GCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGT
		GGTGTAGCCTGGTATCAACAGAAACCAGGAAAAGCCCCGAAGCTTCTGATTTAC
		TCTGCATCCTACCTCTACTCTGGAGTCCCTTCTCGCTTCTCTGGTAGCCGTTCC
		GGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGACTTCGCAACT
		TATTACTGTCAGCAACCATCTCATCTGATCACGTTCGGACAGGGTACCGAGGTG
		GAGATCAAATGATAG
157	mouse SA-	ATGUARCORDAGARCECTURARTOOD DUATCOCTATARTOETU UGGGGGRAGAR
	(Gly ₄ Ser)-	CATHERARCCCTRATECTCRTTCCCTTTTCCCRTATCCCCCRARTCCTCR
		TROUGTER COARA CTREUE CREEKE CREEKE FTTE CARAGE CITYT
	<i>V_H CK157</i>	GTUCCOMPERSONCECCCCRACTCUCBCARATCCCTUCACACTCUUTULCCR
		GATARGUEST GEGOCS TECCARA COECCEGE GARACTAL SUEGARCESS CEGAC
		TO DEGRAGAGE CACEGORAGE CART STITE OF CRACE CARCER
		GACEACCOCAGECTACCACCTETERARSGCCAGAGECTGAGECCACETGCACC
		LOUTTERAGGASARCOCASCURCE L'ATUGGACACTAL ELICATURAS L'IGUC
		BGAAGACSTCOTTAUTECTATGCCCCAGAACTTCUTTACEATGCTGAGCAGTAC
		AATGAGATTUTGACCCAGTGTTGTGCAGAGGCTGACAAGGGAAAGCCGCUTGACC
		COSTAGOTTCATOCICICAACCAACAACACTCOCCTCATOTCICCCCCA SAGA
		ATGAAN SCEUUARI ATGUAGARGEELUGAGAGAGAGAGUU ETEAAAQCATGUGUA
		CTACCT DITCUCAC DIAGACATUCCCAAT DITCACTTUCCACAAAUCACCAAA
		GTACCTOSTONCACOCACACTOSCCCATOCTCACTCOCCCACCACACTOCCCACACTOCCCACACTOCCCACCCCACACTOCCCCCCCC
		TIGROADAGAGOOTGACCAAAGTCAACAAGAGIGOTGCCATGATGACCTGOTG
		TTOGORACEGROOTSECCARACTORECERSTOOTSCORTGROOTSCOTO GARLOCGUEGREGROOGGACTEGCCAGTRONECTGERARCUREGOG
		TTOGONA CAGAOOTSACCAAAGUUAACAAGGASTOOTGCCATOOTGACUUAGOO GAALGOGUAGALGACGGOOGGAACIT, GOCAAGTACALGTGTGAAAAGUAGGOO ACCATCITOORGCARAOTGCAGAOTTGCTGCOATAASCCAOTGUUGAGAAAGCC

GAUGTOTTECTOGGES COTTOTTETATORACISTICA AGASGACACCUTEATTAC TOTTATOOODUTTECTOASACITOCTA AGAAATATCA A COOACTCTOOA AA AG TOTTSCOOTGAS SCONATECTCOOGGATSCTA OOGGACA AGTGCTESOTGAATTE

		CACCOTTITUCACAATACCCTAAJAACTTO FICAAAAO DAACTOTATCTITUCACACTICUTAC CACAACCTTUCACAATATCOATTICCAAAATCCCATTOTAUTTO SOTA CACCOCA AAAACCCTCAAGTOTUCTAACACTTCCTCAAACATCAGAAACCTACCAA AGASTGGGCACCAAGTOTUCTCAACACTTCCTGAAGATCAGAAACCTTCTGTG GAAGACTATCTGTGCTGACACTTCCTGAAGATCAGAAACCTTCTGTG GAAGACTATCTCTGCTCTG
158	mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK129- ds1 (V _L 100 ^{Q>C} / V _H 44 ^{G>C})	ATGUAACCACAGAACAC (GACAC COC CUBTOUG LATAAL CALL DO CACAACAA CAUTTORA SGROMA STOOTEAUTSCOTT TUCCO AGTACUTCO AGAA TACTA TACGAT CAGCATECUCCOCCCCACTCUCCCACTACUCCCACAGACUTTE CAGAA TACTAC CTUDEC CATORITICUCCOCCCCAACTCUCACAGACUTTE CAGACUTEC DUTCUCCA GAUXAAACAAACAACACCCCCCAACACUTCACAGACUTT DUTCCAACACUGAACACU GACAACUUAGOOTACUCACOATUTGAAAGGCUGGAGAGGU GAGGCOATGTCOACCACAAACAT GACAACUUAGOOTACUCACOATUTGAAAGGCUGGAGAGGU GAGGCOATGTCOACCACAACAACA TOOLI LAAGGAAAACUUARPONCUUTTA LIGGGAGAGGU GAGGCOATGTCOACCACAACACU ACAACUUAGOOTACUCACOATUTGAAAGGCUGGAGAGGU TAT COTOACTACCAACAUAGACU GACAACUUAGOOTACUCACOATUTGAAAGGCUGGCOACGAGGCACUTCOCOTUCACACACACU ACAAGUCOCCCCCCCCCCCCCCCCACAGGCUTGCTCCCCCCCCCCCCC

		CCTDADACTIDADDITICCACITIEA DATODOCACACITICCACACAACACACAAC CACATTAACAAACAACCOCTOTICCTORCTGCTGAACCACACAACCACAAC ACATCACACACACACITCTCCACACITCCCCCCACACCITCCCCCACACCITCCCCCACACCITCCACAACCIT ACATCACAACCACACITCCCATACACITCTCCACACITCCCCCCACACCITCCACAACCIT GICACTACAIGUAAACACCUUT.ACCC <u>GGTGGAGGAGGCTCTGGTGGAGGCCGGT</u> <u>ACCCCACCCCCACGCTCC</u> GATATCCAGATGACCCAGTCCCGAGCCCCCTGTCC GCCTCTGTGGGCGGATAGGGTCACCATCACCTGCCGTGCCAGTCAGT
159	mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK129- ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})	ATGUAA SCACAGAA SAGE CAGACIOG CUATIONG EXTANLIGA ELEUCO PAGAAGAA CAUTTO ANA AGGAO TA STOOT ON TIGO OTTOUCCIONTAICUTCIONA AA AGAO TA TA CUTCIONA AA AGAO TA AA CUTCIONA AU CUTCIONA AA AGAO TA AA CUTCIONA AA CAAD TA AA GAACTA CUTCIONA AA AGAACIAA AGAO TA AA AGAACIAA AGAACIA AA A

		CC COACACCE COACACE CECCE CECCE COACACE CECCE CECE CE
160	mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK138	EARNSELARRYNDLGEORFEGIVLLAFSOYLOKOSYDERAKLYOSYLDFAETUW NDESAANODKSLATIFGOKLOAIDUT RENYSELALOOTEOGEPERNEUFLORROO NPSLPFFERPEARAKUTSFKENFTTFMORTLHEVARREYYYN PELLMYAEOYN EI LTOCCARADKESOLTPKIEDGYSERALYSSYRORMKOSOMORFCERAFRAWAY ARLSOTFPRADFAETTRLATULTKYNEEGORODLLECAUDRAELAKYMOENQAT ISSELOTCODEFLEIKKAHOLSEVEHDIMPADEPALAAGEVEDGEVOKNYAEASO VFLOTPWENSREPDYSYSELEEDAKKYRATUKKOAPPADEPAOYSTYTAREO FLYKEMENLYKINODEYEKLGEYGPONALLYKYTOKAFOVSTELIVEAARNIGE VOTFOCTLEEDQREPOVERYLSAILNEVOTIRERTPYSERVTECCSOFLVEEEP OFSALTVDETYYPKEFRAETETFRODICTIPEREEQIKKOTALASIYRAAPAKAT AEQLSTYMDDEAOFIDTOCEAADKDTOFSTEUPNUVTROKDALA <u>GGGGSGGGGS</u> GGGGSASAIOMTRSPSSLSASVGDRVTITCRASOYHDGSAAWYOOKPGKAPKLL IYGASYLYSGVPSRFSGSRSGTDFTLTISSLOPEDFATYYCOOSSYSLITFGOG TKVEIKGTTAASGSSGGSSSGAEVOLVESDGGLVOPGGSLRLSCAASGFNLSYY GMHWVROAPGKGLEWVAYIASYPGYTSYADSVKGRFTISADTSKNTAYLOMNSL RAEDTAVYYCARSGYSYSPYYSWFSAGMNYWGOGALVTVSS
161	mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK157	EARNEELARPENDI GEQRENGI VILLAFSQYLQKOSYDEBAKI VQEVLDEARTUV ADES AANODKSLATIEFGUKLOA IPNI RENYSELADOOTEQEPERRECFIQHSOO NE SLEPPERPEARAMUTSEKENETTEMER TIREVAR REPYTYAPELLYYAEQTR EI DEQCOAGADKENOLTEKEDUVSERALVSGVRQRMKOSOMQKECERAFRAWAV ARDSQTFPRADEASI TRIATUVITKVNEEOCHODI.DECADDRAELAKYMOENQAT ESSELQTOODKE DEKKAHOLSEVEHDIMERADI.PAILAGEVEDQEVOKNYAEASO VELQTEDVEN SRREPDYSYSLEDEDAKKYEATDENOOAESUPPAOFSTVELAREQ ELVEEPENEVKI NODLYEKLGENGEQALLVSYTQKAPQVSTELLVEARREGE VOTROODLEEDQEI POVEDYDSAILINEVOLDRETTPYSERVTECOSOFLVEEEP OF SALTVDETYVEKEFRAETETERSDI.CTI PEREEQIKKOTALAEI VRAEP VAT AEQURTVEDDEAQEDVEDYDSARDKDEOFSTEDEDEDVER OKDALLAEGO

		<u>GGGGS</u> AGDIQMTQSPSSLSASVGDRVTITCRASQSYGGVAWYQQKPGKAPKLLI YSASYLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQPSHLITFGQGTE VEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGSNPYYYGG THWVRQAPGEELEWVASIGSYPGYTDYADSVKGRFTISADTSKNTAYLQMNSLR AEDTAVYYCARHYYWYDATDYWGQGTLVTVSS
162	mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK129	EABY GE LARY WELGEORF KET VLIAF SQYLONOSY DEBANL VQEV DEFAUTOV ADESAANODES DET LEGDA DOAL PRIPENY GELADOUT KOMPENNESELOR KEU NESLEFFERPEARAMOTSEKENETTEMMAY DEEVANAREY YN AFELDYY AE OF EILH OOCHEADKESCUTEKLOOVEEKALVESVRORMACS SHOKFEEFAFKAWAY AKLSQIFF NADE AFLIKLAFDLIE VEKALVESVRORMACS SHOKFEEFAFKAWAY AKLSQIFF NADE AFLIKLAFDLIE VEKALVESVRORMACS SHOKFEEFAFKAWAY AKLSQIFF NADE AFLIKLAFDLIE VEKALVESVRORMACS SHOKFEEFAFKAWAY VELOTEDNEY SERBEDY SYSTELE DELAKS Y CATLERCOAF ARE PAOLY TVLASEO PINEEPENDEVKTNOD DYEKLOF ZEFONALL VEYTOKAROV STEDIEVESARNIGE VGLKOOLDUEDOVEELOEZEFERDICTIPEKEROIKKOTALSEI VRAAFKAT AEQUVTVMODFROEDYEKLOFZERDICTIPEKEROIKKOTALSEI VRAAFKAT AEQUVTVMODFROEDYEKLOFZERDICTIPEKEROIKKOTALSEI VRAAFKAT AEQUVTVMODFROEDTOCHAADKETOFSTEOREN VROALS <u>GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</u>
163	mouse SA- (Gly4Ser)3- scFv (VL- V _H) CK138- ds1 (VL100 ^{Q>C} / VH44 ^{G>C})	EARKSE LARRYEDT GEORFIGT VLIAF SOMLOROSYDERARLYOEV DEPARTOV ADESAANODES DETLEODE LOAL PRIFENYSELADOUT KORPENEOFLORKEU ELLTOOCAEADKESCUTPKLOOVEEKALVSSVRORMROSENOKFEEPAFKAWAY AKLSOIFFENEVERSCUTPKLOOVEEKALVSSVRORMROSENOKFEEPAFKAWAY AKLSOIFFENEVERSCUTPKLOOVEEKALVSSVRORMROSENOKFEEPAFKAWAY AKLSOIFFENEVERSCUTPKLOOVEEKALVSSVRORMROSENOKFEEPAFKAWAY AKLSOIFFENEVERSCUTPKLOOVEEKALVSSVRORMROSENOKFEEPAFKAWAY VELSTELTETSEREDTSVSLILERIAREYEAFLEECUAFARPFAUYSLVLAEVO VELSTELTETSEREDTSVSLILERIAREYEAFLEECUAFARPFAUYSLVLAEVO VELSTENEVERTRODINEKLORVSTONALLVEYTOKAROVSTPOLVESARNIOR VGLKOOILUEDORLFOVEDTISAIENRVOLLBERTPVSREVTROOSOBEVERPP OPSALTVDETYVPKEPARETETPRISSICTIPERENDIKKOTALSEIVKRORFAT AEOLKTVMDDFSQFLDTOCEAADRDTOFSTEOPRILVIRGKARIAGEGGGGGGGG GGGGSASAIQMTRSPSSLSASVGDRVTITCRASQYHDGSAAWYQQKPGKAPKLL IYGASYLYSGVPSRFSGSRSGTDFTLTISSLOPEDFATYYCQQSSYSLITFGOG TKVEIKGTTAASGSSGGSSSGAEVQLVESDGGLVQPGGSLRLSCAASGFNLSYY GMHWVRQAPGKOLEWVAYIASYPGYTSYADSVKGRFTISADTSKNTAYLQMNSL RAEDTAVYYCARSGYSYSPYSWFSAGMNYWGQGALVTVSS
164	<i>mouse SA-</i> (<i>Gly4Ser</i>)3- <i>scFv</i> (<i>V</i> _L - <i>V_H</i>) <i>CK138-</i> <i>ds2</i> (<i>V</i> _L 43 ^{A>C} / <i>V_H105^{Q>C}</i>)	EARKGELARKNOLGEORFKGLVLLAFSONLONGSYGERANLVOEVUDFAETUV ADEGAANODES LETLEGDE LUAL PREPENYGELADOUTKOEPERNEOFLORKOU MPS LYFEEPPERSAMUTSPESENPUTYMORYLEEVAR NEPYTYAFGLUTVAEOXN EILTOOCSEADKESCUTPREDOVEEKALVSSVRORMOSSMORFGEPERVAWAV ARLSQIFFENADEAELTNEATDLUSVNRECCHOULLECADENAELAENMUSNOAT ISSKLQUOODEFULKKAROLSEVERDUMPADEPALEADEVEDOEVURNYBEAKU VFLUUTESSREPDTSVSLELERIAREYEATEECUAFANFFAUYGLVLAEVO PLVEEFENDVKTNODUVERLOEVUNDATEVENTONAPPAUYGLVLAEVO VGLKOOTEUGOLPUNEDTERATUSPONATEVENTRAPPAUYGLVERARNEGE

		CFSALTVDETEVPREEKAETETEHSDIGTLPEKERQIRKQTALAGIVKHXPRA ABQLATVMOUPAQELDTCCKAADEUTCEDTEOPHLVTELKUALA <u>CCCGSCCCCC</u> <u>GGGGS</u> ASAIQMTRSPSSLSASVGDRVTITCRASQYHDGSAAWYQQKPGK <pkli IYGASYLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQSSYSLITFGQC TKVEIKGTTAASGSSGGSSSGAEVQLVESDGGLVQPGGSLRLSCAASGFNLSYS GMHWVRQAPGKGLEWVAYIASYPGYTSYADSVKGRFTISADTSKNTAYLQMNSI RAEDTAVYYCARSGYSYSPYYSWFSAGMNYWG©GALVTVSS</pkli
165	mouse SA- (Gly4Ser)3- scFv (V _L - V _H) CK157- ds1 (V _L 100 ^{Q>C} / V _H 44 ^{E>C})	EARKSELA URYNOL GEQUFROL VELAFS QYLQKOSYDERA KI VOEVUDFARTON ADES AANOEKSLAT LEGEKLOA DE MERENT GELADOO LEGEPERRECHUGHAM DE SLEPFERY EALAMOUSE KEMPTTYMER LEEVARRERY SYAPELLYYAEQT ETUTQOOAENDEES OLTPEDESVREMA DYSSYRODMACSSMOEFGERAFEAWAN APLS QTFPHADPAELTKLATOL UKYNEBOOREDLLECA DEPAELARYMCENGAT ESSKLOUCCURPLLEKARCLER VEUUMPADEPALAADF VEUGEVOENYAEAAN VFLGTELYEYSRRHPEYSYSILLE LAKKTEAT LEKOOAEANPAONGUVLAEAN VFLGTELYEYSRRHPEYSYSILLE LAKKTEAT LEKOOAEANPAONGUVLAEAN VGUVOULPEDGRIP OVEDYLS ALLAPVOL LREATE VSERVTECOSGELVERAN CFSALTVETNOCHLYENEGEN GEONS II VRYTEKAPOVATETI VEAARNES VOUFOCULPEDGRIP OVEDYLS ALLAPVOL LREATE VSERVTECOSGELVERAN AEQLAT VNEDETNOCHLSEKAETETERSE LOTE DEKLINGIKATALASI VKHEFKAT AEQLAT VNEDETNOCHSEKAETETERSE LOTE DEKLINGIKATALASI VKHEFKAT AEQLAT VNEDETNOCHSELSASVGDRVTITCRASQSYGGVAWYQQKPGKAPKLLI YSASYLYSGVPSRFSGSRSGTETITISSLOPEDFATYYCQQPSHLITFGOGTE VEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGSNPYYGG THWVRQAPGECLEWVASIGSYPGYTETADSVKGRFTISADTSKNTAYLQMNSLI AEDTAVYYCARHYWYDATDYWGQGTLVTVSS
166	mouse SA- (Gly4Ser)3- scFv (VL- VH) CK157- ds2 (VL43 ^{A>C} / VH105 ^{Q>C})	EARKSELS BRYNDL GEQRPKOL VLI APPOYLQKC SYDERS YL VORVUDPAKTON ADESARNODKSLATIEGOKLOAIE DI RERYGELADOOTEQEPERRECFLORKOM BESLEPERPERAROUSE KEMPTYMORYLEEVARREY FYRPELLYXAEQOT ETLIQOOAERDEESOLTEEDGOVREEA DVSSVROEMKOSSMOEPOERAFEAWAN APLSQTEERARDEASI.IKLATULLKVAE EOCHODILLEUA DDRAE LAKYMOERQAT ISSKLOUCOURPILLEEAROLSE VERUUMPADEPAITARDEVEDGEVOERYREASE VFLGIELYEYERRREPYSVELLLE LAKKTEATLEKOOAERBEPAOTGUVIAES PLVEUPKNLVETUODLEEREGENGEOGRAFIIVRYTOKAPOVATETUVEAARNDG VOTFOCULPEDGRIEDOVEDYLGATLEREVOTERESTEVSERVTEICOSGELVERGEN GFSALTVDETYVEREEKRETFTERSDICTIERESTEVSERVTEICOSGELVERGA ASQLKTVMODEAGELDTOCKAADEUTOESTEGENUVTECHUALA <u>GGGGSGGGG GGGGS</u> AODIQMTQSPSSLSASVGDRVTITCRASQSYGGVAWYQQKPGKCPKLLI YSASYLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQPSHLITFGQGTF VEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGSNPYYGG THWVRQAPGEELEWVASIGSYPGYTDYADSVKGRFTISADTSKNTAYLQMNSLF
167	mouse SA- (Gly4Ser)-VL CK157	EARS SELARSTOL JEQRES OF VERAFSQX LOKOSYOERAKI VOSVUDEAKTOT ADESAARODKSLAT LEGEKLOA IE NERENTGELADOOTEQEPERRECELQHAM NE SLEFFERFEALAMOTSE KERETTYMDRY LEEVARREEY FYARELLY XAEQ M ET LTQUOAEADESOL TEELDOVKERA LVSSVROPEKOSSMOEFOERAFEAWA ARLSQTEPRAPEASI, EKLATOL I KVRKEOJEDOLLEUADDRAE LAKYMOERQAT ISSKLOTOODRELLEEAROLSE VERDIMPADDRATAADE VEDGEVOERYAEASE VELGEELYEY SRREEYSVSILLE LAKK TEATLEKOOAEAREDAOTGIVE AEES

		PINEEPKHINKINCOLNERLCENTEONAILVENTORAPOVŠTPTLVEAARNLOR VOTKOOTEPEDORIPOVEDVLEAILNERVOLLBEKTEVSEEVTKOOSOSEVERRP OPSALTVPETYVPHEPRAETETEPESOTOTEPEREKOIKKOATA AELNEERPKAT AEQLKIVMODEROFLETOCEAALKOTOPGTEAPRILVIKOKALA <u>GGGGSGGGGS</u> <u>GGGGS</u> AS DIQMTQSPSSLSASVGDRVTITCRASQSYGGVAWYQQKPGKAPKLLI YSASYLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQPSHLITFGQGTE VEIK
168	mouse SA- (Gly4Ser)- V _{II} CK157	EARKSELAWRONDLGEGHENGLVLIAPFOYLQKCSYDEHAKIVQEVIDEAKTOV ADESAANOBKSLATIEFGOKLGATENERENTGELADOOLAGEPERRECELGEROP NESLEFFEREREAAMOTSEKAAPTTEMURTLEEVARGEEYYAPELLYYARQTN EILTQOOARADHESOLTPETDGOVRERALVSSOVROPMYCSSMQEFGERAFEAWAW APLSQTEENADPAETTKLATDETKVNEBOOHEDILLBOADDPAELARYMCENQAT ISSKLQTCCURPLLEKAHOLSEVEWUTHEADDPATAADEVEUGEVOENYAEARD VELGTELYEYSREHPEYSOSILLBLAKKTLATLEKOOALANDPAOLGUVLAREQ ELVEEPKNLVNTNCDLYERDGEYGEONATIVRYTOKAPOVSTETTVEAARNLSR VOTROCTLPEDGELPOVEDYLSATLNEVCELREETEVSERVTETCOSGSLVEREP CESALTVDETNVEREEKAETETEHSDICTLEEKTEQINKQTALASEVKHEPRAT AEQLKTVMUDEAOFLDTCOKAADKUTCEDTEOPHINTELKDALA <u>GOGGSCOCGOS GGGGS</u> ASAEVQLVESGGGLVQPGGSLRLSCAASGSNPYYGGTHWVRQAPGEEL EWVASIGSYPGYTDYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARH
169	mouse SA- (Gly4Ser)3- scFv (VL- VH) CK129- ds1 (VL100 ^{Q>C} / VH44 ^{G>C})	EAHVGE LAAR YNDI GEOAFNGI VLIAFGONLOROS YDEHAAL VOEV DEFATTUV ADESAANODES LETIEGDE LUAL DALPENYGELADUUT KOEPEENBUCKION KOU NESLEPFERPEARAKUTSEKENETTEMOAY DHEVARREEYEYAPELUMYAEOYR ENLTOCCEERDESCUTEKLOOVKEKALVES VRORMAUSBOKKEGEEREKAWAV AKUSQIFE NADE AB ITKLAIDLIEVIKKECCHODI DECADE KAELAENMUENQAI IBBELQUOODEF DI KKAHOLSEVERDUMPADLER DAADEVEDOBVOKNYAEAKD YELUTEDTEN SEKEPDYSYS DI DENERVERDUMPADLER DAADEVEDOBVOKNYAEAKD YELUTEDTEN SEKEPDYSYS DI DENERVERDUMPADLER DAADEVEDOBVOKNYAEAKD YELUTEDTEN SEKEPDYSYS DI DENERVERDUMPADLER DAAREEAUNGI VLAEVO PIVEREENDVKINODUVEKLOEZGEONAILVENTOKAEOV SIDELVERARMIDE VGI KOUIDEDORLEUVESTERIEN DENERVIKUP SEEVIKUUSGEDVERE CESALTVEREENDVKINODUSIDISAIENNYOLDERKI. EVSERVIKUUSGEDVERE CESALTVEREENDES OF DISCHARKET DESTERENDVIKUTADEN KARDEVAT AEQUKTVEDER OF DISCEARDEDICTIERSENDVIKOTALDEIVKREEVAT AEQUKTVEDER OF DISCEARDENT FRODICTIERSENDVIKOTALDEIVKREEVAT AEQUKTVEDER OF DISCEARDENT FRODICTIERSENDVIKOTALDEIVKREEVAT AEQUKTVEDER OF DISCEARDENT OF STERENDVIKOTALDEIVKREEVALI YGASLLYSGVESEFSGGRSGIDETLIISSLOPEDFATYYCORGHALIIFGOGIK VEIEGTTAASGSSGGSSSGAEVOLVESGGGLVOPGGSLRLSCAASGFNISSYGS MHWVROAPGKULEWVASIYPYSSTYYADSVKGRFTISADTSKNTAYLOMNSLR AEDTAVYYCARGYGPWYAYSYFALDYWGQGTLVIVSS
170	<i>mouse</i> SA- (Gly4Ser)3- scFv (V _L - V _H) CK129- ds2 (V _L 43 ^{A>C} / V _H 105 ^{Q>C})	EARKSEJARE KROLGEORFEGI VLIAFSQULONOS YDERANI VQEVIDFARTOV ADESAANODES LET LEGDE LOAL DALPENYGELADOUT KOEPEENSOELQEKOU NPS LEFFEEPPEARAMOT SPECIDE TEMOO XILEEVAERE PEYYAF SLIJYYAEQEN EILTQOCZEADKESCETPKLOG VKEKALVSSVEQRMADSSMQKFGEPAPKAWAV AKLSQIFF NADE AS LTNE ALDLID VNKECCEODI LECALL KAS LASIMOUSNQA I ISSELQUOODEF DI KKAROLSSVERDIMPADLPAILEADEVEDQEVOKNYAEAKD VELSTELYET SEREPDTSVS LELEELAENYEALEECOAFARPFAOYG. VLAEVQ PI VEEPENIVETNODIVEKLOEKSPONALL VENTOKAPOVSTPOLVEARNIOS VGI KOO LEEDQELFOVEDIENE LENRVOLLEEKLEVSENVKOOSOSIVEPPE

		CF SALTVDETTYVFREFKAETFTFHSDICTI PEKEKQI RKQTALAGI VKHKP KAT AEQLAT VMDDFAQFIDTCCRAADBUTCFSTECPBINTECEDAL A <u>CCCCSCCCCS</u> <u>GGGGS</u> ACDIQMTQSPSPLSASVGDRVTITCRASQYGGYVAWYQQKPGKCPKLLI YGASLLYSGVPSRFSGGRSGTDFTLTISSLQPEDFATYYCQRGHALITFGQGTK VEIEGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGFNISSYGS MHWVRQAPGKGLEWVASIYPYSSSTYYADSVKGRFTISADTSKNTAYLQMNSLR AEDTAVYYCARGYGPWYAYSYFALDYWGCGTLVTVSS
171	Human serum	DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCV ADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDD
	albumin (mature) (HSA)	NPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYK AAFTECCQAADKAACL_PKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAV ARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDS ISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKD
		VFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFK PLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGK VGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRP CFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKAT KEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL
172	Human	ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
172	IgG1	NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC
	constant	NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVF
	region	LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV
	(amino acid	EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC
	sequence)	KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQV
		SLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
173	Mouse	EAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCV ADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQHKDD
	serum albumin	ADESAANCDKSLHILFGDKLCAIPNLKENYGELADCCIKQEPERNECFLQHKDD NPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYN
	arbumin	EILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAV
		ARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAKYMCENQAT
		ISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNYAEAKD
		VFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYGTVLAEFQ
		PLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAARNLGR
		VGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGSLVERRP CFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAELVKHKPKAT
		AEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDALA
174	Human	EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE
	IgG1 Fc	VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN
	domain	STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK
	(amino acid	AKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVE
	sequence)	WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG
	sequence)	NVFSCSVMHEALHNHYTQKSLSLSPGK
175	HSA domain	DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCV
175	I	ADESAENCDKSLHT_FGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDD
		NPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYK
		AAFTECCQAADKAACLIPKLDELRDEGKASSAKQR
176	HSA domain	GKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVH
		TECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCLAEVEND EMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLA
		BER HEBT SEARCH VESKEVCKWI KEAKDVE LGME LIEIAKKHEDISVVELEKLA

	KTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQ
HSA domain	NLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCK
III	HPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEV
	DETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAV
	MDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL
(Gly∠Ser) ₃	GGGGSGGGGGGGGS
linker	
domain	
Secretory	MDMRVPAQLLGLILWLPGARC
leader	
sequence	
FLAG tag	DYKDDDDK
Polyhistid	ННННН
ine (6-	
His)	
Hemaggluti	YPYDVPDYA
nin	
	<pre>III (GLy2Ser)3 linker domain Secretory leader sequence FLAG tag PoLyhistid ine (6- His) Hemaggluti</pre>

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 209 <210> SEQ ID NO 1 <211> LENGTH: 127 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK138 VH amino acid sequence <400> SEQUENCE: 1 Glu Val Gl
n Leu Val Glu Ser Asp
 Gly Gly Leu Val Gl
n \mbox{Pro} Gly Gly 5 1 10 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Leu Ser Tyr Tyr 25 20 30 Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ala Tyr Ile Ala Ser Tyr Pro Gly Tyr Thr Ser Tyr Ala Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 Ala Arg Ser Gly Tyr Ser Tyr Ser Pro Tyr Tyr Ser Trp Phe Ser Ala 100 105 110 Gly Met Asn Tyr Trp Gly Gln Gly Ala Leu Val Thr Val Ser Ser 120 115 125 <210> SEQ ID NO 2 <211> LENGTH: 107 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK138 VL amino acid sequence <400> SEQUENCE: 2 Ala Ile Gln Met Thr Arg Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Tyr His Asp Gly Ser 20 25 30 Ala Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Tyr Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65707580 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Ser Tyr Ser Leu Ile 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105 <210> SEQ ID NO 3 <211> LENGTH: 381 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK138 VH nucleic acid sequence <400> SEQUENCE: 3

-continued

gaggttcagc tggtggagtc tgacggtggc ctggtgcagc caggggggctc actccgtttg 60 teetgtgeag ettetggett caacetetet taetaeggta tgeaetgggt gegteaggee 120 ccgggtaagg gcctggaatg ggttgcatac attgcttctt accctggcta cacttcttat 180 gccgatagcg tcaagggccg tttcactata agcgcagaca catccaaaaa cacagcctac 240 ctacaaatga acagettaag agetgaggae actgeegtet actattgtge tegetetggt 300 tacagttact ctccgtatta ttcttggttc tctgctggta tgaactactg gggtcaagga 360 geeetggtea eegteteete g 381 <210> SEQ ID NO 4 <211> LENGTH: 321 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK138 VL nucleic acid sequence <400> SEOUENCE: 4 gctatccaga tgacccggtc cccgagctcc ctgtccgcct ctgtgggcga tagggtcacc 60 atcacctgcc gtgccagtca gtaccacgac ggttctgcag cctggtatca acagaaacca 120 ggaaaagctc cgaagcttct gatttacggt gcatcctacc tctactctgg agtcccttcc 180 cgcttctctg gtagccgttc cgggacggat ttcactctga ccatcagcag tctgcagccg 240 gaagacttcg caacttatta ctgtcagcaa tcttcttatt ctctgatcac gttcggacag 300 ggtaccaagg tggagatcaa a 321 <210> SEQ ID NO 5 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK138 VH CDR1 <400> SEQUENCE: 5 Asn Leu Ser Tyr Tyr Gly Met His 5 1 <210> SEQ ID NO 6 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK138 VH CDR2 <400> SEQUENCE: 6 Ala Tyr Ile Ala Ser Tyr Pro Gly Tyr Thr Ser Tyr 5 10 1 <210> SEQ ID NO 7 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK138 VH CDR3 <400> SEQUENCE: 7 Arg Ser Gly Tyr Ser Tyr Ser Pro Tyr Tyr Ser Trp Phe Ser Ala Gly 1 5 10 15

-continued

Met Asn

<210> SEQ ID NO 8 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK138 VL CDR1 <400> SEQUENCE: 8 Gln Tyr His Asp Gly Ser Ala 1 5 <210> SEQ ID NO 9 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK138 VL CDR2 <400> SEQUENCE: 9 Tyr Gly Ala Ser Tyr Leu 1 5 <210> SEQ ID NO 10 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK138 VL CDR3 <400> SEQUENCE: 10 Gln Ser Ser Tyr Ser Leu Ile Thr 5 1 <210> SEQ ID NO 11 <211> LENGTH: 120 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK157 VH amino acid sequence <400> SEQUENCE: 11 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ser Asn Pro Tyr Tyr Tyr 20 25 30 Gly Gly Thr His Trp Val Arg Gln Ala Pro Gly Glu Glu Leu Glu Trp 35 40 45 Val Ala Ser Ile Gly Ser Tyr Pro Gly Tyr Thr Asp Tyr Ala Asp Ser 50 55 60 Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala 65 70 75 80 Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95 Cys Ala Arg His Tyr Tyr Tr
p Tyr Asp Ala Thr Asp Tyr Tr
p Gly Gln 100 105 110 Gly Thr Leu Val Thr Val Ser Ser 115 120

```
-continued
```

<210> SEQ ID NO 12 <211> LENGTH: 105 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK157 VL amino acid sequence <400> SEQUENCE: 12 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 10 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Tyr Gly Gly Val 20 25 Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr 40 45 Ser Ala Ser Tyr Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 55 50 60 Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu 65 70 80 Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Pro Ser His Leu Ile Thr Phe 95 85 90 Gly Gln Gly Thr Glu Val Glu Ile Lys 100 105 <210> SEQ ID NO 13 <211> LENGTH: 360 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK157 VH nucleic acid sequence <400> SEOUENCE: 13 gaggttcagc tggtggagtc tggcggtggc ctggtgcagc caggggggctc actccgtttg 60 teetgtgeag ettetggete caaceetae tactaeggtg gtaegeaetg ggtgegteag 120 gccccgggtg aggagctgga atgggttgca tctattggtt cttaccctgg ctacactgac 180 tatgccgata gcgtcaaggg ccgtttcact ataagcgcag acacatccaa aaacacagcc 240 tacctacaaa tgaacagctt aagagctgag gacactgccg tctattattg tgctcgccat 300 tactactggt acgatgctac tgactactgg ggtcaaggaa ccctggtcac cgtctcctcg 360 <210> SEQ ID NO 14 <211> LENGTH: 315 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK157 VL nucleic acid sequence <400> SEQUENCE: 14 gatatecaga tgacccagte ecegagetee etgtecgeet etgtgggega tagggteace 60 atcacctgcc gtgccagtca gtcttacggt ggtgtagcct ggtatcaaca gaaaccagga 120 aaaqcccccqa aqcttctqat ttactctqca tcctacctct actctqqaqt cccttctcqc 180 ttetetggta geegtteegg gaeggattte actetgaeea teageagtet geageeggaa 240 gacttogcaa ottattactg toagcaacca totoatotga toacgttogg acagggtaco 300 gaggtggaga tcaaa 315

<210> SEQ ID NO 15

```
-continued
```

<211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK157 VH CDR1 <400> SEQUENCE: 15 Asn Pro Tyr Tyr Tyr Gly Gly Thr His 5 1 <210> SEQ ID NO 16 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK157 VH CDR2 <400> SEQUENCE: 16 Ala Ser Ile Gly Ser Tyr Pro Gly Tyr Thr Asp Tyr 1 5 10 <210> SEQ ID NO 17 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK157 VH CDR3 <400> SEQUENCE: 17 Arg His Tyr Tyr Trp Tyr Asp Ala Thr Asp 1 5 10 <210> SEQ ID NO 18 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK157 VL CDR1 <400> SEQUENCE: 18 Gln Ser Tyr Gly Gly Val 5 1 <210> SEQ ID NO 19 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK157 VL CDR2 <400> SEQUENCE: 19 Tyr Ser Ala Ser Tyr Leu 1 5 <210> SEQ ID NO 20 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK157 VL CDR3 <400> SEQUENCE: 20 Gln Pro Ser His Leu Ile Thr 5 1

<210> SEQ ID NO 21 <211> LENGTH: 125 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK129 VH amino acid sequence <400> SEQUENCE: 21 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 5 10 1 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Ser Ser Tyr 20 25 Gly Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45 Val Ala Ser Ile Tyr Pro Tyr Ser Ser Ser Thr Tyr Tyr Ala Asp Ser 55 60 50 Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala 65 70 75 80 Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95 Cys Ala Arg Gly Tyr Gly Pro Trp Tyr Ala Tyr Ser Tyr Phe Ala Leu 100 105 110 Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125 <210> SEQ ID NO 22 <211> LENGTH: 105 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK129 VL amino acid sequence <400> SEOUENCE: 22 Asp Ile Gln Met Thr Gln Ser Pro Ser Pro Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Tyr Gly Gly Tyr Val 25 20 30 Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr 40 Gly Ala Ser Leu Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Gly 55 60 Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu 65 70 75 80 Asp Phe Ala Thr Tyr Tyr Cys Gl
n Arg Gly His Ala Leu Ile Thr \mbox{Phe} 85 90 95 Gly Gln Gly Thr Lys Val Glu Ile Glu 100 105 <210> SEQ ID NO 23 <211> LENGTH: 375 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK129 VH nucleic acid sequence <400> SEQUENCE: 23

-continued

teetgtgeag ettetggett caacatetet tettaeggtt etatgeaetg ggtgegteag	120
gccccgggta agggcctgga atgggttgca tctatttacc cttactctag ctctacttac	180
tatgeegata gegteaaggg eegttteaet ataagegeag acacateeaa aaacaeagee	240
tacctacaaa tgaacagctt aagagctgag gacactgccg tctattattg tgctcgtggt	300
tacggtccgt ggtacgctta ctcttacttc gctttggact actggggtca aggaaccctg	360
gtcaccgtct cctcg	375
<210> SEQ ID NO 24 <211> LENGTH: 315 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK129 VL nucleic acid sequence	
<400> SEQUENCE: 24	
gatatecaga tgaeceagte eeegageeee etgteegeet etgtgggega tagggteace	60
atcacctgcc gtgccagtca gtacggtggt tacgtagcct ggtatcaaca gaaaccagga	120
aaageteega agettetgat ttaeggtgea teeettetet aetetggagt eeettetege	180
ttetetggtg geogtteogg gaeggattte actetgaeea teageagtet geageoggaa	240
gacttegeaa ettattaetg teagegaggt eatgetetga teaegttegg aeagggtaee	300
aaggtggaga tcgaa	315
<pre><210> SEQ ID NO 25 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK129 VH CDR1 <400> SEQUENCE: 25</pre>	
- Asn Ile Ser Ser Tyr Gly Ser Met His	
1 5	
<210> SEQ ID NO 26 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK129 VH CDR2	
<400> SEQUENCE: 26	
Ala Ser Ile Tyr Pro Tyr Ser Ser Ser Thr Tyr Tyr 1 5 10	
<210> SEQ ID NO 27 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK129 VH CDR3	
<400> SEQUENCE: 27	
Arg Gly Tyr Gly Pro Trp Tyr Ala Tyr Ser Tyr Phe Ala Leu Asp 1 5 10 15	
<210> SEQ ID NO 28	

```
-continued
```

<211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK129 VL CDR1 <400> SEQUENCE: 28 Gln Tyr Gly Gly Tyr Val 1 <210> SEQ ID NO 29 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK129 VL CDR2 <400> SEQUENCE: 29 Tyr Gly Ala Ser Leu Leu Tyr 5 <210> SEQ ID NO 30 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: CK129 VL CDR3 <400> SEQUENCE: 30 Arg Gly His Ala Leu Ile Thr 1 5 <210> SEQ ID NO 31 <211> LENGTH: 1104 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-hCXCL138-107-G2-AviTag <400> SEQUENCE: 31 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt 60 gageceagag tgeceataae acagaaceee tgteeteeae teaaagagtg teeecatge 120 gcagetecag acctettggg tggaceatec gtetteatet tecetecaaa gateaaggat 180 gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatgt gagcgaggat 240 gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca 300 caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccct ccccatccag 360 caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaacag agccctccca 420 tcccccatcg agaaaaaccat ctcaaaaccc agagggccag taagagctcc acaggtatat 480 gtettgeete caccagcaga agagatgaet aagaaagagt teagtetgae etgeatgate 540 acaggettet tacetgeega aattgetgtg gaetggaeea geaatgggeg tacagageaa 600 aactacaaga acaccgcaac agtcctggac tctgatggtt cttacttcat gtacagcaag 660 ctcagagtac aaaagagcac ttgggaaaga ggaagtcttt tcgcctgctc agtggtccac 720 gagggtctgc acaatcacct tacgactaag accatctccc ggtctctggg taaacaccat 780 caccatcatc actettetgg egtggatetg ggtacegaga acetgtaett ecaageeace 840

-continued

-continued	
gagetgagat gecagtgeet geagaecetg eagggeatee acceeaagaa eateeagage	900
gtgaacgtga agtcccctgg cccccactgc gcccagaccg aagtgatcgc caccctgaag	960
aacggccgga aggcctgcct gaaccccgcc agccccatcg tgaagaaaat catcgagaag	1020
atgctgaaca gcgacaagag caacggcgga ggcctgaacg acatcttcga ggcccagaaa	1080
atcgagtggc acgagtgatg ataa	1104
<210> SEQ ID NO 32 <211> LENGTH: 1110 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-hCXCL543-114-G2-AviTag	
<400> SEQUENCE: 32	
atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt	60
gageeeagag tgeeeataae acagaaceee tgteeteeae teaaagagtg teeeceatge	120
gcageteeag acetettggg tggaceatee gtetteatet teeeteeaaa gateaaggat	180
gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatgt gagcgaggat	240
gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca	300
caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccct ccccatccag	360
caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaacag agccctccca	420
teccecateg agaaaaceat eteaaaacee agagggeeag taagagetee acaggtatat	480
gtettgeete caccageaga agagatgaet aagaaagagt teagtetgae etgeatgate	540
acaggettet taeetgeega aattgetgtg gaetggaeea geaatgggeg taeagageaa	600
aactacaaga acacegeaac agteetggae tetgatggtt ettaetteat gtacageaag	660
ctcagagtac aaaagagcac ttgggaaaga ggaagtettt tegeetgete agtggteeae	720
gagggtetge acaateacet taegaetaag aceateteee ggtetetggg taaacaeeat	780
caccatcatc actettetgg egtggatetg ggtaeegaga acetgtaett ecaagtgetg	840
cgcgagetga gatgegtgtg eetgeagaee acceagggeg tgeaeeeeaa gatgateage	900
aacctccagg tgttcgccat cggcccccag tgcagcaagg tggaagtggt ggccagcctg	960
aagaacggca aagagatctg cctggacccc gaggccccat tcctgaagaa agtgatccag	1020
aagateetgg aeggeggeaa caaagagaae ggeggaggee tgaaegaeat ettegaggee	1080
cagaaaatcg agtggcacga gtgatgataa	1110
<210> SEQ ID NO 33 <211> LENGTH: 1107 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-hCXCL829-99-G2-AviTag	
<400> SEQUENCE: 33	
atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt	60
gageecagag tgeecataac acagaaceee tgteeteeae teaaagagtg teeceeatge	120
gcageteeag acetettggg tggaceatee gtetteatet teeeteeaaa gateaaggat	180

-continued		
gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg	t gagcgaggat 240	
gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacaca	c ageteagaea 300	
caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccc	t ccccatccag 360	
caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaaca	g ageceteeca 420	
tcccccatcg agaaaaccat ctcaaaaccc agagggccag taagagcto	c acaggtatat 480	
gtcttgcctc caccagcaga agagatgact aagaaagagt tcagtctga	c ctgcatgatc 540	
acaggettet tacetgeega aattgetgtg gaetggaeea geaatggge	g tacagagcaa 600	
aactacaaga acaccgcaac agtcctggac tctgatggtt cttacttca	t gtacagcaag 660	
ctcagagtac aaaagagcac ttgggaaaga ggaagtcttt tcgcctgct	c agtggtccac 720	
gagggtetge acaateacet taegaetaag aceateteee ggtetetge	g taaacaccat 780	
caccatcatc actettetgg cgtggatetg ggtacegaga acetgtact	t ccaagccaaa 840	
gaactgeggt gecagtgeat caagaeetae ageaageeet teeaceea	a gttcatcaaa 900	
gaactgagag tgatcgagag cggccctcac tgcgccaaca ccgagatca	t cgtgaagctg 960	
agcgacggca gagagetgtg eetggaceee aaagaaaaet gggtgeage	g ggtggtggaa 1020	
aagtteetga agegggeega gaacagegge ggaggeetga aegacatet	t cgaggcccag 1080	
aaaatcgagt ggcacgagtg atgataa	1107	
<211> LENGTH: 1101 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<212> TYPE: DNA	2-AviTag	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-C		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-C <400> SEQUENCE: 34	g tgcacgatgt 60	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-C <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag	g tgcacgatgt 60 g tcccccatgc 120	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-C <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-C <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-C <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agctcagaca 300	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-0 <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacaca </pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agctcagaca 300 t ccccatccag 360	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-0 <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacaca caaacccata gagaggatta caacagtact ctccgggtgg tcagtgcco</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agctcagaca 300 t ccccatccag 360 g agccctccca 420	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-0 <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacaca caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccc caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaca acacaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaca gtactcaggact ggatgagtgg caaggagttc aaatgcaagg tcaacacacacacacacacacacacacacacacacacac</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agctcagaca 300 t ccccatccag 360 g agccctccca 420 c acaggtatat 480	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIG2)-His6-linker-TEV-mCXCL128-96-0 <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacaca caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccc caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaaca tccccatcg agaaaaccat ctcaaaaccc agagggccag taagagctc</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agctcagaca 300 t ccccatccag 360 g agccctccca 420 c acaggtatat 480 c ctgcatgatc 540	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIGG2)-His6-linker-TEV-mCXCL128-96-C <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacaca caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccc caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaaca tcccccatcg agaaaaccat ctcaaaaccc agagggccag taagagctc gtcttgcctc caccagcaga agagatgact aagaaagagt tcagtctga</pre>	g tgcacgatgt 60 g tcccccatge 120 a gatcaaggat 180 t gagcgaggat 240 c agetcagaca 300 t ccccatccag 360 g agecetecca 420 c acaggtatat 480 c ctgcatgate 540 g tacagagcaa 600	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: 2223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-0 <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacaca caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccc caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaaca tcccccatcg agaaaaccat ctcaaaaccc agagggccag taagagctc gtcttgcctc caccagcaga agagatgact aagaaagagt tcagtctga acaggcttct tacctgccga aattgctgtg gactggacca gcaatggg</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agctcagaca 300 t ccccatccag 360 g agccctccca 420 c acaggtatat 480 c ctgcatgatc 540 g tacagagcaa 600 t gtacagcagg 660	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-0 <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gaacccagacg tccagatcag ctggtttgtg aacaacgtgg tagtggatg caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccc caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaaca tcccccatcg agaaaaccat ctcaaaaccc agagggccag taagagctc gtcttgcctc caccagcaga agagatgact aagaaagagt tcagtcga acaggcttct tacctgccga aattgctgtg gactggacca gcaatgggc aactacaaga acaccgcaac agtcctggac tctgatggtt cttacttca ctcacaggac gcaacaga agagatgact acagaaggt ctagtgcca cacaggact tacctgccga aattgctgtg tgatgatgg caatgggc acatacaaga acaccgcaac agtcctggac tctgatggtt cttacttca ctcacagga acaccgcaac agtcctggac tctgatggtt cttacttca acaggcttct tacctgccga attgctgg tcagtggtt cttacttca acatacaaga acaccgcaac agtcctggac tctgatggtt cttacttca acatggact cttactgccga attgctggac tctgatggtt cttacttca acatggact cttactgccga agtcctggac tctgatggtt cttacttca acatggcttct tacctgccga agtcctggac tctgatggtt cttacttca acatggact cttactgccga agtcctggac tctgatggtt cttacttca acatggactac agtcctggac tctgatggtt cttacttca acatggactac agtcctggac tctgatggtt cttacttca acatggactac agtcctggac tctgatggt cttacttca acatggactacaga acaccgcac agtcctggac tctgatggtt cttacttca acatggactacaga acaccgcac agtcctggac tctgatggtt cttacttca acatggactacaga acaccgcac agtcctggac tctgatggt cttacttca acatggactacaga acaccgcac agtcctggac tctgatggt cttacttca acatggactacaga acaccgcacaga agtcacacacacacacacacacacacacacacacacacac</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agctcagaca 300 t ccccatccag 360 g agccctccca 420 c acaggtatat 480 c ctgcatgatc 540 g tacagagcaa 600 t gtacagcaag 660 c agtggtccac 720	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-0 <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacaca caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccc gacccatcg agaaaaccat ctcaaaaccc agagggccag taagagctc gtcttgcctc caccagcaga agagatgact aagaaagagt tcagtcga gacccataga acaccgcaa agtgtgg gactggaccag cacatggg cacaggctt tacctgccga aattgctgg gactggacca gcaatggg accaggata aaagagcac ttgggaaaga ggaagtctt tcgcctgct ctcagagtac aaaagagcac ttgggaaaga ggaagtctt tcgcctgct</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agetcagaca 300 t ccccatccag 360 g agecetecca 420 c acaggtatat 480 c ctgcatgatc 540 g tacagagcaa 600 t gtacagcag 660 c agtggtecac 720 g taaacaccat 780	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: 223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-0 <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggtc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacaca caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccc caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaagagctc gtcttgcctc caccagcaga agagatgact aagaaagagt tcagtctga acaggcttct tacctgccga aattgctgtg gactggacca gcaatgggc aactacaaga acaccgcaac agtcctggac tctgatggtt ctacttca ctcagagtac aaaagagcac ttgggaaaga ggaagtctt tcgcctgct gagggtctgc acaatcacct tacgactag accatctcc ggtcttgg gagggtctgc acaatcacct tacgactag accatctcc ggtctctgg gagggtctgc acaatcacct tacgactag accatccc ggtctctgg gagggtctgc acaatcacct tacgactag accatccc ggtctctgg gagggtctgc acaatcacct tacgactag accatccc ggtctctgg gagggtctgc acaatcacct tacgactag accatccc ggtctctgg gagggtctgc acaatcacct tacgactag accatcacc</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agctcagaca 300 t ccccatccag 360 g agccctccca 420 c acaggtatat 480 c ctgcatgatc 540 g tacagagcaa 600 t gtacagcaag 660 c agtggtccac 720 g taaacaccat 780 t ccaagccaac 840	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-0 <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtctcatct tccctccaa gtactcatga tctccctgag tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gacccagacg tccagatcag ctggtttgtg aacaacgtgg tcagtgccc caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaagtagcc gtcttgcctc caccagcaga aggagtgatc aaatgcaagg tcagtagcc gtcttgcctc caccagcaga aggagtgat acaagaacca gcaatggg acccagga acaccgcaac agtcctgga tctgatggt ctagtcca caccaggat taccgcaga aggagtgat acaagaaggt tcagtcgc gtcttgcctc caccagcaga aggagtgat acagaaggt tcagtgcc gacggttct tacctgccga aattgctgg gactggacca gcaatgggc aactacaaga acaccgcaac agtcctggac tctgatggtt cttacttca ctcagagtac aaaagagcac ttgggaaga ggaagtcttt tcgcctgct gagggtctgc acaatcacct tacgactag accatctcc ggtcctgg caccatcat actcttctgg cgtggatcg ggtaccgaga acctgtact gagggtctgc acaatcacct tacgactag accatctcc ggtctctgg caccatcat actcttctgg cgtggatcg ggtaccgaga acctgtact caccatcat acctgccga acctggatcg ggtaccgaga acctgtact caccatcat acctgcg cgtggatcg ggtaccgaga acctgtact caccatcat acctgtcgg cgtggatcg ggtaccgaga acctgtact caccatcat acctgg cgtggatcg ggtaccgaga acctgtact caccatcat acctgg cgtggatcg ggtaccgaga acctgtacc caccatcat acctgg cgtggatcg ggtaccgaga acctgtacc caccatcat acctgg cgtggatcg ggtaccatcg ggtaccgaga acctgtacc caccatcat acctgg cgtggatcg ggtaccatcg ggtaccatcatcatcatcatcatcatcatcatcatcatcatc</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agctcagaca 300 t ccccatccag 360 g agccctccca 420 c acaggtatat 480 c ctgcatgatc 540 g tacagagcaa 600 t gtacagcaag 660 c agtggtccac 720 g taaacaccat 780 t ccaagccaac 840 a catccagagc 900	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gwiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL128-96-0 <400> SEQUENCE: 34 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccag gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagt gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatg gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacaca caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccc gtcttgcctc caccagcaga agagatgact aaatgcaagg tcaacaca tcccccatcg agaaaaccat ctcaaaaccc agagggccag taagagctc gtcttgcctc tacctgccga aattgctgg gactggacca gcaatggg aactacaaga acaccgcaac agtcctggac tctgatggtt cttacttca ctcagagtac aaaagagcac ttgggaaaga ggaagtctt tcgcctgct gagggtctgc acaatcacct tacgactag accatctccc ggtcctcg caccatcat actcttctgg cgtggatcg ggtaccgaga acctgtact gagggtctgc acaatcacct tacgactag accatctccc ggtctctgc caccatcat actcttctgg cgtggatct ggtaccgaga acctgtact gagggtctgc acaatcacct tacgactag accatctccc ggtctctgc caccatcatc actcttctgg cgtggatct ggtaccgaga acctgtact gagggtctgc acaatcacct tacgactag accatctccc ggtctctgc caccatcatc actcttctgg cgtggatctg ggtaccgaga acctgtact gaggtgcggt gccagtgcct gcagaccatg gccggcatcc acctgaaga</pre>	g tgcacgatgt 60 g tcccccatgc 120 a gatcaaggat 180 t gagcgaggat 240 c agetcagaca 300 t ccccatccag 360 g agecetecca 420 c acaggtatat 480 c etgcatgate 540 g tacagageaa 600 t gtacagageaa 600 t gtacageag 660 c agtggtecae 720 g taaacaceat 780 t ecaagecaae 840 a catecagage 900 c aceetgaag 960	

-continued

tigtigagang ngigtigagang digaggang digaaggang digaaggang digaaggang digaaggang aggangaaggang aggangaaggang aggangaaggang aggangaaggang aggangaaggang aggangaaggang digaaggang di		
<pre>210 SEQ 3D NO 35 210 SEQ 3D NO 35 211 Structure 11 212 OFCENTE: 11 212 OFCENTE: 11 212 OFCENTE: 14 212 OFCENTE: 14 212 OFCENTE: 35 212 OFCENTE: 35 212 OFCENTE: 35 212 OFCENTE: 35 212 OFCENTE: 35 212 OFCENTE: 35 212 OFCENTE: 35 213 OFCENTE: 35 213 OFCENTE: 35 213 OFCENTE: 35 214 OFCENTE: 35 214 OFCENTE: 35 215 OFCENTE: 36 215 OFCENTE: 36</pre>	atgctgaagg gcgtgcccaa gggcggaggc ctgaacgaca tcttcgaggc ccagaaaatc	1080
<pre>Liborn: 1104 Calls PURCH: 1104 Calls PURCHAR </pre>	gagtggcacg agtgatgata a	1101
Angangste cogetaaget eetgeggete etgetgetet ggeteeraag tgeaegatgt 60 gageceagag tgeeentaa acagaacee tgteeteent teaaagagtg teeeeraag 120 geageteenag acetetagg tggaeentee gtetteatet teeeteenag gateaagaga 180 graeteatg teeestatag eetgettgtg acaacgtgg agtaeenag gateaagaga 240 gacecagaeg teenagteen etgegggg taagtgeet gagegaggat 240 gacecagget ggatgaggg enaggagtte aatgeagg gaagtaeena aggeegaggat 240 gacecaggaet ggatgaggg enaggagtte aatgeagg teaateaenag ageeeteena 420 teeeeeag agaaaaceat eteaaaaeee agagggeeeg taagagetee acaggtatat 480 gtettgeete eaceageaga aggagtget taagtegge geaagggeet etgetggee teagtegee teagageaa 660 aactaeeaggaa eacegeeaa agtegggg geagtgeee geaatgggeet agaageeeag etgeaggeeag 660 eeeeaggae eaateaeet taagaetag ggaagtett teagtetgg taagaaceae 770 caceacteea acteteteg eggagaagg ggaagteett teogeetgeet agaggeeag 720 gagggetega eaateaeet taagaetag ggaagtett coecageg agtagteg eaceeeagag 740 gageggeeaga agatggeet gaaaaeeeg tgeeagaag acetgteet geeeagag 740 gageggeeaga agatggeet gaaaaeeeg geeeeegg ageagagee eaceeegag 960 etgaggetg geeagtgeet gaaaaeeeg geeegaga acetgtee eaceetgaag 960 geeggegeaga agagtggee caaeggeegg geeeeegg ageagaagae caceeagag 960 geeggegeaga agagtggee caaeggeegg geeeeegg ageeegag acaeeetga 960 geeggegeaga agagtggee tgaaaaeeeg geeegga geeetgaag acaeeetgaag 960 geeggeeeaga agageage caaeggeegg geeeetgg tgeagaagat caceeagaag 1020 ateegagtge aegastgaet ataa 1104 <210 SRO ID NO 36 <211 JUNNT: 1107 <222 OFBR INFORMTON: Synthetie: gwin-L6-Peefugge)-Hise-linker-TBV-mCXCL548-118-62-AviTag swin-L6-Peefugge)-Hise-linker-TBV-mCXCL548-118-62-AviTag gageeeaga tyeeeatae aagaacee tyteeteet teeeagagt teeecaegg 120 gageeeaga tyeeeatae aagaacee tyteeteet teeeteeag gateagagat 180 gaeeeagag tyeeeatae aagaacee tyteeteet teeeagagt teeecaegg 120 gageteeag acettegg gedegte deatgtegg gatgaegg tgeegagaga 240 gaeeeagag tyeeeatae acagaacee tyteeteet teeeagagt teeeagaa 240 gaeeeagag teeeagateg eetstetgt aacaacgtg gatgaegg agaeeagag 240 gaeeeagag teeeagateg eetstetgt eacatgtegg agataeeae ag	<211> LENGTH: 1104 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic:	
<pre>gaycotaga tycocataa acagaacco tytototo teaaagagi tococatag gaycotocag acototygg tygacotoo ytototot teocotocaa gatcaaggat gaccagag tycocataa acagaacco tytototot teocotocaa gatcaaggat gacagagat gagaggatta caacagtac etcogygtg tagtgacaca agtcagagat acaccata gagaggatta caacagtac etcogygtgg toagtgocot coccatocag acaccata gagaggatta caacagtac etcogygtgg toagtgocot coccatocag gacatocag agaaaccat otoaaacco agagggocag taagagoto coccatgatat gtototec caccagcaga agagatgat aagaaggat toagtotga caaggacat ggottgoce caccagcaga agagatgat aagaaggat toagtotga caaggcata gacatcacaaga acaccgcaa attotgg gacagagg caatggggt taagagoto acaggcaga ctoagatca aaagaaccat otoaaacco agagggtt taagagoto acaggacag gcatagag taccegcaa attotgg gactggaca gcaatgggg tacagagcaa gcatacaaga acaccgcaa attotgg ggacagag ggattett togottgot agagcaga gaggttot acactacet tacgacaga ggaggttet togottgot gatagagca ccacagaga cacceccag gicatagggaga gattett togottgot agagcaga gaggttog acatcact tacgacaga gagaggag actitaga caccecaga gagggttg gcoagtgot gaaaaccotg coccagggtg actcagaga cactocaga gagggotag agaggagga caccegag ggaccgaga gactgatga caccacagag gagggtcaga aggggagga caccegggg ggaccgaga cactotoga ggcccagaa gagggtcaga aggggagga caccegag ggaccgaga gactgagag caccectga g gaccagagg tacaggacgg cacagggggg ggccggag actocagaga caccectaga gaccagaggg tacagggge cacagggggg ggccggag gactgaggg cacagagcag gaccagaggg cacagggggg ggccggag gacctggg gacaccgg ggccagaa libo atcogagtgg cacagtggg cacaggggg ggccggag gacctgga gacttotag ggcccagaa libo atcogagtgg cacagtggg taa atag atag atag atag atag atag</pre>	<400> SEQUENCE: 35	
<pre>gaggtctag acctettggg tggaccatec gtottcatet toottoaaa gatcaaggat 180 gaactaaga totootgag occatggt acatgtgtg tgggggaggt gaggcaggaggt 240 gaccaagaog tocagatcag otggttgtg acaagagtg taggaggtg taggggaggt 240 caaaccata gagaggatta caacagtact ctcoogggtg toagtgcot occoatcoag 360 caaccaggat ggatgggtg caaggaggtta aatgcaagg toagaggct caagggtat 480 gtottgoott caccagoag aggaggtat aagaaaggt toagtogg taagagott acaggagaa 480 gtottgoott caccagoag aggaggatta gagaaggat toagtoggt taggaggag acaggggaa 480 gtottgoott caccagoag aggaggatta aggaaggat toggtoga caagggtat a480 gtottgoott caccagoag aggaggatta ggacaggaca gacaggggg taagagaa 480 gtottgoott caccagoag aggaggatta agaaaggt toggtoga caagggaa 480 acagggttot tacotgoog aattgotgg gactggaca goatgggog tacagagaga 480 acatacaaga acacogoaa agtootggat toggtggt tottacttoat gtacagoag 480 acatacaaga acaccogoaa agtootgga totggagag acatgtott agtogtoca 720 gagggtofg acaatacact tacgactag acatche ggtottgg gtacagaga acotgtact for agtogtoca 720 gagggtogg goaggtgot gaaaaccet gootgggg gacogaga acotgtag 780 cacoatcat actottotgg ogtggatog ggtacogaga acotgtact ccaagaag 900 ctgagogtga ccccccetgg coctactgt gootagaa acotgtac tacagaag 900 ctgagogtga caccaccag cg coccagg ggccccaga agggcag aggccaga aggccoagaa 1080 atocgaaca agggcagg ataa 1104 </pre>	atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt	60
gaactaaga tatacaaga agagagatta caacagtag tagagagagat gagagagat 240 gaaccaaga tagagagatta caacagtaat atoogggtg tagagacaa agatcagaaa 300 caacaacaata gagaggatta caacagtaat atoogggtg tagaggaca coocatcag 360 caccaggaat ggatgagtgg caaggaggta aagaaaggt taagagcot accaggtata 480 gtottgoote caccageaga agagaggatta aagaaaggt tagatgace acaggtatat 480 gtottgoote caccageaga agagatgact aggaaaggt tagatgace acaggtata 480 gtottgoote caccageaga agagatgat agaaaggt tagatgace acaggtata 480 gtottgoote caccageaga aggatgat agaaagggt tagatggace agaggagg tacagaggaa 600 aactacaaga acacegeaa attgetgg gactggacea geaatggeg tacagagaa 600 caccaggtac aaaagageae ttgggaaagg ggagtott tegotege aggggeag 60 ctcagagtae aaaagageae ttgggaaagg ggagtott tegotege agtggteeae 720 gagggtedge acaateaeet taegactaag accatecee ggtetetggg taaacaceat 780 caccateat actetetgg ggtggateg ggaagtetg gatacgaga acetgtaet ccaageage 840 gagetgogg geagtgoet gaaaceetg ecceagg geeceetgg tgeagaaga catecagag 960 etgagegtg geagtgeet ggaeeegg geeceetgg tgeagaaga catecagaag 1020 ateegaaggg cacgageg agagegag geeceetgg tgeagaaga catecagaag 1020 ateegaaggg cacgageg ataa 1104 <210 > SEQ ID NO 36 <220 > Gagegeteg ataa 20 gageeeagag teeeatae acagaaceee tgeteget ggeteeagg tgeaegatg fo gageeeagag teeeatae acagaaceee tgeteetaet teeeteeaa gateagagg teeeeatag fo gageeeagag tgeeeatae acagaaceee tgeteetee taeaagagg teeeeatag fo gageeeagag teeeatae acagaaceee tgeteetee teeeaagagg teeeeatag fo gageeeaga teeeettggg tggaeeatee gtetteatet teeeteeaa gateagagg fo gaeeeagag teeeatag eceettggg teeeatgg teeeeatgg taeagaggat fo gaeeeagag teeeatag eceettgg tgaeeatee gtetteatet teeeteeaa gateagagg	gageeeagag tgeeeataac acagaaceee tgteeteeac teaaagagtg teeeceatge	120
<pre>gaccagacg tocagatcag ctggtttgtg acaacgtgg agtacacac agtocagaca 300 caaccocata gagaggatt caacagtact ctocagggtgg togtggcot coccatcag 360 caaccogtag gyaggatta caacagtact ctocagggtgg togtggcot coccatcag 360 caccaggact gyatgagtgg caaggaggtca aggaaggaca gaggggcog taagagcat 480 gtcttgoot caccagcaga aggagtgac aaggaaggat caggggaca goatgggg taagagcag 400 aactacaaga acaccgcaa agtoctgga totgatggt ttattott gtcagcaga 660 ctocagagta aaagagca ttgggaaaga ggaagtott togottggg taacagaca 720 gagggttgg acatcact tacgactag agaagatgat gggacggg accgggt acagggaca 720 gagggttgg acatcact tacgactag agaagaag ggaagtott togottggg taacacact 780 caccactact actottotg cgggatcg ggaccgga acctgted gtotaccaga 900 ctgagegtg cocagtgot gaaaccct gocccggg gaccegga actotaga caccagag 900 ctgagegtg cocagtgot gaaaccctg cocceggg ggaccegga gactactaga 1020 atcctgaaca agggcaagg caacggocgg ggocctgaac actotag ggoccagaa 1080 atcgagcg a caggggagg caacggocgg ggocctgaac actotag ggoccagaa 1080 atcgaggg toc 36 c115 iENOTH: 1107 c220> FDI N0 36 c210> SEQ ID N0 36 c210> SEQ ID N0 36 c210> SEQ UD N0 36 c210> sEQUENCE: 36 atgagggtc ccgctcagt ctggggtc tgctgatct ggotcocagg tgcagagat caccagaga 1020 c220> FDI N0 36 c210> SEQ UD N0 36 c2</pre>	gcageteeag acetettggg tggaceatee gtetteatet teeeteeaaa gateaaggat	180
caaccacta gagaggtta caacagtac ctccgggtgg tcagtgccc cccatccag 360 caaccagta gagaggtt gatagagg caaggagtc aagaaggccag tagaggccag tagagccctcaa 420 tcoccactog agaaaaccat ctcaaaacca gagggccag tagaggcc acaggtata 480 gtcttgcct caccagcag agagatgac aagaaggag cag tagaggcc gcaagggg tacagagca 600 aactacaag acaccgcaa agtcctggg tctgatggt ctgatggg tacagagca 600 aactacaag acaccgcaa agtcctgga tctgatggt ttattattat gtacagcaag 660 ctcagagta aaagagca ttgggaaag ggaagtctt togctgct agtggtcca 720 gagggttg a caatcact tacgactaag accatccc ggtctctgg taaacacat 780 caccatcat actcttctg cgtggatcg ggaccag accggtg tacagag caccgag 840 gagctgcggt gccagtgct gaaacccg ccccgggtgg actcaagaa caccat cagag 900 ctgagggtg cccccccgg ccctactg ggccccgag gactgatg caccacgaag 900 ctgagggtg cccccccgg ccctactg ggccccgag gactgctg caccagaag 1020 atcctgaaca agggcaagg caacggcgg ggcctgaacg acatctccg ggcccagaa 1080 atcgaggtg a caggtgatg ataa 1104 <100 SEQ ID N0 36 <110 SEQ ID N	gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatgt gagcgaggat	240
caccacgagact ggatgagtg caaggagtc aaatgcaagg tcaacacaag agcctccca 420 tcccccacg agaaaaccat ctcaaaaccc agagggccag taagagctc acaggtatat 480 gtcttgoctc caccacgaga agagatgact aagaaagagt tcagtcgac ctgcatgatc 540 acaggctt tacctgccga aattgctgtg gactggacca gcaatgggcg tacagagcaa 600 aactacaaga acaccgcaac agtoctggat ctgatggtt cttacttoat gtacagcaag 660 ctcagagtac aaaagagcat tgggaaaga ggaagtett tegetegtc agtggtccac 720 gaggggtgc acaatcacet tacgactaag accatetece ggteteggg taacagcaag 840 gagctgegg gccagtged gaaaaccetg cccegggtgg actteaagaa catccagae 840 gagctgeggt gccagtgeet gaaaaccetg cccegggtgg actteaagaa catccagae 900 ctgagegtg ccaectegg cetcactgt geccagae agtgatege caccetgaag 960 ggeggecaga aagtgtgeet ggaccegag geccecegg tgcagaaga catccagaag 1020 atcctgaaca agggcaagge caacggegg ggectgaaeg acatetteg ggeccagaa 1080 atcgaggtge acgagtgat ataa 1104 <210> SEQ ID NO 36 <211> LENGTH: 1107 <220> FEXITY: 122> TPE: DNA <313> OKGANISM: Artificial Sequence <220> FEXITY: 232> TPE: DNA <400> SEQUENCE: 36 atgaggtee cogsteagt ectggggete tgcgteet ggecceagg tgcacgagt f atgagggtee cogteaget etgggacce tgceteca teaagagtg tcccccatg 120 gagcccaga gtggecate acagaaccet gtceteca teaagagtg tcccccatg 120 gagcccaga gtggecate ctggggete tgctgtett ggeteccag tgcacgagt f atgagggtee cogteaget etggggete tgctgteet ggeteccag tgcacgagt f atgagggtee cogteaget etgggacet gtetete tectecag tgcacgagt f atgagggtee cogteaget etgggacet gtetete tectecag tgcacgagt f atgaggtee cogteaget etgggacet gteteteat teceteag gtegagagt 120 gagcccaga cotettggg tggaccate gtetteat teceteag agtagagt 120 gagcccaga cotettggg tggaccate gtetteat teceteag agtagggt f atgagggtee cogteaget etgggacet gteteteag tacagaggt 120 gcagcccag actettggg tggaccate gtetteat teceteag agtagggt 120 gcagctecag actettggg tggaccate gtetteat teceteag agtagggt 120 gcagctecag actettggg tggaccate gtetteat teceteag agtagggt 120 gcagctecag actettgg tggtgtgt agtgggggt tggggaggt 120	gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca	300
tccccatcg agaaaaccat ctcaaaaccc agagggccag taagagctc acaggtatat 480 gtcttgoctc caccagcaga agagtgat aagaaagagt tcagtctgac ctgcatgatc 540 acaggettet tacctgocga aattgetgtg gactggace geaatgggeg tacagagcaa 600 aactacaaga acacegcaac agtectggae tetgatggtt ettacttoat gtacagaaga 660 ctcagagtac aaaagagcae tigggaaaga ggaagtett tegeetgete agtggtecae 720 gagggetge acaateacet tacgaetaag accetere ggteetee agtggteeae 780 caccateate actetetgg egggatetg ggtacegaga accetere agtggteeae 780 caccateate actetetgg egggatetg ggtacegaga accetere agtagteeae 780 caccateate actetetgg egggatetg ggtacegaga accetere agtagtee eaecegage 900 ctgagegtg eccagtgeet gaaaaccetg eccegggtgg actteaagaa catecagage 900 ctgagegtga cececetgg ecctactgt geccagae gaagtgatege caceetgag 960 ggeggegecaga aagtgtgeet ggaecegag geeeceetgg tgeagaagat catecagaag 1020 atectgaae agggeaagge caaeggegga ggeetgaaeg acatettega ggeecagaa 1080 atecgagtgge acgagtgatg ataa 1104 <210> SEQ ID NO 36 <211> LENGTH: 1107 <220> FAITURE: gMi2-LENGTH: 1107 <220> FAITURE: <220> FAITURE: <	caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccct ccccatccag	360
<pre>gtcttgoctc caccagcaga aggaggact aaggaaggagt tcagtctgac ctgocdgatc 540 accaggcttet tacctgocga attgotgg gactggacca gcaatgggeg tacaggagca 660 ctcagagtac aaaagagcac ttggggaagg ggaggtett tegectgete agtggtecae 720 gagggtetge accaateacet tacgactag accatecee ggtetetgg taaacaceat 780 caccateate actettetgg egtggatetg ggtaceggag acctgtaett eccaagecag 840 gagetgegg gecagtgeet gaaaaceetg ecceeggtg acteagage acteteag accaeceag 900 ctgagegtg accaecetgg eccteagt geccagaeeg aagtgatege caccetgag 960 ggeggecaga aagtgtgeet ggaceegg geceegg agtgateg acaeteega 960 ggeggecaga aagtgtgeet ggaceegg geceegg agtgateg acaeteega 960 ggeggecaga aagtgtgeet ggaceegg geceegg agtgateg acaeteega 960 ateetgaaca agggeaagge caaeggegg gecegag acteteag ggecegaaa 1080 ateeggatg accaeggegg gaceegg geceetgg gaceetg gaceetteg geceagaaa 1080 ateeggatgge acgagtgatg ata 1104 </pre>	caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaacag agccctccca	420
acaggettet taeetgeegga aattgetgtg gaetggaeea geaatgggeg taeagageaa 600 aaetaeaga acaeegeaae agteetggae tetgatggtt ettaetteat gtaeageaag 660 etcagagtae aaaagageae ttgggaaaga ggaagtett tegeetgee agtggteeae 720 gagggetege acaateaet taegaetaag aceateteee ggteeteggg taaaacaeeat 780 caeetaete aetettetgg egtggatetg ggtaeegaga acetgtaett eeaageeage 940 gagetgeggt geeagtgeet gaaaaceetg eeeeggg atteaagaa cateeagaag 960 ggeggeeaga aagtgtgeet ggaeeeegg ggeeetgagg aetteaagaa cateeagaag 960 ggeggeeaga aagtgtgeet ggaeeeegg ggeeetgaag acetgtaett eeaageeaga 1020 ateetgaaea agggeagge caaeggeegg ggeeetgaaeg acatettega ggeeeagaa 1080 ateegagtgge aegagtgatg ataa 1104 <210> SEQ ID NO 36 <211> LEMOTH: 1107 <212> TYPE: DNA <213> ORCANISM: Artificial Sequence <220> FEATURE: <223> OFHER INFORMATION: Synthetie: gWiz-LS-Fe(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atggaggteee eegeteet etteet teeeteaga gateagagt 120 geageteeag ateetettgg tggaeeatee gteteatet teeeteaga gateagagt 180 gtaeteatga teteeetgg tggaeeatee gteteatet teeeteaga gateagagt 180 gtaeteatga teteeetgg tggaeeatee gteteatet teeeteaaa gateaagaat 180 gtaeteatga teteeetgg tggaeeatee gtetteatet teeeteaaa gateagagat 240 gaeeeagaeg teegateag eeggttg acaaggtgg tggtggatg gaeegagat 240 gaeeeagaeg teegateag eeggttgg aceatggtgg tggtggatg gaeegagaa 300	teccecateg agaaaaceat eteaaaeee agagggeeag taagagetee acaggtatat	480
aactacaaga acaccgcaac agtoctggac tetgatggtt ottacttoat gtacagcaag 660 etcagagtac aaaagagcac ttgggaaaga ggaagtottt tegeotgete agtggtocac 720 gagggtetge acaatcacet tacgactaag accatetece ggtetetggg taaacaccat 780 caccateate actetetegg egtggatetg ggtacegaga acetgtactt ecaagecage 940 gagetgeggt gecagtgeet gaaaaceetg eceegggtgg acteaagaa catecagage 900 etgagegtga eceecetgg eceteaetg geceaggeeg aagtgatege caccegaag 960 ggeggeeaga aagtgtgeet ggaeeeegg ggeeegga geeegga actettega ggeeeagaa 1020 ateetgaaea agggeeagge eaeeggeegg ggeetgaaeg acatettega ggeeeagaa 1080 ateegagtgge acgagtgatg ataa 1104 <210> SEQ ID N0 36 <211> LENGTH: 1107 <222> FPETURE: <223> OTHER INFORMATION: Synthetic: gwiz-LS-Fe(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atgagggtee cegeteage eceaggeeget etgeteet ggeteeceag tgeeegatgt 60 gageeeaga teeceatage tegteteg tgeteet teeceeaga gatecagag 120 gtaeteatga tetecetgg tggaeeatee gtetteatt teeceeaga 120 gtaeteatga tetecetgg tggaeeete acatggtgg tggtggatgt gagegaggat 240 gtaeteatga tetecetgag eceeatggte acatggtgg tggtggatgt gagegagat 300	gtettgeete caccageaga agagatgaet aagaaagagt teagtetgae etgeatgate	540
<pre>ctcagagtac aaaagagcac ttgggaaaga ggaagtettt tcgoctgete agtggteeae 720 gagggtetge acaateacet taegaetaag aceateteee ggtetetggg taaacaeeat 780 caccateat actettetgg egtggatetg ggtacegaga acetgtaett ecaageage 900 ctgagegtg gecagtgeet gaaaaceetg eeeegggg acteaaga eateeaga 900 ctgagegtga eceeeegg eceeeggg ggeeegggg geeeggaag acetgtaet eaegaeag 900 ctgagegtga eaegggeegg geeeggggg geeeggggg geeeggaag aceteegg agtgatege eaeeggeegg aggeeeggaag eaeeggeegg aggeeeggaag eaeeggeegg</pre>	acaggettet taeetgeega aattgetgtg gaetggaeea geaatgggeg taeagageaa	600
<pre>gagggttgc acaatcacct tacgactaag accatctcc ggttctggg taaacaccat 780 caccatcatc actttctgg cgtggatctg ggtaccgaga acctgtactt ccaagccagc 840 gagctgcggt gccagtgcct gaaaaccctg ccccgggtgg acttcaagaa catccagagc 900 ctgagcgtga ccccccctgg ccctcactgt gcccagaccg aagtgatcgc caccctgaag 960 ggcggccaga aagtgtgcct ggaccccgag ggcccgaacg acatctcga ggcccagaaa 1020 atcctgaaca agggcaaggc caacggcgga ggcctgaacg acatctcga ggcccagaaa 1080 atcgagtgg acgagtgatg ataa 1104 <210> SEQ ID NO 36 <211> LENGTH: 1107 <212> TYPE: DNA <2213> ORGMISM: Artificial Sequence <220> FEATURE: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atggaggtcc ccgctcagct cctggggctc dtgctgctt ggctcccagg tgcacgatgt 60 gagcccaga tgcccataac acagaacccc tgtcctcat tccctcaaa gatcaaggat 120 gcagctccag acctcttggg tggaccatc gtcttcatct tccctcaaa gatcaaggat 180 gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatgt gagcgaggat 240 gacccagacg tccagatcag ctgtttgtg aacaacgtgg aagtacacac agtccagaca</pre>	aactacaaga acaccgcaac agtcctggac tctgatggtt cttacttcat gtacagcaag	660
caccatcatc actettetgg egtggatetg ggtacegaga acetgtaett ecaageeage 840 gagetgeggt geeagtgeet gaaaaceetg eccegggtgg acteaagaa eateeagae 900 etgagegtga ecceeetgg ecetaetgt geeeagaeeg aagtgatege eaeetgaag 960 ggeggeeaga aagtgtgeet ggaeeeegg geeeegg aggeagaagat eateeagaag 1020 ateetgaaea agggeaagge eaaeggegga ggeetgaaeg acatettega ggeeeagaa 1080 ategagtgge aegagtgatg ataa 1104 <210> SEQ ID NO 36 <211> LENGTH: 1107 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OFHER INFORMATION: Synthetic: gWiz-LS-Fe(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atgagggtee eegeteaget eetgetgetet ggeteeeagg tgeaegatg 160 gageeeaga teeceetaae acagaaeeee tgeetteatet teeceteaa gateaaggat 180 gtaeteatga teteeetgag eeceatggte gatgtgg aggtagatgt gagegaggat 240 gageeeagaeg teecagateg etggttgtg aacaaegtgg aagtaeaeea ageteagaea 300	ctcagagtac aaaagagcac ttgggaaaga ggaagtcttt tcgcctgctc agtggtccac	720
<pre>gagctgcggt gccagtgcct gaaaaccctg ccccgggtgg acttcaagaa catccagagc 900 ctgagcgtga ccccccctgg ccctcactgt gcccagaccg aagtgatcgc caccctgaag 960 ggcggccaga aagtgtgcct ggaccccgag ggccccctgg tgcagaagat catccagaag 1020 atcctgaaca agggcaaggc caacggcgga ggcctgaacg acatcttcga ggcccagaaa 1080 atcgagtggc acgagtgatg ataa 1104 <210> SEQ ID NO 36 <211> LENGTH: 1107 <212> TYPE: DNA <213> ORCANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgccagatgt 60 gagcccagag tgcccataac acagaacccc tgtcctcac tcaaagagtg tcccccatgc 120 gcagctccag acctttggg tggaccatcc gtcttcatct tccctccaaa gatcaaggat 180 gtactcatga tctccctgag cccatggtc acatgtggg aggtagg aggtaccaca agctcagaca 300</pre>	gagggtetge acaateacet taegaetaag accateteee ggtetetggg taaacaecat	780
ctgagcgtga cccccctgg ccctcactgt gcccagaccg aagtgatcgc caccctgaag ggcggccaga aagtgtgcct ggaccccgag gccccctgg tgcagaagat catccagaag atcctgaaca agggcaaggc caacggcgga ggcctgaacg acatcttcga ggcccagaaa 1080 atcgagtggc acgagtgatg ataa 1104 <210> SEQ ID NO 36 <211> LENGTH: 1107 <212> TYPE: DNA <213> CRCANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atggagggtcc ccgctcagct cctgggggct ctgctgctct ggctcccagg tgcaccgatg 60 gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagtg tcccccatgc 120 gcagctcag acctcttggg tggaccatcc gtcttcatct tccctccaaa gatcaaggat 180 gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatgt gagcgaggat 240 gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacca agctcagaca 300	caccatcatc actettetgg egtggatetg ggtaeegaga acetgtaett eeaageeage	840
<pre>ggcggccaga aagtgtgcct ggaccccgag gcccccctgg tgcagaagat catccagaag 1020 atcctgaaca agggcaaggc caacggcgga ggcctgaacg acatcttcga ggcccagaaa 1080 atcgagtggc acgagtgatg ataa 1104 <210> SEQ ID NO 36 <211> LENGTH: 1107 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt 60 gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagtg tcccccatgc 120 gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaa gatcaaggat 180 gtactcatga tctccctgag cccatggtc acatgtgtgg tggtggatgt gagcgaggat 240 gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca 300</pre>	gagetgeggt gecagtgeet gaaaaeeetg eeeeggtgg aetteaagaa cateeagage	900
atcctgaaca agggcaaggc caacggcgga ggcctgaacg acatcttcga ggcccagaaa 1080 atcgagtggc acgagtgatg ataa 1104 <210> SEQ ID NO 36 <211> LENGTH: 1107 <212> TYPE: DNA <213> CRGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt 60 gagcccagag tgcccataac acagaacccc tgtcctcac tcaaagagtg tcccccatgc 120 gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaaa gatcaaggat 180 gtactcatga tctccctgag ccccatggt acatgtgtgg tggtggatgt gagcgaggat 240 gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca 300	ctgagcgtga cccccctgg ccctcactgt gcccagaccg aagtgatcgc caccctgaag	960
atcgagtggc acgagtgatg ataa 1104 <210> SEQ ID NO 36 <211> LENGTH: 1107 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt 60 gagcccagag tgcccataac acagaacccc tgtcctcacc tcaaagagtg tcccccatgc 120 gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaaa gatcaaggat 180 gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatgt gagcgaggat 240 gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca 300	ggcggccaga aagtgtgcct ggaccccgag gcccccctgg tgcagaagat catccagaag	1020
<pre><210> SEQ ID NO 36 <211> LENGTH: 1107 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt 60 gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagtg tcccccatgc 120 gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaaa gatcaaggat 180 gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatgt gagcgaggat 240 gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca 300</pre>	atcctgaaca agggcaaggc caacggcgga ggcctgaacg acatcttcga ggcccagaaa	1080
<pre><211> LENGTH: 1107 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-Fc(mIgG2)-His6-linker-TEV-mCXCL548-118-G2-AviTag <400> SEQUENCE: 36 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt 60 gagcccagag tgcccataac acagaacccc tgtcctccac tcaaagagtg tcccccatgc 120 gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaaa gatcaaggat 180 gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatgt gagcgaggat 240 gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca 300</pre>	atcgagtggc acgagtgatg ataa	1104
atgagggtee eegeteaget eetggggete etgetgetet ggeteeragg tgeaegatgt 60 gageeeraga tgeeeraaa acagaaceee tgteeteerae teaaagagtg teeereatge 120 geageteerag acetettggg tggaeeratee gtetteatet teeeteeraa gateaaggat 180 gtaeteatga teteeetgag eeeeratggte acatgtgtgg tggtggatgt gagegaggat 240 gaeeeragaeg teeragateag etggtttgtg aacaaegtgg aagtaearae ageteagaea 300	<pre><211> LENGTH: 1107 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic:</pre>	
gageecagag tgeecataac acagaaceee tgteeteeac teaaagagtg teeeceatge 120 geageteeag acetettggg tggaecatee gtetteatet teeeteeaa gateaaggat 180 gtaeteatga teteeetgag eeceatggte acatgtgtgg tggtggatgt gagegaggat 240 gaeecagaeg teeagateag etggtttgtg aacaaegtgg aagtaeaaea ageteagaea 300	<400> SEQUENCE: 36	
gcagctccag acctcttggg tggaccatcc gtcttcatct tccctccaaa gatcaaggat 180 gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatgt gagcgaggat 240 gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca 300	atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt	60
gtactcatga tctccctgag ccccatggtc acatgtgtgg tggtggatgt gagcgaggat 240 gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca 300	gageeeagag tgeeeataac acagaaceee tgteeteeae teaaagagtg teeeeatge	120
gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca 300	gcageteeag acetettggg tggaceatee gtetteatet teeeteeaaa gateaaggat	180
	gtactcatga teteeetgag eeccatggte acatgtgtgg tggtggatgt gagegaggat	240
caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccct ccccatccag 360	gacccagacg tccagatcag ctggtttgtg aacaacgtgg aagtacacac agctcagaca	300
	caaacccata gagaggatta caacagtact ctccgggtgg tcagtgccct ccccatccag	360

caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaacag agccctccca	420
tcccccatcg agaaaaccat ctcaaaaccc agagggccag taagagctcc acaggtatat	480
gtcttgcctc caccagcaga agagatgact aagaaagagt tcagtctgac ctgcatgatc	540
acaggettet tacetgeega aattgetgtg gaetggaeea geaatgggeg taeagageaa	600
aactacaaga acaccgcaac agtcctggac tctgatggtt cttacttcat gtacagcaag	660
ctcagagtac aaaagagcac ttgggaaaga ggaagtcttt tcgcctgctc agtggtccac	720
gagggtctgc acaatcacct tacgactaag accatctccc ggtctctggg taaacaccat	780
caccatcatc actcttctgg cgtggatctg ggtaccgaga acctgtactt ccaagccacc	840
gagetgagat gegtgtgeet gaeegtgaee eecaagatea acceeaaget gategeeaae	900
ctggaagtga teeetgeegg eeetcagtge eeeegtgg aagtgattge caagetgaag	960
aaccagaaag aagtgtgcct ggaccccgag gcccccgtga tcaagaagat catccagaag	1020
ateetgggea gegacaagaa gaaageegge ggaggeetga aegacatett egaggeeeag	1080
aaaatcgagt ggcacgagtg atgataa	1107
<210> SEQ ID NO 37 <211> LENGTH: 365 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-Fc-His6-linker-TEV-hCXCL138 G2-AviTag	-107-
<400> SEQUENCE: 37	
Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro 1 5 10 15	
Gly Ala Arg Cys Glu Pro Arg Val Pro Ile Thr Gln Asn Pro Cys Pro 20 25 30	
Pro Leu Lys Glu Cys Pro Pro Cys Ala Ala Pro Asp Leu Leu Gly Gly 35 40 45	
Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met Ile 50 55 60	
Ser Leu Ser Pro Met Val Thr Cys Val Val Val Asp Val Ser Glu Asp65707580	
Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His 85 90 95	
Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu Arg 100 105 110	
Val Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly Lys 115 120 125	
Glu Phe Lys Cys Lys Val Asn Asn Arg Ala Leu Pro Ser Pro Ile Glu 130 135 140	
Lys Thr Ile Ser Lys Pro Arg Gly Pro Val Arg Ala Pro Gln Val Tyr 145 150 155 160	
Val Leu Pro Pro Pro Ala Glu Glu Met Thr Lys Lys Glu Phe Ser Leu 165 170 175	
Thr Cys Met Ile Thr Gly Phe Leu Pro Ala Glu Ile Ala Val Asp Trp 180 185 190	
Thr Ser Asn Gly Arg Thr Glu Gln Asn Tyr Lys Asn Thr Ala Thr Val 195 200 205	

Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val Gln Lys Ser Thr Trp Glu Arg Gly Ser Leu Phe Ala Cys Ser Val Val His Glu Gly Leu His Asn His Leu Thr Thr Lys Thr Ile Ser Arg Ser Leu Gly Lys His His His His His Bis Ser Ser Gly Val Asp Leu Gly Thr Glu Asn Leu Tyr Phe Gln Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr Leu Gln Gly Ile His Pro Lys Asn Ile Gln Ser Val Asn Val Lys Ser Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys 305 310 315 Asn Gly Arg Lys Ala Cys Leu Asn Pro Ala Ser Pro Ile Val Lys Lys Ile Ile Glu Lys Met Leu Asn Ser Asp Lys Ser Asn Gly Gly Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp His Glu <210> SEQ ID NO 38 <211> LENGTH: 367 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-Fc-His6-linker-TEV-hCXCL543-114-G2-AviTaq <400> SEQUENCE: 38 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Glu Pro Arg Val Pro Ile Thr Gln Asn Pro Cys Pro Pro Leu Lys Glu Cys Pro Pro Cys Ala Ala Pro Asp Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro Met Val Thr Cys Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Arg Ala Leu Pro Ser Pro Ile Glu Lys Thr Ile Ser Lys Pro Arg Gly Pro Val Arg Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Ala Glu Glu Met Thr Lys Lys Glu Phe Ser Leu Thr Cys Met Ile Thr Gly Phe Leu Pro Ala Glu Ile Ala Val Asp Trp

											-	con	cin	uea	
			180					185					190		
Thr	Ser	Asn 195	Gly	Arg	Thr	Glu	Gln 200	Asn	Tyr	Lys	Asn	Thr 205	Ala	Thr	Val
Leu	Asp 210	Ser	Asp	Gly	Ser	Tyr 215	Phe	Met	Tyr	Ser	Lys 220	Leu	Arg	Val	Gln
Lys 225	Ser	Thr	Trp	Glu	Arg 230	Gly	Ser	Leu	Phe	Ala 235	Суз	Ser	Val	Val	His 240
Glu	Gly	Leu	His	Asn 245	His	Leu	Thr	Thr	Lys 250	Thr	Ile	Ser	Arg	Ser 255	Leu
Gly	Lys	His	His 260	His	His	His	His	Ser 265	Ser	Gly	Val	Asp	Leu 270	Gly	Thr
Glu	Asn	Leu 275	Tyr	Phe	Gln	Val	Leu 280	Arg	Glu	Leu	Arg	Cys 285	Val	Суз	Leu
Gln	Thr 290	Thr	Gln	Gly	Val	His 295	Pro	Lys	Met	Ile	Ser 300	Asn	Leu	Gln	Val
Phe 305	Ala	Ile	Gly	Pro	Gln 310	Суа	Ser	Lys	Val	Glu 315	Val	Val	Ala	Ser	Leu 320
Гла	Asn	Gly	Lys	Glu 325	Ile	Сув	Leu	Asp	Pro 330	Glu	Ala	Pro	Phe	Leu 335	Lуs
Гла	Val	Ile	Gln 340	Lys	Ile	Leu	Asp	Gly 345	Gly	Asn	Lys	Glu	Asn 350	Gly	Gly
Gly	Leu	Asn 355	Asp	Ile	Phe	Glu	Ala 360	Gln	Гла	Ile	Glu	Trp 365	His	Glu	
<22 <22		EATUI THER 2 - AV:	RE: INFO iTag	ORMA'			-		LS-I	?c-H:	is6-1	link	er-Tl	EV-h(XCL829-99-
	Arg				Gln	Leu	Leu	Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
	Ala	Arg	Cys 20		Pro	Arg	Val	Pro 25		Thr	Gln	Asn	Pro 30		Pro
Pro	Leu	Lys 35		Суз	Pro	Pro	Cys 40		Ala	Pro	Asp	Leu 45		Gly	Gly
Pro	Ser 50		Phe	Ile	Phe	Pro 55		Lys	Ile	Lys	Asp 60		Leu	Met	Ile
Ser 65	Leu	Ser	Pro	Met	Val 70		Суз	Val	Val	Val 75		Val	Ser	Glu	Asp 80
	Pro	Asp	Val	Gln 85		Ser	Trp	Phe	Val 90		Asn	Val	Glu	Val 95	
Thr	Ala	Gln	Thr 100		Thr	His	Arg	Glu 105		Tyr	Asn	Ser	Thr 110		Arg
Val	Val	Ser 115		Leu	Pro	Ile	Gln 120		Gln	Asp	Trp	Met 125		Gly	Гуз
							-20								
Glu	Phe	Lys	Суз	Lys	Val		Asn	Arg	Ala	Leu		Ser	Pro	Ile	Glu
	130 Thr	-	-	-		135		-			140				

-	CC	nt	in	ue	d

												COII	CIII	ueu	
Val	Leu	Pro	Pro	Pro 165	Ala	Glu	Glu	Met	Thr 170	Lys	Lys	Glu	Phe	Ser 175	Leu
Thr	Cys	Met	Ile 180	Thr	Gly	Phe	Leu	Pro 185	Ala	Glu	Ile	Ala	Val 190	Asp	Trp
Thr	Ser	Asn 195	Gly	Arg	Thr	Glu	Gln 200	Asn	Tyr	Lys	Asn	Thr 205	Ala	Thr	Val
Leu	Asp 210	Ser	Asp	Gly	Ser	Tyr 215	Phe	Met	Tyr	Ser	Lys 220	Leu	Arg	Val	Gln
Lys 225	Ser	Thr	Trp	Glu	Arg 230	Gly	Ser	Leu	Phe	Ala 235	Суз	Ser	Val	Val	His 240
Glu	Gly	Leu	His	Asn 245	His	Leu	Thr	Thr	Lys 250	Thr	Ile	Ser	Arg	Ser 255	Leu
Gly	Lys	His	His 260	His	His	His	His	Ser 265	Ser	Gly	Val	Asp	Leu 270	Gly	Thr
Glu	Asn	Leu 275	Tyr	Phe	Gln	Ala	Lys 280	Glu	Leu	Arg	Суз	Gln 285	Суз	Ile	Гла
Thr	Tyr 290	Ser	Lys	Pro	Phe	His 295	Pro	Lys	Phe	Ile	Lys 300	Glu	Leu	Arg	Val
Ile 305	Glu	Ser	Gly	Pro	His 310	Суз	Ala	Asn	Thr	Glu 315	Ile	Ile	Val	Lys	Leu 320
Ser	Asp	Gly	Arg	Glu 325	Leu	Суз	Leu	Asp	Pro 330	Lys	Glu	Asn	Trp	Val 335	Gln
Arg	Val	Val	Glu 340	Lys	Phe	Leu	Гла	Arg 345	Ala	Glu	Asn	Ser	Gly 350	Gly	Gly
Leu	Asn	Asp 355	Ile	Phe	Glu	Ala	Gln 360	Lys	Ile	Glu	Trp	His 365	Glu		
<21: <21: <21: <22: <22:		ENGTH (PE : RGANI EATUH THER 2-AV:	H: 30 PRT ISM: RE: INFO iTag	54 Art: DRMA			-		LS-1	₹c-H:	is6-:	link¢	er-TI	EV-m(CXCL128-96-
					Gln	Leu	Leu	Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
	Ala	Arg	Сув 20	Glu		-	Val	Pro		Thr	Gln	Asn	Pro		Pro
Pro	Leu	Lys 35						Ala	Ala	Pro	Asp	Leu 45	Leu	Gly	Gly
Pro	Ser 50		Phe	Ile	Phe	Pro 55		Lys	Ile	Lys	Asp 60		Leu	Met	Ile
Ser 65		Ser	Pro	Met	Val 70		Суз	Val	Val	Val 75		Val	Ser	Glu	Asp 80
	Pro	Asp	Val			Ser	Trp	Phe			Asn	Val	Glu		
Thr	Ala	Gln		85 Gln	Thr	His	Arg	Glu	90 Asp	Tyr	Asn	Ser		95 Leu	Arg
Val	Val	Ser	100 Ala	Leu	Pro	Ile	Gln	105 His	Gln	Asp	Trp	Met	110 Ser	Gly	Гуз
Glu	Phe	115 Lys	Cys	Lys	Val	Asn	120 Asn	Arg	Ala	Leu	Pro	125 Ser	Pro	Ile	Glu
	130	-	-	-		135		J			140				

-	СО	nt	in	ue	d

Lys Thr Ile Ser Lys Pro Arg Gly Pro Val Arg Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Ala Glu Glu Met Thr Lys Lys Glu Phe Ser Leu Thr Cys Met Ile Thr Gly Phe Leu Pro Ala Glu Ile Ala Val Asp Trp Thr Ser Asn Gly Arg Thr Glu Gln Asn Tyr Lys Asn Thr Ala Thr Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val Gln 210 215 220 Lys Ser Thr Trp Glu Arg Gly Ser Leu Phe Ala Cys Ser Val Val His Glu Gly Leu His Asn His Leu Thr Thr Lys Thr Ile Ser Arg Ser Leu 245 250 Gly Lys His His His His His Ser Ser Gly Val Asp Leu Gly Thr Glu Asn Leu Tyr Phe Gln Ala Asn Glu Leu Arg Cys Gln Cys Leu Gln Thr Met Ala Gly Ile His Leu Lys Asn Ile Gln Ser Leu Lys Val Leu Pro Ser Gly Pro His Cys Thr Gln Thr Glu Val Ile Ala Thr Leu Lys Asn Gly Arg Glu Ala Cys Leu Asp Pro Glu Ala Pro Leu Val Gln Lys Ile Val Gln Lys Met Leu Lys Gly Val Pro Lys Gly Gly Gly Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp His Glu <210> SEQ ID NO 41 <211> LENGTH: 365 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-Fc-His6-linker-TEV-mCXCL231-100-G2-AviTaq <400> SEQUENCE: 41 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Glu Pro Arg Val Pro Ile Thr Gln Asn Pro Cys Pro Pro Leu Lys Glu Cys Pro Pro Cys Ala Ala Pro Asp Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro Met Val Thr Cys Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly Lys

-continued

Ju		115					120					125			
	Phe 130	Lys	Суз	Гла	Val	Asn 135	Asn	Arg	Ala	Leu	Pro 140	Ser	Pro	Ile	Glu
Lys 145	Thr	Ile	Ser	Lys	Pro 150	Arg	Gly	Pro	Val	Arg 155	Ala	Pro	Gln	Val	Tyr 160
Val	Leu	Pro	Pro	Pro 165	Ala	Glu	Glu	Met	Thr 170	Lys	Lys	Glu	Phe	Ser 175	Leu
Thr	Суз	Met	Ile 180	Thr	Gly	Phe	Leu	Pro 185	Ala	Glu	Ile	Ala	Val 190	Aap	Trp
Thr	Ser	Asn 195	Gly	Arg	Thr	Glu	Gln 200	Asn	Tyr	Lys	Asn	Thr 205	Ala	Thr	Val
Leu	Asp 210	Ser	Asp	Gly	Ser	Tyr 215	Phe	Met	Tyr	Ser	Lys 220	Leu	Arg	Val	Gln
Lys 225	Ser	Thr	Trp	Glu	Arg 230	Gly	Ser	Leu	Phe	Ala 235	Суз	Ser	Val	Val	His 240
Glu	Gly	Leu	His	Asn 245	His	Leu	Thr	Thr	Lys 250	Thr	Ile	Ser	Arg	Ser 255	Leu
Gly	Lys	His	His 260	His	His	His	His	Ser 265	Ser	Gly	Val	Asp	Leu 270	Gly	Thr
Glu	Asn	Leu 275	Tyr	Phe	Gln	Ala	Ser 280	Glu	Leu	Arg	Суз	Gln 285	Суз	Leu	Lys
Thr	Leu 290	Pro	Arg	Val	Asp	Phe 295	Lys	Asn	Ile	Gln	Ser 300	Leu	Ser	Val	Thr
Pro 305	Pro	Gly	Pro	His	Cys 310	Ala	Gln	Thr	Glu	Val 315	Ile	Ala	Thr	Leu	Lys 320
Gly	Gly	Gln	Lys	Val 325	Сүз	Leu	Asp	Pro	Glu 330	Ala	Pro	Leu	Val	Gln 335	Lys
Ile	Ile	Gln	Lys 340	Ile	Leu	Asn	Lys	Gly 345	Lys	Ala	Asn	Gly	Gly 350	Gly	Leu
Asn	Asp	Ile 355	Phe	Glu	Ala	Gln	Lys 360	Ile	Glu	Trp	His	Glu 365			
)> SH L> LH 2> TY	ENGTH													
<212 <213 <220)> FE 3> 01	RGANI EATUR	ISM: RE: INF(Art:			-		LS-H	?c-H:	is6-1	linke	∋r-TH	EV – mC	XCL548-118-
<212 <213 <220 <223)> FE 3> 01	RGANI EATUH THER 2-Avi	ISM: RE: INF(iTag	Art: DRMA			-		LS-H	7c-H:	is6-]	linke	∍r-TI	EV-mC	XCL548-118-
<212 <213 <220 <223 <400)> FE 3> OJ G2)> SE	RGANI EATUH THER 2-Avi EQUEN	ISM: RE: INF(iTag NCE:	Art: DRMA	rion :	Syr	thet	ic:							
<212 <213 <220 <223 <400 Met 1)> FF 3> 01 G2)> SF Arg	RGANI EATUF THER 2-Avi EQUEN Val	ISM: RE: INF(iTag NCE: Pro	Art: DRMAT 42 Ala	Gln	Syr Leu	- nthet Leu	cic: Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
<212 <213 <220 <223 <400 Met 1 Gly)> FE 3> 01 G2)> SE Arg Ala	RGANI EATUR THER 2-Avi EQUEN Val Arg	ISM: RE: INF(iTag NCE: Pro Cys 20	Art: DRMA 42 Ala 5	Gln Pro	: Syr Leu Arg	Leu Val	Gly Pro 25	Leu 10 Ile	Leu Thr	Leu Gln	Leu Asn	Trp Pro 30	Leu 15 Cys	Pro Pro
<212 <213 <220 <220 <400 Met 1 Gly Pro)> FE 3> OT G2)> SE Arg Ala Leu	RGANI EATUR THER 2-Avi EQUEN Val Arg Lys 35	ISM: RE: INFO ITAG VCE: Pro Cys 20 Glu	Art: DRMA 42 Ala 5 Glu	Gln Pro Pro	Eeu Arg Pro	Leu Val Cys 40	Gly Pro 25 Ala	Leu 10 Ile Ala	Leu Thr Pro	Leu Gln Asp	Leu Asn Leu 45	Trp Pro 30 Leu	Leu 15 Cys Gly	Pro Pro Gly
<212 <213 <220 <222 <400 Met 1 Gly Pro Pro)> FF 3> 01 G2)> SF Arg Ala Leu Ser 50	RGANJ EATUH THER 2-Avi EQUEN Val Arg JS Val	ISM: RE: INFG iTag VCE: Pro Cys 20 Glu Phe	Art: DRMA 42 Ala 5 Glu Cys	Gln Pro Pro Phe	Eeu Arg Pro 55	Leu Val Cys 40 Pro	Gly Pro 25 Ala Lys	Leu 10 Ile Ala Ile	Leu Thr Pro Lys	Leu Gln Asp Asp 60	Leu Asn Leu 45 Val	Trp Pro 30 Leu Leu	Leu 15 Cys Gly Met	Pro Pro Gly Ile

-	С	0	n	t	i	n	u	е	d	

											_	con	tin	ued					
Thr	Ala	Gln	Thr 100	Gln	Thr	His	Arg	Glu 105	Asp	Tyr	Asn	Ser	Thr 110	Leu	Arg			 	
Val	Val	Ser 115	Ala	Leu	Pro	Ile	Gln 120	His	Gln	Asp	Trp	Met 125	Ser	Gly	Lys				
Glu	Phe 130		Суз	ГЛа	Val	Asn 135	Asn	Arg	Ala	Leu	Pro 140	Ser	Pro	Ile	Glu				
Lys 145	Thr	Ile	Ser	ГЛЗ	Pro 150	Arg	Gly	Pro	Val	Arg 155	Ala	Pro	Gln	Val	Tyr 160				
Val	Leu	Pro	Pro	Pro 165	Ala	Glu	Glu	Met	Thr 170	Lys	ГЛЗ	Glu	Phe	Ser 175	Leu				
Thr	Суз	Met	Ile 180		Gly	Phe	Leu	Pro 185	Ala	Glu	Ile	Ala	Val 190	Asp	Trp				
Thr	Ser	Asn 195	Gly	Arg	Thr	Glu	Gln 200	Asn	Tyr	Lys	Asn	Thr 205	Ala	Thr	Val				
Leu	Asp 210		Asp	Gly	Ser	Tyr 215	Phe	Met	Tyr	Ser	Lys 220	Leu	Arg	Val	Gln				
Lys 225			Trp	Glu	Arg 230		Ser	Leu	Phe	Ala 235		Ser	Val	Val	His 240				
	Gly	Leu	His	Asn 245		Leu	Thr	Thr	Lys 250		Ile	Ser	Arg	Ser 255					
Gly	Lys	His			His	His	His	Ser 265		Gly	Val	Asp	Leu 270	Gly	Thr				
Glu	Asn			Phe	Gln	Ala			Leu	Arg	Сув			Leu	Thr				
Val				Ile	Asn		280 Lys	Leu	Ile	Ala		285 Leu	Glu	Val	Ile				
	290 Ala		Pro	Gln		295 Pro	Thr	Val	Glu		300 Ile	Ala	Lys	Leu	-				
305 Asn	Gln	Lys	Glu		310 Cys	Leu	Asp	Pro		315 Ala	Pro	Val	Ile	Lys	320 Lys				
Ile	Ile	Gln			Leu	Gly	Ser		77а 230	Lys	Гла	Ala	-	335 Gly	Gly				
Leu	Asn	Asp	340 Ile		Glu	Ala	Gln	345 Lys	Ile	Glu	Trp	His	350 Glu						
<211 <212 <213 <220	L> LI 2> T 3> OF 0> FI 3> O	355 EQ II ENGTH YPE: RGANI EATUH FHER DUSE	D NO H: 2: DNA ISM: RE: INF(100 Art: ORMA	rion	: Syı	nthet		g₩i:	z-LS	-hCX0	365 CL13	5-10'	7- (G	Ly4Se:	r)2-			
<400)> SI	equei	ICE :	43															
															gatg				
															gaagt				
															gtgaa				
aaaa	atcat	tcg a	agaa	gatgo	ct ga	aacaq	gcgad	c aaq	gage	aacg	gtg	gagg	cgg 1	tagcę	ggagg	c 300			
ggaç	gggt	cgg a	aagca	acaca	aa ga	agtga	agato	c gco	ccat	eggt	ataa	atga	ttt 🤉	gggaq	gaaca	a 360			
catt	tcaa	aag g	geeta	agtco	ct ga	attgo	cctt	t t co	ccag	catc	tcca	agaa	atg (ctcat	cacga	t 420			

cont		

-continued	
gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag	480
tctgccgcca actgtgacaa atcccttcac actctttttg gagataagtt gtgtgccatt	540
ccaaacctcc gtgaaaacta tggtgaactg gctgactgct gtacaaaaca agagcccgaa	600
agaaacgaat gtttcctgca acacaaagat gacaacccca gcctgccacc atttgaaagg	660
ccagaggetg aggecatgtg caceteett aaggaaaaee caaceaeett tatgggaeae	720
tatttgcatg aagttgccag aagacateet tatttetatg eeecagaaet tetttaetat	780
gctgagcagt acaatgagat tctgacccag tgttgtgcag aggctgacaa ggaaagctgc	840
ctgaccccga agcttgatgg tgtgaaggag aaagcattgg tctcatctgt ccgtcagaga	900
atgaagtgct ccagtatgca gaagtttgga gagagagctt ttaaagcatg ggcagtagct	960
cgtctgagcc agacattccc caatgctgac tttgcagaaa tcaccaaatt ggcaacagac	1020
ctgaccaaag tcaacaagga gtgctgccat ggtgacctgc tggaatgcgc agatgacagg	1080
gcggaacttg ccaagtacat gtgtgaaaac caggcgacta tctccagcaa actgcagact	1140
tgctgcgata aaccactgtt gaagaaagcc cactgtctta gtgaggtgga gcatgacacc	1200
atgeetgetg atetgeetge cattgetget gattttgttg aggaecagga agtgtgeaag	1260
aactatgetg aggecaagga tgtetteetg ggeaegttet tgtatgaata tteaagaaga	1320
caccetgatt actedgtate cetgttgetg agaettgeta agaaatatga ageeactetg	1380
gaaaagtgct gcgctgaagc caatcctccc gcatgctacg gcacagtgct tgctgaattt	1440
cageetettg tagaagagee taagaaettg gteaaaaeea aetgtgatet ttaegagaag	1500
cttggagaat atggatteea aaatgeeatt etagtteget acaeceagaa ageaeeteag	1560
gtgtcaaccc caactctcgt ggaggctgca agaaacctag gaagagtggg caccaagtgt	1620
tgtacacttc ctgaagatca gagactgcct tgtgtggaag actatctgtc tgcaatcctg	1680
aaccgtgtgt gtctgctgca tgagaagacc ccagtgagtg agcatgttac caagtgctgt	1740
agtggatece tggtggaaag geggeeatge ttetetgete tgacagttga tgaaacatat	1800
gtccccaaag agtttaaagc tgagaccttc accttccact ctgatatctg cacacttcca	1860
gagaaggaga agcagattaa gaaacaaacg gctcttgctg agctggtgaa gcacaagccc	1920
aaggetacag eggageaact gaagaetgte atggatgaet ttgeaeagtt eetggataea	1980
tgttgcaagg ctgctgacaa ggacacctgc ttctcgactg agggtccaaa ccttgtcact	2040
agatgcaaag acgcottago oggagggggg ggttoccaco atoaccacoa toactgataa	2100
<210> SEQ ID NO 44 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-hCXCL235-107-(Gly4Ser) mouse SA-(Gly4Ser)-His6	2-
<400> SEQUENCE: 44	
atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt	60
geteetetgg ceacagaget gagatgeeag tgeeteeaga caeteeaggg catecaeetg	120
aagaacatcc agagcgtgaa agtgaagtcc cctggccccc actgcgccca gacagaagtg	180
atcgccaccc tgaagaatgg ccagaaggcc tgcctgaacc ccgccagccc tatggtcaag	240
aaaatcatcg agaagatgct gaagaacggc aagagcaacg gtggaggcgg tagcggaggc	300

-continued

ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa	360
catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat	420
gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag	480
tctgccgcca actgtgacaa atcccttcac actctttttg gagataagtt gtgtgccatt	540
ccaaacctcc gtgaaaacta tggtgaactg gctgactgct gtacaaaaca agagcccgaa	600
agaaacgaat gttteetgea acacaaagat gacaaceeca geetgeeace atttgaaagg	660
ccagaggetg aggeeatgtg eaceteett aaggaaaaee eaaceaeett tatgggaeae	720
tatttgcatg aagttgccag aagacateet tatttetatg eeecagaaet tetttaetat	780
gctgagcagt acaatgagat tctgacccag tgttgtgcag aggctgacaa ggaaagctgc	840
ctgaccccga agcttgatgg tgtgaaggag aaagcattgg tctcatctgt ccgtcagaga	900
atgaagtget eeagtatgea gaagtttgga gagagagett ttaaageatg ggeagtaget	960
cgtctgagcc agacattccc caatgctgac tttgcagaaa tcaccaaatt ggcaacagac	1020
ctgaccaaag tcaacaagga gtgctgccat ggtgacctgc tggaatgcgc agatgacagg	1080
gcggaacttg ccaagtacat gtgtgaaaac caggcgacta tctccagcaa actgcagact	1140
tgctgcgata aaccactgtt gaagaaagcc cactgtctta gtgaggtgga gcatgacacc	1200
atgeetgetg atetgeetge cattgetget gattttgttg aggaecagga agtgtgeaag	1260
aactatgetg aggecaagga tgtetteetg ggeaegttet tgtatgaata tteaagaaga	1320
caccctgatt actctgtatc cctgttgctg agacttgcta agaaatatga agccactctg	1380
gaaaagtget gegetgaage caateeteee geatgetaeg geacagtget tgetgaattt	1440
cageetettg tagaagagee taagaaettg gteaaaaeea aetgtgatet ttaegagaag	1500
cttggagaat atggattcca aaatgccatt ctagttcgct acacccagaa agcacctcag	1560
gtgtcaaccc caactctcgt ggaggctgca agaaacctag gaagagtggg caccaagtgt	1620
tgtacacttc ctgaagatca gagactgcct tgtgtggaag actatctgtc tgcaatcctg	1680
aaccgtgtgt gtctgctgca tgagaagacc ccagtgagtg agcatgttac caagtgctgt	1740
agtggatece tggtggaaag geggeeatge ttetetgete tgacagttga tgaaacatat	1800
gtccccaaag agtttaaagc tgagacette acetteeact etgatatetg cacaetteea	1860
gagaaggaga agcagattaa gaaacaaacg gctcttgctg agctggtgaa gcacaagccc	1920
aaggetacag eggageaact gaagaetgte atggatgaet ttgeaeagtt eetggataea	1980
tgttgcaagg ctgctgacaa ggacacctgc ttctcgactg agggtccaaa ccttgtcact	2040
agatgcaaag acgccttagc cggagggggg ggttcccacc atcaccacca tcactgataa	2100
<210> SEQ ID NO 45 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-hCXCL335-107-(Gly4Ser)2 mouse SA-(Gly4Ser)-His6	-
<400> SEQUENCE: 45	
atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt	60
	100

gcctctgtcg tgaccgagct gagatgccag tgcctccaga cactccaggg catccacctg

				-contir	nued		
agaacatcc	agagcgtgaa	cgtgcggagc	cctggccctc	attgtgccca	gacagaagtg	180	
tcgccaccc	tgaagaatgg	caagaaggcc	tgcctgaacc	ccgccagccc	tatggtgcag	240	
agatcatcg	agaagatcct	gaacaagggc	agcaccaacg	gtggaggcgg	tagcggaggc	300	
gagggtcgg	aagcacacaa	gagtgagatc	gcccatcggt	ataatgattt	gggagaacaa	360	
atttcaaag	gcctagtcct	gattgccttt	tcccagtatc	tccagaaatg	ctcatacgat	420	
agcatgcca	aattagtgca	ggaagtaaca	gactttgcaa	agacgtgtgt	tgccgatgag	480	
ctgccgcca	actgtgacaa	atcccttcac	actctttttg	gagataagtt	gtgtgccatt	540	
caaacctcc	gtgaaaacta	tggtgaactg	gctgactgct	gtacaaaaca	agagcccgaa	600	
gaaacgaat	gtttcctgca	acacaaagat	gacaacccca	gcctgccacc	atttgaaagg	660	
agaggetg	aggccatgtg	cacctccttt	aaggaaaacc	caaccacctt	tatgggacac	720	
itttgcatg	aagttgccag	aagacatcct	tatttctatg	ccccagaact	tctttactat	780	
tgagcagt	acaatgagat	tctgacccag	tgttgtgcag	aggctgacaa	ggaaagctgc	840	
cgaccccga	agcttgatgg	tgtgaaggag	aaagcattgg	tctcatctgt	ccgtcagaga	900	
gaagtget	ccagtatgca	gaagtttgga	gagagagctt	ttaaagcatg	ggcagtagct	960	
gtctgagcc	agacattccc	caatgctgac	tttgcagaaa	tcaccaaatt	ggcaacagac	1020	
zgaccaaag	tcaacaagga	gtgctgccat	ggtgacctgc	tggaatgcgc	agatgacagg	1080	
cggaacttg	ccaagtacat	gtgtgaaaac	caggcgacta	tctccagcaa	actgcagact	1140	
gctgcgata	aaccactgtt	gaagaaagcc	cactgtctta	gtgaggtgga	gcatgacacc	1200	
cgcctgctg	atctgcctgc	cattgctgct	gattttgttg	aggaccagga	agtgtgcaag	1260	
actatgctg	aggccaagga	tgtcttcctg	ggcacgttct	tgtatgaata	ttcaagaaga	1320	
accctgatt	actctgtatc	cctgttgctg	agacttgcta	agaaatatga	agccactctg	1380	
aaaagtgct	gcgctgaagc	caatcctccc	gcatgctacg	gcacagtgct	tgctgaattt	1440	
agcetettg	tagaagagcc	taagaacttg	gtcaaaacca	actgtgatct	ttacgagaag	1500	
tggagaat	atggattcca	aaatgccatt	ctagttcgct	acacccagaa	agcacctcag	1560	
gtcaaccc	caactctcgt	ggaggctgca	agaaacctag	gaagagtggg	caccaagtgt	1620	
gtacacttc	ctgaagatca	gagactgcct	tgtgtggaag	actatctgtc	tgcaatcctg	1680	
accgtgtgt	gtctgctgca	tgagaagacc	ccagtgagtg	agcatgttac	caagtgctgt	1740	
gtggatccc	tggtggaaag	gcggccatgc	ttctctgctc	tgacagttga	tgaaacatat	1800	
tccccaaag	agtttaaagc	tgagaccttc	accttccact	ctgatatctg	cacacttcca	1860	
agaaggaga	agcagattaa	gaaacaaacg	gctcttgctg	agctggtgaa	gcacaagccc	1920	
aggctacag	cggagcaact	gaagactgtc	atggatgact	ttgcacagtt	cctggataca	1980	
gttgcaagg	ctgctgacaa	ggacacctgc	ttctcgactg	agggtccaaa	ccttgtcact	2040	
gatgcaaag	acgccttagc	cggagggggg	ggttcccacc	atcaccacca	tcactgataa	2100	
220> FEATU	TH: 2091 : DNA NISM: Artif: JRE:	_		-hCXCL432-10)1-(Gly4Ser);	2-	

<223> OTHER INFORMATION: Synthetic: gWiz-LS-hCXCL432-101-(Gly4Ser)2mouse SA-(Gly4Ser)-His6

-continued

atgagggt	.cc ccgctcagct	cctgggggctc	ctgctgctct	ggctcccagg	tgcacgatgt	60	
gaggetga	ag aggacggcga	tctccagtgc	ctgtgcgtga	aaaccaccag	ccaagtgcgg	120	
cccagaca	ica tcaccagect	ggaagtgatc	aaggccggac	cccactgtcc	taccgcccag	180	
ctgattgc	ca ccctgaagaa	cggccggaag	atctgcctgg	acctccaggc	ccccctgtac	240	
aagaagat	.ca tcaagaagct	gctggaaagc	ggtggaggcg	gtagcggagg	cggagggtcg	300	
gaagcaca	ica agagtgagat	cgcccatcgg	tataatgatt	tgggagaaca	acatttcaaa	360	
ggcctagt	.cc tgattgcctt	ttcccagtat	ctccagaaat	gctcatacga	tgagcatgcc	420	
aaattagt	gc aggaagtaac	agactttgca	aagacgtgtg	ttgccgatga	gtctgccgcc	480	
aactgtga	ica aatcccttca	cactctttt	ggagataagt	tgtgtgccat	tccaaacctc	540	
cgtgaaaa	ct atggtgaact	ggctgactgc	tgtacaaaac	aagagcccga	aagaaacgaa	600	
tgtttcct	gc aacacaaaga	tgacaacccc	agcctgccac	catttgaaag	gccagaggct	660	
gaggccat	gt gcacctcctt	taaggaaaac	ccaaccacct	ttatgggaca	ctatttgcat	720	
gaagttgo	ca gaagacatcc	ttatttctat	gccccagaac	ttctttacta	tgctgagcag	780	
tacaatga	lga ttctgaccca	gtgttgtgca	gaggetgaca	aggaaagctg	cctgaccccg	840	
aagcttga	tg gtgtgaagga	gaaagcattg	gtctcatctg	tccgtcagag	aatgaagtgc	900	
tccagtat	.gc agaagtttgg	agagagagct	tttaaagcat	gggcagtagc	tcgtctgagc	960	
cagacatt	.cc ccaatgctga	ctttgcagaa	atcaccaaat	tggcaacaga	cctgaccaaa	1020	
gtcaacaa	lgg agtgctgcca	tggtgacctg	ctggaatgcg	cagatgacag	ggcggaactt	1080	
gccaagta	ica tgtgtgaaaa	ccaggcgact	atctccagca	aactgcagac	ttgctgcgat	1140	
aaaccact	gt tgaagaaagc	ccactgtctt	agtgaggtgg	agcatgacac	catgcctgct	1200	
gatctgcc	tg ccattgctgc	tgattttgtt	gaggaccagg	aagtgtgcaa	gaactatgct	1260	
gaggccaa	lgg atgtetteet	gggcacgttc	ttgtatgaat	attcaagaag	acaccctgat	1320	
tactctgt	at ccctgttgct	gagacttgct	aagaaatatg	aagccactct	ggaaaagtgc	1380	
tgcgctga	ag ccaatcctcc	cgcatgctac	ggcacagtgc	ttgctgaatt	tcagcctctt	1440	
gtagaaga	igc ctaagaactt	ggtcaaaacc	aactgtgatc	tttacgagaa	gcttggagaa	1500	
tatggatt	.cc aaaatgccat	tctagttcgc	tacacccaga	aagcacctca	ggtgtcaacc	1560	
ccaactct	.cg tggaggctgc	aagaaaccta	ggaagagtgg	gcaccaagtg	ttgtacactt	1620	
cctgaaga	tc agagactgcc	ttgtgtggaa	gactatctgt	ctgcaatcct	gaaccgtgtg	1680	
tgtctgct	.gc atgagaagac	cccagtgagt	gagcatgtta	ccaagtgctg	tagtggatcc	1740	
ctggtgga	aa ggcggccatg	cttctctgct	ctgacagttg	atgaaacata	tgtccccaaa	1800	
gagtttaa	ag ctgagacctt	caccttccac	tctgatatct	gcacacttcc	agagaaggag	1860	
aagcagat	ta agaaacaaac	ggctcttgct	gagctggtga	agcacaagcc	caaggctaca	1920	
gcggagca	ac tgaagactgt	catggatgac	tttgcacagt	tcctggatac	atgttgcaag	1980	
gctgctga	ca aggacacctg	cttctcgact	gagggtccaa	accttgtcac	tagatgcaaa	2040	
gacgcctt	ag ccggaggggg	cggttcccac	catcaccacc	atcactgata	a	2091	

<210> SEQ ID NO 47 <211> LENGTH: 2094 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

<220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-hCXCL544-114-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6							
<400> SEQUENCE: 47							
atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcc	cagg tgcacgatgt 60						
ctgcgcgagc tgagatgcgt gtgcctgcag accacccagg gcgtgc	accc caagatgatc 120						
agcaacctcc aggtgttcgc catcggcccc cagtgcagca aggtgg	aagt ggtggccagc 180						
ctgaagaacg gcaaagagat ctgcctggac cccgaggccc cattcc	tgaa gaaagtgatc 240						
cagaagatcc tggacggcgg caacaaagag aacggtggag gcggta	gcgg aggcggaggg 300						
toggaagcac acaagagtga gatogcocat oggtataatg atttgg	gaga acaacatttc 360						
aaaggeetag teetgattge etttteeeag tateteeaga aatget	cata cgatgagcat 420						
gccaaattag tgcaggaagt aacagacttt gcaaagacgt gtgttg	ccga tgagtctgcc 480						
gccaactgtg acaaatccct tcacactctt tttggagata agttgt	gtgc cattccaaac 540						
ctccgtgaaa actatggtga actggctgac tgctgtacaa aacaag	agcc cgaaagaaac 600						
gaatgtttcc tgcaacacaa agatgacaac cccagcctgc caccat	ttga aaggccagag 660						
gctgaggcca tgtgcacctc ctttaaggaa aacccaacca ccttta	tggg acactatttg 720						
catgaagttg ccagaagaca teettattte tatgeeccag aaette	ttta ctatgctgag 780						
cagtacaatg agattetgae ceagtgttgt geagaggetg acaagg	aaag ctgcctgacc 840						
ccgaagettg atggtgtgaa ggagaaagea ttggteteat etgtee	gtca gagaatgaag 900						
tgctccagta tgcagaagtt tggagagaga gcttttaaag catggg	cagt agctcgtctg 960						
agccagacat tccccaatgc tgactttgca gaaatcacca aattgg	caac agacctgacc 1020						
aaagtcaaca aggagtgctg ccatggtgac ctgctggaat gcgcag	atga cagggcggaa 1080						
cttgccaagt acatgtgtga aaaccaggcg actatctcca gcaaac	tgca gacttgctgc 1140						
gataaaccac tgttgaagaa agcccactgt cttagtgagg tggagc	atga caccatgcct 1200						
gctgatctgc ctgccattgc tgctgatttt gttgaggacc aggaag	tgtg caagaactat 1260						
gctgaggcca aggatgtctt cctgggcacg ttcttgtatg aatatt	caag aagacaccct 1320						
gattactctg tatccctgtt gctgagactt gctaagaaat atgaag	ccac tctggaaaag 1380						
tgctgcgctg aagccaatcc tcccgcatgc tacggcacag tgcttg	ctga atttcagcct 1440						
cttgtagaag agcctaagaa cttggtcaaa accaactgtg atcttt	acga gaagcttgga 1500						
gaatatggat teeaaaatge cattetagtt egetacaeee agaaag	cacc tcaggtgtca 1560						
accccaactc tcgtggaggc tgcaagaaac ctaggaagag tgggca	ccaa gtgttgtaca 1620						
ctteetgaag ateagagaet geettgtgtg gaagaetate tgtetg	caat cctgaaccgt 1680						
gtgtgtctgc tgcatgagaa gaccccagtg agtgagcatg ttacca	agtg ctgtagtgga 1740						
teeetggtgg aaaggeggee atgettetet getetgacag ttgatg	aaac atatgtcccc 1800						
aaagagttta aagctgagac cttcaccttc cactctgata tctgca	cact tccagagaag 1860						
gagaagcaga ttaagaaaca aacggctctt gctgagctgg tgaagc	acaa gcccaaggct 1920						
acagoggago aactgaagao tgtoatggat gaotttgoao agttoo	tgga tacatgttgc 1980						
aaggetgetg acaaggacae etgetteteg aetgagggte caaace	ttgt cactagatgc 2040						
aaagacgcet tageeggagg gggeggttee caccateace accate	actg ataa 2094						

<210> SEQ ID NO 48 <211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-hCXCL643-114-(Gly4Ser)2mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 48 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt 60 gtgctgaccg agctgcggtg cacctgtctg agagtgaccc tgcgcgtgaa ccccaagacc 120 atcggcaage tecaggtgtt ceetgeegge eetcagtgea geaaggtgga agtggtggee 180 ageetgaaaa aeggaaaaca agtgtgeetg gaeeeegagg eeecatteet gaagaaagtg 240 300 atccagaaga teetggacag eggcaacaag aagaacggtg gaggeggtag eggaggegga qqqtcqqaaq cacacaaqaq tqaqatcqcc catcqqtata atqatttqqq aqaacaacat 360 ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag 420 480 catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca 540 aacctccqtq aaaactatqq tqaactqqct qactqctqta caaaacaaqa qcccqaaaqa 600 aacgaatgtt tcctgcaaca caaagatgac aaccccagcc tgccaccatt tgaaaggcca 660 720 gaggetgagg ceatgtgeae etecttaag gaaaaeeeaa eeaeettat gggaeaetat ttgcatgaag ttgccagaag acateettat ttetatgeee cagaaettet ttaetatget 780 gagcagtaca atgagattct gacccagtgt tgtgcagagg ctgacaagga aagctgcctg 840 accccgaagc ttgatggtgt gaaggagaaa gcattggtct catctgtccg tcagagaatg 900 aagtgeteea gtatgeagaa gtttggagag agagetttta aageatggge agtagetegt 960 ctgagccaga cattecccaa tgctgacttt gcagaaatca ccaaattggc aacagacetg 1020 accaaagtca acaaggagtg ctgccatggt gacctgctgg aatgcgcaga tgacagggcg 1080 gaacttgcca agtacatgtg tgaaaaccag gcgactatct ccagcaaact gcagacttgc 1140 tgcgataaac cactgttgaa gaaagcccac tgtcttagtg aggtggagca tgacaccatg 1200 cctgctgatc tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgcaagaac 1260 tatgctgagg ccaaggatgt cttcctgggc acgttcttgt atgaatattc aagaagacac 1320 cctgattact ctgtatccct gttgctgaga cttgctaaga aatatgaagc cactctggaa 1380 aagtgetgeg etgaageeaa teeteeegea tgetaeggea eagtgettge tgaattteag 1440 cctcttgtag aagagcctaa gaacttggtc aaaaccaact gtgatcttta cgagaagctt 1500 ggagaatatg gattecaaaa tgecatteta gttegetaca cecagaaage aceteaggtg 1560 tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa gagtgggcac caagtgttgt 1620 acactteetg aagateagag actgeettgt gtggaagaet atetgtetge aateetgaae 1680 cgtgtgtgtc tgctgcatga gaagaccccca gtgagtgagc atgttaccaa gtgctgtagt 1740 ggatccctgg tggaaaggcg gccatgcttc tctgctctga cagttgatga aacatatgtc 1800 1860 cccaaaqaqt ttaaaqctqa qaccttcacc ttccactctq atatctqcac acttccaqaq aaggagaagc agattaagaa acaaacggct cttgctgagc tggtgaagca caagcccaag 1920 gctacagcgg agcaactgaa gactgtcatg gatgactttg cacagttcct ggatacatgt 1980

tgcaaggetg etgacaagga caeetgette tegaetgagg gtecaaaeet tgteaetaga	2040
tgcaaagacg cettageegg aggggggggt teeeaceate accaecatea etgataa	2097
<210> SEQ ID NO 49 <211> LENGTH: 2070 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-hCXCL759-121-(Gly4Ser)2 mouse SA-(Gly4Ser)-His6	-
<400> SEQUENCE: 49	
atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt	60
gccgagctgc ggtgcatgtg catcaagacc accagcggaa tccaccccaa gaatatccag	120
tccctggaag tgattggcaa gggcacccac tgcaaccagg tggaagtgat tgccacactg	180
aaagacggcc ggaagatctg cctggaccct gacgccccca gaatcaagaa aatcgtgcag	240
aaaaagctgg gtggaggcgg tagcggaggc ggagggtcgg aagcacacaa gagtgagatc	300
gcccatcggt ataatgattt gggagaacaa catttcaaag gcctagtcct gattgccttt	360
tcccagtatc tccagaaatg ctcatacgat gagcatgcca aattagtgca ggaagtaaca	420
gactttgcaa agacgtgtgt tgccgatgag tctgccgcca actgtgacaa atcccttcac	480
actetttttg gagataagtt gtgtgeeatt eeaaacetee gtgaaaaeta tggtgaaetg	540
gctgactgct gtacaaaaca agagcccgaa agaaacgaat gtttcctgca acacaaagat	600
gacaacccca gcctgccacc atttgaaagg ccagaggctg aggccatgtg cacctccttt	660
aaggaaaacc caaccacctt tatgggacac tatttgcatg aagttgccag aagacatcct	720
tatttctatg ccccagaact tctttactat gctgagcagt acaatgagat tctgacccag	780
tgttgtgcag aggctgacaa ggaaagctgc ctgaccccga agcttgatgg tgtgaaggag	840
aaagcattgg tctcatctgt ccgtcagaga atgaagtgct ccagtatgca gaagtttgga	900
gagagagett ttaaageatg ggeagtaget egtetgagee agaeatteee eaatgetgae	960
tttgcagaaa tcaccaaatt ggcaacagac ctgaccaaag tcaacaagga gtgctgccat	1020
ggtgacctgc tggaatgcgc agatgacagg gcggaacttg ccaagtacat gtgtgaaaac	1080
caggegaeta tetecageaa aetgeagaet tgetgegata aaceaetgtt gaagaaagee	1140
cactgtetta gtgaggtgga geatgaeace atgeetgetg atetgeetge eattgetget	1200
gattttgttg aggaccagga agtgtgcaag aactatgctg aggccaagga tgtcttcctg	1260
ggcacgttct tgtatgaata ttcaagaaga caccctgatt actctgtatc cctgttgctg	1320
agacttgcta agaaatatga agccactctg gaaaagtgct gcgctgaagc caatcctccc	1380
gcatgctacg gcacagtgct tgctgaattt cagcctcttg tagaagagcc taagaacttg	1440
gtcaaaacca actgtgatct ttacgagaag cttggagaat atggattcca aaatgccatt	1500
ctagtteget acaeceagaa ageaeeteag gtgteaaeee caaetetegt ggaggetgea	1560
agaaacctag gaagagtggg caccaagtgt tgtacacttc ctgaagatca gagactgcct	1620
tgtgtggaag actatctgtc tgcaatcctg aaccgtgtgt gtctgctgca tgagaagacc	1680
ccagtgagtg agcatgttac caagtgctgt agtggatccc tggtggaaag gcggccatgc	1740
ttctctgctc tgacagttga tgaaacatat gtccccaaag agtttaaagc tgagacettc	1800
eccelegete tyavayttya tyaaatata yttetaaay ayttaaayt tyayattit	1000

-concluded
accttccact ctgatatctg cacacttcca gagaaggaga agcagattaa gaaacaaacg 1860
getettgetg agetggtgaa geacaageee aaggetaeag eggageaaet gaagaetgte 1920
atggatgact ttgcacagtt cctggataca tgttgcaagg ctgctgacaa ggacacctgc 1980
ttctcgactg agggtccaaa ccttgtcact agatgcaaag acgccttagc cggaggggggc 2040
ggttcccacc atcaccacca tcactgataa 2070
<210> SEQ ID NO 50 <211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-hCXCL828-99-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6
<400> SEQUENCE: 50
atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt 60
agegeeaaag aactgeggtg eeagtgeate aagaeetaea geaageeett eeaceeeaag 120
ttcatcaaag aactgagagt gatcgagagc ggccctcact gcgccaacac cgagatcatc 180
gtgaagetga gegaeggeag agagetgtge etggaeeeea aagaaaaetg ggtgeagegg 240
gtggtggaaa agtteetgaa gegggeegag aacageggtg gaggeggtag eggaggegga 300
gggtcggaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat 360
ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag 420
catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct 480
geegeeaact gtgacaaate eetteacaet ettittggag ataagttgtg tgeeatteea 540
aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga 600
aacgaatgtt teetgeaaca caaagatgae aaceeeagee tgeeaceatt tgaaaggeea 660
gaggetgagg ceatgtgeae eteettaag gaaaaeeeaa eeaeettat gggaeaetat 720
ttgcatgaag ttgccagaag acateettat ttetatgeee cagaaettet ttaetatget 780
gagcagtaca atgagattet gaeceagtgt tgtgeagagg etgaeaagga aagetgeetg 840
accccgaagc ttgatggtgt gaaggagaaa gcattggtct catctgtccg tcagagaatg 900
aagtgeteea gtatgeagaa gtttggagag agagettta aageatggge agtagetegt 960 etgageeaga catteeecaa tgetgaettt geagaaatea ceaaattgge aacagaeetg 1020
accaaagtca acaaggagtg ctgccatggt gacctgctgg aatgcgcaga tgacagggcg 1080
gaactigeea adaaggagig tigeealggi gaeelgeigg aatgegeaga tgacagggeg 1000
tgcgataaac cactgttgaa gaaagcccac tgtcttagtg aggtggagca tgacaccatg 1200
cctgctgatc tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgcaagaac 1260
tatgetgagg ccaaggatgt etteetggge acgttettgt atgaatatte aagaagacae 1320
cctgattact ctgtatccct gttgctgaga cttgctaaga aatatgaagc cactctggaa 1380
cctcttgtag aagagcctaa gaacttggtc aaaaccaact gtgatcttta cgagaagctt 1500
ggagaatatg gatteeaaaa tgeeatteta gttegetaca eecagaaage aceteaggtg 1560
tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa gagtgggcac caagtgttgt 1620
acactteetg aagateagag actgeettgt gtggaagaet atetgtetge aateetgaae 1680

-continued

cgtgtgtgtc	tgctgcatga	gaagacccca	gtgagtgagc	atgttaccaa	gtgctgtagt	1740	
ggatccctgg	tggaaaggcg	gccatgcttc	tctgctctga	cagttgatga	aacatatgtc	1800	
cccaaagagt	ttaaagctga	gaccttcacc	ttccactctg	atatctgcac	acttccagag	1860	
aaggagaagc	agattaagaa	acaaacggct	cttgctgagc	tggtgaagca	caagcccaag	1920	
gctacagcgg	agcaactgaa	gactgtcatg	gatgactttg	cacagttcct	ggatacatgt	1980	
tgcaaggctg	ctgacaagga	cacctgcttc	tcgactgagg	gtccaaacct	tgtcactaga	2040	
tgcaaagacg	ccttagccgg	aggggggcggt	tcccaccatc	accaccatca	ctgataa	2097	
<220> FEATU <223> OTHEF	TH: 2190 : DNA NISM: Artif: JRE:			-hCXCL923-12	25-(Gly4Ser)	2 -	
<400> SEQUE	ENCE: 51						
atgagggtcc	ccgctcagct	cctggggctc	ctgctgctct	ggctcccagg	tgcacgatgt	60	
acccccgtcg	tgcggaaggg	cagatgcagc	tgtatcagca	ccaaccaggg	caccatccat	120	
ctccagtctc	tgaaggacct	gaagcagttc	gcccccagcc	ccagctgcga	gaagatcgag	180	
attatcgcca	cactgaaaaa	cggggtgcag	acctgcctga	accccgacag	cgccgacgtg	240	
aaagaactga	tcaagaaatg	ggagaaacag	gtgtcccaga	agaagaagca	gaagaacgga	300	
aagaagcacc	agaaaaagaa	agtgctgaaa	gtgcggaagt	cccagcggag	ccggcagaag	360	
aaaaccacag	gtggaggcgg	tagcggaggc	ggagggtcgg	aagcacacaa	gagtgagatc	420	
gcccatcggt	ataatgattt	gggagaacaa	catttcaaag	gcctagtcct	gattgccttt	480	
tcccagtatc	tccagaaatg	ctcatacgat	gagcatgcca	aattagtgca	ggaagtaaca	540	
gactttgcaa	agacgtgtgt	tgccgatgag	tctgccgcca	actgtgacaa	atcccttcac	600	
actctttttg	gagataagtt	gtgtgccatt	ccaaacctcc	gtgaaaacta	tggtgaactg	660	
gctgactgct	gtacaaaaca	agagcccgaa	agaaacgaat	gtttcctgca	acacaaagat	720	
gacaacccca	gcctgccacc	atttgaaagg	ccagaggctg	aggccatgtg	cacctccttt	780	
aaggaaaacc	caaccacctt	tatgggacac	tatttgcatg	aagttgccag	aagacatcct	840	
tatttctatg	ccccagaact	tctttactat	gctgagcagt	acaatgagat	tctgacccag	900	
tgttgtgcag	aggctgacaa	ggaaagctgc	ctgaccccga	agcttgatgg	tgtgaaggag	960	
aaagcattgg	tctcatctgt	ccgtcagaga	atgaagtgct	ccagtatgca	gaagtttgga	1020	
gagagagctt	ttaaagcatg	ggcagtagct	cgtctgagcc	agacattccc	caatgctgac	1080	
tttgcagaaa	tcaccaaatt	ggcaacagac	ctgaccaaag	tcaacaagga	gtgctgccat	1140	
ggtgacctgc	tggaatgcgc	agatgacagg	gcggaacttg	ccaagtacat	gtgtgaaaac	1200	
caggcgacta	tctccagcaa	actgcagact	tgctgcgata	aaccactgtt	gaagaaagcc	1260	
cactgtctta	gtgaggtgga	gcatgacacc	atgcctgctg	atctgcctgc	cattgctgct	1320	
gattttgttg	aggaccagga	agtgtgcaag	aactatgctg	aggccaagga	tgtcttcctg	1380	
ggcacgttct	tgtatgaata	ttcaagaaga	caccctgatt	actctgtatc	cctgttgctg	1440	
agacttgcta	agaaatatga	agccactctg	gaaaagtgct	gcgctgaagc	caatcctccc	1500	

		-continued	
gcatgctacg gcacagtgct	tgctgaattt cagcctcttg	tagaagagcc taagaacttg	1560
gtcaaaacca actgtgatct	ttacgagaag cttggagaat	atggattcca aaatgccatt	1620
ctagttcgct acacccagaa	agcacctcag gtgtcaaccc	caactctcgt ggaggctgca	1680
agaaacctag gaagagtggg	caccaagtgt tgtacacttc	ctgaagatca gagactgcct	1740
tgtgtggaag actatctgtc	tgcaatcctg aaccgtgtgt	gtctgctgca tgagaagacc	1800
ccagtgagtg agcatgttac	caagtgctgt agtggatccc	tggtggaaag gcggccatgc	1860
ttctctgctc tgacagttga	tgaaacatat gtccccaaag	agtttaaagc tgagaccttc	1920
accttccact ctgatatctg	cacacttcca gagaaggaga	agcagattaa gaaacaaacg	1980
gctcttgctg agctggtgaa	gcacaagccc aaggctacag	cggagcaact gaagactgtc	2040
atggatgact ttgcacagtt	cctggataca tgttgcaagg	ctgctgacaa ggacacctgc	2100
ttctcgactg agggtccaaa	ccttgtcact agatgcaaag	acgccttagc cggaggggggc	2160
ggttcccacc atcaccacca	tcactgataa		2190
mouse SA-(Gly4S	ON: Synthetic: gWiz-LS	-hCXCL1022-98-(Gly4Ser)2	2-
<400> SEQUENCE: 52			
atgagggtcc ccgctcagct	cctgggggctc ctgctgctct	ggctcccagg tgcacgatgt	60
gtgcctctga gcagaaccgt	gcggtgcacc tgtatcagca	tcagcaacca gcccgtgaac	120
cccagaagcc tggaaaagct	ggaaatcatc cccgccagcc	agttctgccc cagagtggaa	180
attatcgcca ccatgaagaa	gaaaggcgag aagcggtgcc	tgaaccccga gagcaaggcc	240
atcaagaacc tgctgaaggc	cgtgtccaaa gagcggagca	agcggagccc aggtggaggc	300
ggtagcggag gcggagggtc	ggaagcacac aagagtgaga	tcgcccatcg gtataatgat	360
ttgggagaac aacatttcaa	aggcctagtc ctgattgcct	tttcccagta tctccagaaa	420
	caaattagtg caggaagtaa		480
	caactgtgac aaatcccttc		540
	ccgtgaaaac tatggtgaac		600
	atgtttcctg caacacaaag		660
	tgaggccatg tgcacctcct		720
	tgaagttgcc agaagacatc		780
	gtacaatgag attctgaccc		840
	gaagcttgat ggtgtgaagg		900
gtccgtcaga gaatgaagtg	ctccagtatg cagaagtttg	gagagagagc ttttaaagca	960
tgggcagtag ctcgtctgag	ccagacattc cccaatgctg	actttgcaga aatcaccaaa	1020
ttggcaacag acctgaccaa	agtcaacaag gagtgctgcc	atggtgacct gctggaatgc	1080
gcagatgaca gggcggaact	tgccaagtac atgtgtgaaa	accaggcgac tatctccagc	1140
aaactgcaga cttgctgcga	taaaccactg ttgaagaaag	cccactgtct tagtgaggtg	1200
gagcatgaca ccatgcctgc	tgatctgcct gccattgctg	ctgattttgt tgaggaccag	1260

-continued

gaagtgtgca agaactatgc tgaggccaag gatgtcttcc tgggcacgtt cttgtatgaa 1320 tattcaagaa gacaccctga ttactctgta tccctgttgc tgagacttgc taagaaatat 1380 gaagccactc tggaaaagtg ctgcgctgaa gccaatcctc ccgcatgcta cggcacagtg 1440 cttgctgaat ttcagcctct tgtagaagag cctaagaact tggtcaaaac caactgtgat 1500 ctttacgaga agcttggaga atatggattc caaaatgcca ttctagttcg ctacacccag 1560 aaagcacctc aggtgtcaac cccaactctc gtggaggctg caagaaacct aggaagagtg 1620 ggcaccaagt gttgtacact tcctgaagat cagagactgc cttgtgtgga agactatctg 1680 tetgeaatee tgaacegtgt gtgtetgetg catgagaaga eeecagtgag tgageatgtt 1740 accaagtget gtagtggate eetggtggaa aggeggeeat gettetetge tetgaeagtt 1800 1860 gatgaaacat atgtcccccaa agagtttaaa gctgagacct tcaccttcca ctctgatatc tqcacacttc caqaqaaqqa qaaqcaqatt aaqaaacaaa cqqctcttqc tqaqctqqtq 1920 1980 aagcacaagc ccaaggctac agcggagcaa ctgaagactg tcatggatga ctttgcacag ttcctggata catgttgcaa ggctgctgac aaggacacct gcttctcgac tgagggtcca 2040 aaccttgtca ctagatgcaa agacgcctta gccggagggg gcggttccca ccatcaccac 2100 2112 catcactgat aa <210> SEQ ID NO 53 <211> LENGTH · 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-hCXCL1122-94-(Gly4Ser)2mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 53 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt 60 ttccccatgt tcaagcgggg cagatgcctg tgcatcggcc ctggcgtgaa agccgtgaag 120 gtggccgata tcgagaaggc cagcatcatg taccccagca acaactgcga caagatcgaa 180 gtgatcatca ccctgaaaga gaacaagggc cagagatgcc tgaatcccaa gtccaagcag 240 gcccggctga tcatcaagaa ggtggaacgg aagaacttcg gtggaggcgg tagcggaggc 300 ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa 360 catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat 420 gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag 480 540 totgeogeca actgtgacaa atcoottcac actotttttg gagataagtt gtgtgecatt ccaaacctcc qtqaaaacta tqqtqaactq qctqactqct qtacaaaaca aqaqcccqaa 600 agaaacgaat gtttcctgca acacaaagat gacaacccca gcctgccacc atttgaaagg 660 ccagaggetg aggecatgtg caceteett aaggaaaace caaceacett tatgggacae 720 tatttqcatq aaqttqccaq aaqacatcct tatttctatq ccccaqaact tctttactat 780 gctgagcagt acaatgagat tctgacccag tgttgtgcag aggctgacaa ggaaagctgc 840 ctgaccccga agettgatgg tgtgaaggag aaageattgg teteatetgt cegteagaga 900 atgaagtget ccagtatgea gaagtttgga gagagagett ttaaageatg ggeagtaget 960 cgtctgagcc agacattccc caatgctgac tttgcagaaa tcaccaaatt ggcaacagac 1020

-continued	
ctgaccaaag tcaacaagga gtgctgccat ggtgacctgc tggaatgcgc agatgacagg	1080
gcggaacttg ccaagtacat gtgtgaaaac caggcgacta tctccagcaa actgcagact	1140
tgctgcgata aaccactgtt gaagaaagcc cactgtctta gtgaggtgga gcatgacacc	1200
atgeetgetg atetgeetge cattgetget gattttgttg aggaeeagga agtgtgeaag	1260
aactatgetg aggeeaagga tgtetteetg ggeaegttet tgtatgaata tteaagaaga	1320
caccctgatt actctgtatc cctgttgctg agacttgcta agaaatatga agccactctg	1380
gaaaagtget gegetgaage caateeteee geatgetaeg geacagtget tgetgaattt	1440
cageetettg tagaagagee taagaaettg gteaaaaeea aetgtgatet ttaegagaag	1500
cttggagaat atggatteea aaatgeeatt etagtteget acaeecaagaa ageaeeteag	1560
gtgtcaaccc caactctcgt ggaggctgca agaaacctag gaagagtggg caccaagtgt	1620
tgtacactte etgaagatea gagaetgeet tgtgtggaag actatetgte tgeaateetg	1680
aaccgtgtgt gtctgctgca tgagaagacc ccagtgagtg agcatgttac caagtgctgt	1740
agtggatccc tggtggaaag gcggccatgc ttctctgctc tgacagttga tgaaacatat	1800
gtccccaaag agtttaaagc tgagacette acetteeaet etgatatetg cacaetteea	1860
gagaaggaga agcagattaa gaaacaaacg gctcttgctg agctggtgaa gcacaagccc	1920
aaggetacag eggageaact gaagaetgte atggatgaet ttgeacagtt eetggataea	1980
tgttgcaagg ctgctgacaa ggacacctgc ttctcgactg agggtccaaa ccttgtcact	2040
agatgcaaag acgccttagc cggagggggg ggttcccacc atcaccacca tcactgataa	2100
<210> SEQ ID NO 54	
<210> SEQ ID NO 54 <211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6	2-mouse
<211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2	-mouse
<211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6	2-mouse 60
<211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54	
<211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt	60
<pre><211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt gcccctattg ccaacgagct gcggtgccag tgcctgcaga ccatggccgg catccacctg</pre>	60 120
<211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt gcccctattg ccaacgagct gcggtgccag tgcctgcaga ccatggccgg catccacctg aagaacatcc agagcctgaa ggtgctgccc agcggccctc actgcaccca gaccgaagtg	60 120 180
<211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctggggctc ctgctgctgc ggctgccagg tgcacgatgt gcccctattg ccaacgagct gcggtgccag tgcctgcaga ccatggccgg catccacctg aagaacatcc agagcctgaa ggtgctgccc agcggccctc actgcaccca gaccgaagtg atcgccaccc tgaagaacgg cagagaggcc tgcctggatc ccgaggcccc cctggtgcag	60 120 180 240
<211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt gcccctattg ccaacgagct gcggtgccag tgcctgcaga ccatggccgg catccacctg aagaacatcc agagcctgaa ggtgctgccc agcggccctc actgcaccca gaccgaagtg atcgccaccc tgaagaacgg cagagaggcc tgcctggatc ccgaggccga cgagggcgga aaaatcgtgc agaaaatgct gaagggcgtg cccaagggtg gaggcggtag cggaggcgga	60 120 180 240 300
<pre><211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt gcccctattg ccaacgagct gcggtgccag tgcctgcaga ccatggccgg catccacctg aagaacatcc agagcctgaa ggtgctgccc agcggccctc actgcaccca gaccgaagtg atcgccaccc tgaagaacgg cagagaggcc tgcctggatc ccgaggccgag gagacatcg agaaaatgct gaagggcgtg cccaagggtg gaggcggtag cggaggcgga gggtcggaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat</pre>	60 120 180 240 300 360
<pre><211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctgggggctc ctgctgctgc ggctcccagg tgcacgatgt gcccctattg ccaacgagct gcggtgccag tgcctgcaga ccatggccgg catccacctg aagaacatcc agagcctgaa ggtgctgccc agcggccctc actgcaccca gaccgaagtg atcgccaccc tgaagaacgg cagagaggcc tgcctggatc ccgaggccga cggaggcgga aaaatcgtgc agaaaatgct gaagggcgtg cccaagggtg gaggcggtag cggaggcgga gggtcggaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag</pre>	60 120 180 240 300 360 420
<pre><211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt gcccctattg ccaacgagct gcggtgccag tgcctgcaga ccatggccgg catccacctg aagaacatcc agagcctgaa ggtgctgccc agcggccctc actgcaccca gaccgaagtg atcgccaccc tgaagaacgg cagagaggcc tgcctggatc ccgaggccgc cctggtgcag aaaatcgtgc agaaaatgct gaagggcgtg cccaagggtg gaggcggtag cggaggcgga gggtcggaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgct atacgatgag catggccaact tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct</pre>	60 120 180 240 300 360 420 480
<pre><211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctgggggctc ctgctgctg ggctcccagg tgcacgatgt gcccctattg ccaacgagct gcggtgccag tgcctgcaga ccatggccgg catccacctg aagaacatcc agagcctgaa ggtgctgccc agcggccctc actgcaccca gaccgaagtg atcgccaccc tgaagaacgg cagagaggcc tgcctggatc ccgaggccga ggaggcgga gagatcgc agaaaatgct gaagggcgtg cccaagggtg gaggcggtag cggaggcgga gggtcggaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgct catacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca</pre>	60 120 180 240 300 360 420 480 540
<pre><211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctgggggccc ctgctgcaga ccatggccgg catccacctg aagaacatcc agagcctgaa ggtgctgccc agcggccctc actgcaccca gaccgaagtg atcgccaccc tgaagaacgg cagagggcgtg cccaagggtg gaggcggtag cggaggcgga aaaatcgtgc agaaaatgct gaagggcgtg cccaagggtg gaggcggtag cggaggcgga gggtcggaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgctc atacgatgag catgccaact gtgacaaatc ccttcacact ctttttggag ataagttgt gccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gccgaaaga</pre>	60 120 180 240 300 360 420 480 540
<pre><211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctgggggccc ctgctgcaga ccatggccgg catccacctg aagaacatcc agagcctgaa ggtgctgccc agcggccctc actgcaccca gaccgaagtg atcgccaccc tgaagaacgg cagagaggcc tgcctggatc ccgaggcccc cctggtgcag aaaatcgtgc agaaaatgct gaagggcgtg cccaagggtg gaggcggtag cggaggcgga gggtcggaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgct atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgt gccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gccgaaaga aacatccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gccgaaaga aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gccgaaaga aacgaatgtt tcctgcaaca caaagatgac aaccccagcc tgccaccatt tgaaaggcca</pre>	60 120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 2097 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL125-96-(Gly4Ser)2 SA-(Gly4Ser)-His6 <400> SEQUENCE: 54 atgagggtcc ccgctcagct cctgggggctc ctgctgcaga ccatggccgg catccacctg aagaacatcc agagcctgaa ggtgctgccc agcggccctc actgcaccca gaccgaagtg atcgccaccc tgaagaacgg cagagaggcc tgcctggatc ccgaggcccc cctggtgcag aaaatcgtgc agaaaatgct gaagggcgtg cccaagggtg gaggcggtag cggaggcgga gggtcggaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgct atacgatgag catgccaact gtgacaaatc ccttcacact cttttggag ataagttgt gccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gccgaagag aacatccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gccgaagag catgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga aacgaatgtt tcctgcaaca caaagatgac aaccccagcc tgccaccatt tgaaaggcca gaggctgagg ccatgtgcac ctcctttaag gaaaacccaa ccacctttat gggacactat</pre>	60 120 180 240 360 420 480 540 600 660

aagtgeteea gtatgeagaa gtttggagag agagetttta aageatggge agtagetegt	960
ctgagccaga cattccccaa tgctgacttt gcagaaatca ccaaattggc aacagacctg 1	020
accaaagtca acaaggagtg ctgccatggt gacctgctgg aatgcgcaga tgacaggggg 1	080
gaacttgcca agtacatgtg tgaaaaccag gcgactatct ccagcaaact gcagacttgc 1.	.140
tgcgataaac cactgttgaa gaaagcccac tgtcttagtg aggtggagca tgacaccatg 1:	200
cctgctgatc tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgcaagaac 1	260
tatgetgagg ceaaggatgt etteetggge acgttettgt atgaatatte aagaagacae 1	.320
cctgattact ctgtatccct gttgctgaga cttgctaaga aatatgaagc cactctggaa 1	.380
aagtgetgeg etgaageeaa teeteeegea tgetaeggea eagtgettge tgaattteag 1	.440
cetettgtag aagageetaa gaaettggte aaaaceaaet gtgatettta egagaagett 1	.500
ggagaatatg gattccaaaa tgccattcta gttcgctaca cccagaaagc acctcaggtg 1	.560
tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa gagtgggcac caagtgttgt 1	620
acactteetg aagateagag actgeettgt gtggaagaet atetgtetge aateetgaae 1	.680
cgtgtgtgtc tgctgcatga gaagacccca gtgagtgagc atgttaccaa gtgctgtagt 1	.740
ggateeetgg tggaaaggeg geeatgette tetgetetga eagttgatga aacatatgte 13	.800
cccaaagagt ttaaagctga gacetteace tteeactetg atatetgeae actteeagag 1	.860
aaggagaagc agattaagaa acaaacggct cttgctgagc tggtgaagca caagcccaag 1	920
gctacagegg ageaactgaa gaetgteatg gatgaetttg eacagtteet ggataeatgt 1	980
tgcaaggetg etgacaagga caeetgette tegaetgagg gtecaaaeet tgteaetaga 20	040
tgcaaagacg cettageegg aggggggggt teecaceate aceaceatea etgataa 20	097
<210> SEQ ID NO 55 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL228-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6	
<400> SEQUENCE: 55	
atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt	60
	120
aagaacatcc agagcctgag cgtgaccccc cctggccctc actgtgccca gaccgaagtg	180
	240
aagatcatcc agaagatcct gaacaagggc aaggccaacg gtggaggcgg tagcggaggc	300
aagatcatcc agaagatcct gaacaagggc aaggccaacg gtggaggcgg tagcggaggc : ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa	300 360
aagatcatcc agaagatcct gaacaagggc aaggccaacg gtggaggcgg tagcggaggc ggaggggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat	300 360 420
aagatcatcc agaagatcct gaacaagggc aaggccaacg gtggaggcgg tagcggaggc ggaggggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag	300 360 420 480
aagatcatcc agaagatcct gaacaagggc aaggccaacg gtggaggcgg tagcggaggc ggaggggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag	300 360 420
aagatcatcc agaagatcct gaacaagggc aaggccaacg gtggaggcgg tagcggaggc ggaggggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag tctgccgcca actgtgacaa atcccttcac actctttttg gagataagtt gtgtgccatt	300 360 420 480
aagatcatcc agaagatcct gaacaagggc aaggccaacg gtggaggcgg tagcggaggc ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag tctgccgcca actgtgacaa atcccttcac actctttttg gagataagtt gtgtgccatt ccaaacctcc gtgaaaacta tggtgaactg gctgactgct gtacaaaaca agagcccgaa	300 360 420 480 540

tatttgcatg aagttgccag aagacatoot tatttetatg occoagaact totttactat 780 getgagcagt acaatgagat totgacccag tgttgtgcag aggetgaca ggaaagotge 840 ctgacoccga agettgatgg tgtgaaggag aagcattgg totcatotgt cogteagaga 900 atgaagtget ocagtatgea gaagtttgg gagagagett ttaaagcatg ggcagtaget 960 cgtotgagee agacattee caatgetgac ttgeagaaa teaceaaatt ggcaacagae 1020 ctgaccaaag teaceagga gtgetgecat ggtgacotge tggaatgee agatgacagg 1080 geoggaacttg coagtact gtgtgaaaac caegeegact totceageaa actgeagaet 1140 tgetgegata aaccaetget gaagaaagee caetgetet gtgaagtegg agatgacaee 1200 atgeetgega attgeetge cattgetge gatttgttg aggaccaga agtgeegag 1260 aactatgetg aggeeaagga tgetteetg ggeaegteet tgtatgaat toteaagaag 1260 aactatgetg aggeeaagg tgetteetg ggeaegteet tgtatgaat toteaagaag 1260 aactatgetg aggeeaagg tgetteetg ggeaegteet tgtatgaat tteaagaaga 1320 caccetgat actegtate cetgttgetg agactgeta agaaataga agecacteg 1380 gaaaagtget gegetgaage caatectee geaagacae actggate tteaagaag 1560 cttggagaat atggateea aaatgeeatt ctagtteget acacceaga agecacteg 1620 tgtacaete ctgaagate ggagetgee tggtggag actatetge tgeaatt 1440 cageetgetg tgetgetgea tgagaagee teettgeg agactgtae caagtgeg 1620 tgtacaete ctgaagate ggagetgee tggtggag actatetge tgeaatet fgaaagagg agggagaag tgegeeag ectaggag agaagtgg gacadgteg 1620 tgtacaete tggaagaag eggeeagg tteetetget gaacatetg 1740 agtggaacaeg aggtgaag tgaagaactg agaactgg ageaggtga caaagteg 1920 aagegtaag aggegaat gagaactge teetetge tgaatgate agageatage 1920 aaggegaaag aggegaat gagacaeg getteetge ageatgtee caagteetg 1920 aaggetaeag eggagaaat gaaacaaag gettetgeat egaagatea 1920 c200 × EXPUTPE: c200 × EXPUTPE: c200 × EXPUTPE: c200 × EXPUTPE: c200 × EXPUTPE: c200 × CHIN NIFORMATION: synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2 mouse SA-(Gly4Ser)-Hin6 c200 × EXPUTPE: c200 × EXPUTPE: c200 × EXPUTPE: c200 × SEQUENCE: 56 atgaggetee cagacaetg aggetege tgeegaaa cectege tgeagatt 20 ggageatgee aggeetga eggaagge gedegaage gagagegg tageggageg gaggacaete agagaetge gagategeg tgeegaaa cectegg tggaagge dageagetgg aa	- (continued	
ctgaccocga agettgatg tgtgaaggag aaageattgg teteatetg cegteaggag ggacagtget ceagtatgee gaagtttgga ggagagaett ttaaageatg ggeeagaage idgeetgagee ageaetteee caatgetgae ttgeagaaa teaceaaat ggeaacagae 1020 ctgaceaag teaecaegg gtgetgeeet ggtgacetge tggaatgeeg agtgacage idgeetgagta aaccaetgt gagaaagee caetgetet ggaaggegg geatgacaee 1200 atgeetgegta aaccaetgt gagaaagee caetgetet gtagagtegg geatgacaee 1200 adgeetgetg attegeetge eattgeteg agttgetge aggaeggegg agtgeeag idee aggeetagt aggeeagga tgetteet ggaagtgeg eggaagtge geatgacaee 1200 acceetgat actectgete eattgeteg ggaegtete tgragaata teaagaag igeetgega attgeetge eattgeteg ggaegtee ggaeggeg teggaaga 1220 caecetgat actectge eattgeteg ggaegtee ggaeggeet tgetgaata teaagaaga igeetgegaat attggetge eatagee eagaactge geaegget tgetgaata teaagaaga iggaagtget gegetgaage caatectee gaagaetge geaeggee tgetgaatt 1440 cageetett agagaagee taagaactg gteagaace actggate ttaegagaag 1560 ettggagaat atggatee aggaageet tgetgegaag actatetge tgeaateetg 1660 igggeaacet eagagateg ggaeggee tgetteetge gaagagtgg eaceaagtgt 1620 tggaagaat atggatee aggaagee cagtgatg ageatgtae caagtgetg 1740 agtggatee tggtggaag geggeeatge tteetgeet gaagagtgg eaceaagtee 1920 aaggetaeag eggagaaag geggeeatge tteetgeet gaagatgtae caagtget 1920 aaggetaeag eggagaaag gggeeatge tteetgaet gaagatgeg ageaagtee 1920 aaggetaeag eggageaaet gaagaetgee ggaeggeg agedgedaa ectaetgataa 1980 tgttgeaagg etgetgaea ggaacetge tteetgaetg aggeggaa ectaetgaaa 1980 tgttgeaagg etgetgaea ggaecetge tteetgaetg aggeggeaa ectaetgataa 2100 *210 > FPE IDR *220 > PENTME: *220 > ENTMENTION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouwe SA-(Gly4Ser)-Hin6 *220 > EQUENCE: 56 atgagggeee cegeteagee eggaggege ggeeggae ceggaagge fige ggaeaatee agaacetga eggaagteg geetgaae ceeggeeggaggeg 180 atecteaea agaagteee gaagteegg aggeegaeg geggageeg tagegagaeg 180 atecteaea agaagteee gaagteege agaagaegg geeggaegge gaagaegt 180 atecteaea agaagteee gaagteegg aggeegaeg geggageeg tagegaagtee 120 aggeetgeega ategeetgae gaagteeee eeeeeeeeee	tatttgcatg aagttgccag aagacateet tatttetatg eeee	cagaact tetttaetat	780
atgaagtget coagtatgea gaagttgga gagagagett ttaaageatg geagtaget 960 cgtetgagee agaettee caatgetgae ttgeagaaa teeceaaatt ggeaacagae 1020 geggaaettg ceaagtaeat gtgtgaaae caggegaet teteceagaa atggeageat 1140 tgetgeggat acceagtget gtgtgaaae caggegget teteceaga acggeagaet 1140 tgetgeggat acceagtget gagaaagee cactgetet gtgaggtgga geatgaeae 1200 atgeetgegt atetegetge cattgetget gatttgttg gggaeeagg aggggeaceg 1260 aactatgetg ggeeaagg tgeteteeg ggaeetget ggaagaag aggggeaeg 1260 aactatgetg aggeeaagg tgeteteeg ggaeegtet tgtatgaat teeagaag 1320 cacceegat actegtate degtgetg ggaeetge agaaataga aggeeeteg 1380 gaaaagtget geeetagae caageeteg gaeetgeet aggaatagg ageedgeaeteg 1380 ggaaagtget geeetagage caateetee geatgetae ggaagatget taeggaag 1560 cttggagaat atggatee aaatgeett gtgtggaag actategt taeggaag 1560 gtgteaaeee caaeteeg ggaggeege agaaacea agaagatggg caceaagtgt 1620 tgtacaette etgaagate ggaagaee eaggaage gaagatget geaateetg 1680 aacegtgtg gtetgea tgagaagae ceagtgagg ageatgetae caaggegg 1740 agtggaaggag ageagataa gaaactge tteetget gaeagtagt gaaacatat 1800 gteeceaaag agtttaaage tgagaetge tteetget gaeagtga geaeaagee 1920 aaggetaee ggaggeaat gagaactge tetetega gaggtgaa geaaagee 1920 aaggetaeag eggagaaat gagaactge tetegag agedgeaa eetagtgat 1920 aaggetaeag eggagaaat gagaactge tetegat gagagteaa eetagtea 2040 agatgeaaga ageeetage eggaggggg ggteeeae ateaceae teaetgataa 1980 tgttgeaagg etgetgaaa ggaegeetge teteega gaggteaa cetagtaea 1980 tgttgeaag etgetgaaa ggaegeetge teteega gaggteeaa cetagtaea 1920 c210> SEQ ID NO 56 c211> DNO 56 c211> DNO 56 c210> SEQ UD NO 56 c211> DNN 56 c210> SEQ UD NO	gctgagcagt acaatgagat tctgacccag tgttgtgcag aggo	ctgacaa ggaaagctgc	840
cgtctgagec agacattece caatgetgae tttgeagaaa teaceaaatt ggeaacagae 1020 ctgaceaaag teaacaagga gtgetgeeat gggacetge tggaatgeeg agatgacagg 1080 geggaacttg ceaagtacat gtgtgaaaae caggegaet tetecaagaa actgeagaet 1140 tgetgegat aaceaetgtt gaagaaagee caetgeetta gtgaggtgga geaggaeaeg 1260 aactatgetg gtetgeee cattgetget gatttigtg ggaecagga aggtggeag 1260 aactatgetg aggeeaagga tgeteteeg ggaegtet tgtatgaat teaagaaga 1320 caecetgat actegtate eetggtget gagettget agaaaatga ageeaeteg 1380 gaaaagtget geegtgaage caateetee geatgetae ggaaaagtg dgeeaetg 1380 gaaaagtget geegtgaage caateetee geatgetae geaeagget tgeegaatt 1440 cageetettg tagaagagee taagaacttg gteaaaacea aetgtgatet ttaegagaag 1560 gtgteaaeee caaeteeg ggaggeega agaaceaeg gaaggggg caecaagtg 1620 tgtacaeee caaeteeg ggaggeetge tgetggaag actaeegt tageagaat 1620 gtgteaaeee caaeteeg ggaggeetge tgetggaag actaeegt geaaagtg 1620 tgtacaeet etgaggaag gggeeaet gtgtggaga gaetgetae caagtgetg 1740 agteggatee tggtggaaag geggeeatge tteetgget gaeagtget geaaacatat 1800 gteeeaaag ggtttaaage tgagaeete acetteeae etgataete gaaacatat 1800 gteeeaaag agtttaaage tgagaeete teetgagagae tteeaagtget gaaacatat 1800 gteeeaaag gggeeaaag geggeeatge tteetget gaeagtga geaaagtee 1920 aaggetaeag eggagaata gaaactge teteggatga geaeaagee 1920 aaggetaeag eggagaata gaaacaaag getetteg agaggtgaa geeaaagee 1920 aggetaagg etgetgaea ggaggegg ggteeeae ataecaeae teaetgaaa 2100 <210 > SEQ ID N0 56 <211 > DEN 56 <212 > TPE INA <213 > ORENITM: 2100 <220 > SEQUENCE: 56 atgagggtee eegetage eggageget teetgetet ggeteeeag teeeagat 160 getgtggtg eetetgaet gagatgeea tgeetgaae eeegege ggaegget 200 gagaacatee agageetga eggaagee tgeetgaee eeegege ggaegge gaegaagt 180 ateeeeaee tgaagaee ggaageee eeegege aggaeegg gtgeaeega 240 ateateata agaagaeet gaagaeegg tgeetgaae eeegegee gaegaagaeg 180 ategeeeee tgaagaeee gagaagaee eeegegeeggeegg tgeaegaagt 180 ateeeeeee tgaagaeee gaagaeegg aggeegg tgeeeeee aeegegeeg agaeegaag 360 eettteaag geetgee gaagaeee agaeeggeeggeeggaeegg tgeaggaeeg 300 ggaggetegg aageaeeaa gaegaeeegg agaeegge gteggaeegg tge	ctgaccccga agcttgatgg tgtgaaggag aaagcattgg toto	catctgt ccgtcagaga	900
ctgaccaaag tcaacaagga gtgctgccat ggtgacctgc tggaatgcg agatgacagg 1080 gcggaacttg ccaagtacat gtgtgaaaac caggcgacta tctcccagcaa actgcagact 1140 tgctgecgata aaccactgtt gaagaaagce cactgtctta gtgaggtgga gcatgacace 1200 atgctgectg atctgectg cattgetg gatttigtg aggaccagga agtgtgcaag 1260 aactatgetg aggccaagga tgtetteetg ggacagttet tgtatgaata tteaagaaga 1320 caceetgatt actetgtate etgtgetg agaettgeta agaaatatga agecaetetg 1380 gaaaagtget gegetgaage caateetee geatgetaeg geacagtget tgetgaattt 1440 cageetettg tagaagage taagaacttg gteaaaacea actgtgatet ttaegagaag 1500 ettggagaat atggateca aaatgecatt etagtteget acaeceaga agecaeteag 1560 gtgteaacee caaetetegt ggaggetgea agaaaceag gaagagtggg caceaagtgt 1620 tgtacaette etgaagata gagaetgeet tgtgtggaag actaetegte tgeaateetg 1680 aacegtgtgt gtetgetgea tgagaagae ceaggagtg ageatgtae caagtgetg 1740 agtgggateee tggtggaaag oggeeatge tteetgeta gaacatat 1800 gteeceaaag agtttaage tgagacette acetteet gtgatgat gaacaatat 1800 gteeceaaag agtttaage tgagaeete tegtgatgat gaecagteg tgeedgaacaa 1920 aaggetaeag eggagaaag geggeeatge tteetgetg agedgtga geacageee 1920 aaggetaeag eggagaaag geggeeatge tteetgetg agedgtga geacaegee 1920 aaggetaeag eggagaaag geggeeatge tteetgetg agedgtga geacaegee 1920 aaggetaeag eggagaaat gaagaetget atggatgat ttegeaagte eetggataea 1980 tgttgeaagg etgetgaaa ggagaeetge tteetgatg aggegteeaa eettgeaa 2100 <210> SEQ ID NO 56 <210> TPPE DNA <210> SEQ ID NO 56 <220> FEATURE: <220 <400> SEQUENCE: 56 atgagggte eegeteaget eetgggacet etgetgetet ggeteecag tgeagagtg 180 ategeeaeee tgaagaetg eggagegg eggteecaaa ceetgeeee gaagaagtg 180 ategeeaeee tgaagaetg eggagegg eaggagegg tageggageg 300 ggagggtegg eetegagae ggagagaag aggetgga ageggageg 1300 ggagggtegg aageacaea gagtgagte geceategg atgeggageg 1300 ggagggtegg aageacaea gagtgagte geceategg tageggageg 300 ggagggtegg aageacaeaa gagtgagte geceategg tageggageg 300 ggagggtegg aageacaeaa gagtgagte geceategg tageggageg 300 ggagggtegg aageacaeaa gagtgagate geceategg tageggageg 300 gagaggtegg aageacaeaa gagtgagate geceategg tagegagag 300 gagagget	atgaagtgct ccagtatgca gaagtttgga gagagagctt ttaa	aagcatg ggcagtagct	960
<pre>ggggaacttg ccaagtacat gtgtgaaaac caggcgata totcoagcaa actgcagacat 1140 tgctgcggata aaccactgtt gaagaaagce cactgtetta gtgaggtgga geatgacace 1200 atgeetgetg atetgeetge cattgeetg gatttigtg aggaceaga agtgtgeaga 1260 caccetgat actegtate cetgtiget gatttigtg aggaceaga agtgtgeaga 1320 caccetgat actegtate cetgtigetg agaettget agaaatatga agecacted 1380 ggaaagtget gegetgaage caatectee geatgetaeg geacagtget tigetgaatt 1440 cageetettg tagaagagee taagaactig gteaaaacea actgtgatet tiaegagaag 1500 ctiggagaat atggateca aaatgeeatt etgitggaag actactige tageagatg 1600 stgtgeaace caacteeg ggaggetgea agaaaceag gaagagtgg caccaagtget 1620 tgtaeaette etgaagatea gagaetgeet tigtiggaag actatetge tigeaateet 1600 gggaagggag ag dgttaaage tiggagaee ecagtgagg ageatgtea caagtgeeg 1740 agtggateee tiggtggaaag geggeeatge tietetgete tigeaateet 1800 ggeeaagag ag agtataa gaaacaaag getteeet egatagtga geaeaeet 1800 gggaaggga ag aggattaag gagaeetge tietetgete tigeaagteg ageaaeeta 1800 ggeaagggag ag aggattaa gaaacaaaeg gettetegea agaaeet etgetgaaa 1820 c210> SEQ ID NO 56 c211> LENGTH: 2100 c221> TTPE: DNA c210> SEQ UD NO 56 c211> LENGTH: 2100 c221> TTPE: DNA c210> SEQUENCE: 56 atgagggte eccgetaget egggaggeg tigeegaea ecctgeegagggg 1800 actgtaggtg ecctgaget gaagteege tigetgaaea cectgeeegagagg 1800 actgetggtg cectgaget gaagteege tigetgaaea cectgeee agaagagtg 180 atgeegeee tigsagaeege eggagagege aagaagee tecagaaegee tigetgaaea 200 ggaggatee agageetgae eggageege tigetgaeaa cectgeeee agaegagg 180 atgeegeee eggeeggeege eggageeee ecctgegeeee ecctgeeeee ecctgeeeee actgeeeee gaagageg 180 atgeegeee eggeeggeegeeeeeeeeeeeeeeeeeeee</pre>	cgtctgagcc agacattccc caatgctgac tttgcagaaa tcac	ccaaatt ggcaacagac	1020
tgetgegata aaccactgtt gaagaaagee cactgtetta gtgaggtgga geatggaeaee 1200 atgeetgetg ateegeetge cattgetget gatttegttg aggaeeagga agtgtgeaag 1260 aactatgetg aggeeaagga tgeeteetg ggeaegtte tgetagaata teeaagaaga 1320 caeeetgatt actegtate eetgtgetg agaettgeta agaaatatga ageeaeteg 1380 gaaaagtget gegetgaage caateetee geatgetae ggaeagtget tgetgaattt 1440 cageetettg tagaagagee taagaaettg gteaaaaeea aetgtgatet taeegaaag 1500 ettggagaat atggatteea aaatgeeatt etagtteget acaeeeagaa ageaeeteg 1560 gtgteaaeee caaeteeteg ggaggetgea agaaaeetag gaagagtggg caeeaagtgt 1620 tggaagaat atggatteea gagaetgeet tggtggaag aetatetgte tgeaateet g 1680 aacegtgtgt gtetgetgea tgagaagaee eeagtaggtg ageatgttae eaagtgetgt 1740 agtggateee tggtggaaag eeggeeatge teetetgee tgaeagttga tgaaaeatat 1800 gteeeeaag agtttaaage tgagaeetge teetetgee tgaeagttga tgaaaeatat 1800 gteeeeaaag agtttaaage tgagaeetge teetetget gaeetgtga geaeagtee 1920 aaggetaeeag eggageaaet gaagaeetge atggatgaet ttgeaeatet 2040 agatgeaagg ageeggeeaaet gaagaeetge teetegeet ageetgtgaa geeeaageee 1920 agageaagaga ageeggeeage eggaeege geteteega agggteeaaa eettgeeaa 2100 <210> SEQ ID NO 56 <211> tPEE DNA <212> TPEE DNA <213> TPEE DNA <213> OREANISM: Artificial Sequence <220> FENTURE: <220> OTHER INFORMATION: Synthetie: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atgagggte eegeteaget eeggageee eeggeeeg tgeeegagtg 60 gedgtggtg eetetgaget gagateeg tgeetgaae eeetgeeeg gaegaagtg 180 ategeeaeee tgaagaeeg eeggaagtg tgeetgaae eeetgeeeg agaagaegg 240 ateateatea agaageteg eeggaagtg tgeetgaae eeetgeeeg 240 ateateatea agaageteg eeggaagtg tgeetgaae eeetgeee eagaagaegg 240 ateateatea agaageteg agatgeeg tgeetgaae eeetgeeeg 240 ateateatea agaageteg agatgeeg agageageg tgeeggageg 300 ggagggtegg aageeaeeaa agageegg agaggaegg gtgaggegg tageggagge 300 gagaggtegg aageeaeeaa agageegg agageaeea gaageaegg 240 ateateatea agaageteg gaagteeg agageaee eeetgeeaaage gtegaaagaegg 300 gagaggtegg aageeaeeaa ateeettee eeetgeae agaeggeggaaeaea 360 cattteaaag geetagtee gatgeeetgeetgaeea attagt	ctgaccaaag tcaacaagga gtgctgccat ggtgacctgc tgga	aatgcgc agatgacagg	1080
atgoctgotg atctgoctgo cattgotgot gatttgttg aggaccagga agtgtgoag 1260 aactatgotg aggocagga tgtottootg ggocogtot tgtatgaata ttoaagaaga 1320 cacootgatt actotgate octgttgotg agacttgota agaaatatga agocactog 1380 gaaaagtgot gogotgaage caatootoo goatgotag gocaagtgot tgotgaatt 1440 cagootottg tagaagagoo taagaacttg gtoaaaacoa actgtgatot ttaogagaag 1500 ottggagaat atggattoo aaatgocat otagtacgot agaaagotggg caccaagtgot 1620 tggagaat atggattoo aaatgocat otagtagaa caatootgo gaagagtggg caccaagtgi 1620 tgtacacto otgaagatca gagactgoot tgtgtggaag actatogt tgoaaacot g aacogtgtg gtotgotgoa ggaggotgoa ggaaacotag gaagagtggg caccaagtgot 1740 agtggatooc tggtggaaag oggocatgo ttototgot gacagttga tgaaacata 1800 gtococaaag agtttaaago tgagacoto acottogot gacagtga gocacagtoo 1920 aaggotacag oggagaact gaagacoto acottogot gacagtt cocagagtoo 1920 aaggotacag oggagaact gaagacoto ttotogot gacagt cocagagtoo 1920 agagaagaga agcagatta gaaacaaacg gotottgotg agogtocaa cottgoaca 1980 tgttgcaaag cggagcaact gaagacoto ttotogot agoggocoaa cottgoaca 2040 agatgoaaga agcagatta gaaacaaacg gotottgotg agggtocaa cottgoaca 2040 agatgoaaga gocyotago cggaggggg ggttoccaac atcaccaca tactgataa 2100 <210> SEQ ID NO 56 <211> tENGTH: 2100 <212> TPE DNA 213> ORGANISM: Artificial Sequence <220> FEATURE: <220> CottgartBC: 56 atgagggto cocacagt cotggggot ctgotgaa coctgoccag gtggacto gagacatca agaactga cggaacog tgoctgaaca coctgoccag gacagaagtg 180 atcgocacce tgaaggacg cggaagt gocagaagt gugaggog dagogagag 300 gaagagtgtgg cottagact gaagaccag tgoctgaaca cocaggoco agaagagg 240 atcatcatca agaagactg caggaagt gocat gocacag gtgaagaca 300 gaagagtog aagcaacaa agagtaga cocacag tgoctgaaca cocaggoco cagaactcag 240 atcatcatca agaagactg agatgocag tgoctgaac cocaggogoc cagaagagt 380 gaagaggtog aagcaacaa agagtaga cocacagag gtgaagaca 360 cattcaaag goctagoct gatgocag cagaagtag tgocagaagt ttoocagaaga tcacagaaga 360 cattcaaag goctagoca aattagtgoc gaagataca gacttgoa agacgtgaagagagagaagaagaagaagaagaagaagaagaaga	gcggaacttg ccaagtacat gtgtgaaaac caggcgacta toto	ccagcaa actgcagact	1140
aactatgetg aggecaagga tgtetteetg ggeaegttet tgtatgaata tteagaaga 1320 caeceetgatt acteetgtate eetgtigetg agaettgeta agaaatatga ageeeateetg gaaaagtget gegetgaage caateetee geatgetaeg geaeagtget tgeegaattt 1440 cageeteettg tagaagagee taagaaettg gteaaaacea aetgtgatet ttaegagaag 1500 eetggagaat atggateea aaageeett etagtteegt acaeceagaa ageaeeteg 1560 gtgteaaeee caateeteet ggaggeetgea agaaaeetag gaagagtgeg caecaagtgt 1620 tgtaeaette etgaagatea gagaetgeet tgtgtggaag aetateetge tgeaateet g 1680 aacegtgtg gteegeetgea gagaeetee tgetgggaag aetateetge tgeaateet g 1740 agtggateee tggtggaaag geggeeatge teeteetge tgaagtga geaetgtea eaagtgeegt 1740 agtggaateee tggtggaaag eggeeetge teeteetge dgaetgtae caagtgeegt 1740 agtggaaeg agteagattaa gaaacaaaeg geteetge ageetggtag geeaeateet 1860 gagaagagaga ageagattaa gaaacaaaeg geteetge ageetggtaga geeaeatee 1920 aaggetaeag eggeeaet gaagaeetge teeteetga ageggeeeaa eetgeetgaatee 1920 aggatgeaag etgeegaeaa ggaeaeetge teetegaetg ageggeeeaa eetgeeaea 1980 tgttgeaagg etgeegaeaa ggaeaeetge teetegaetg ageggeeeaa eetgeeaea 1980 e220> EEVIDN 56 e221> LENGTH: 2100 e220> EEVIDN 56 e221> LENGTH: 2100 e220> FEVIDRI: e220> FEVIDRI: e220> SEQUENCE: 56 atgagggte eetegaget eetgggeee eetggeete ggeeeegg tgeaegagt 60 geegtggeg eetegagee geggaeeg tgeetgaae eetggeeee ageagaagtg 180 ategeeaee gagaeetgae eggaagteeg agaegeeg eetggeeeg agaegaegg 240 ateateatea agaageetg eggageeg agagagaeg gegegeeg agaegaege 240 ateateatea agaageetg eggageeg aagaegaeg geggaggeg geggaggeg ageagaeae gagaggetegg ageetagee gagageeg agagaege gegagaege 300 gagaggetegg aageetaea gageetgge ageetgaae eecaggaege gegagaege 300 gagaggetegg aageetage gagatgeae geeetagae geestage teecagaageg 240 ateateatea agaageet gaagteege agagaege gegagaege 420 gagaggtegg aageetagee gatgeetge agaegaege gegagaege 300 gagaggetegg aageetagee gatgeetge agaegaege gtegaagaee 360 eatteeaag geetagtee gatgeetg aceetaget teecagaaagt 420 gageatgeea attagtgea ggaagtaea gaeettgea agaegetgee 420	tgctgcgata aaccactgtt gaagaaagcc cactgtctta gtga	aggtgga gcatgacacc	1200
caccetgatt actetgtate ettgtgetg agaettgeta agaaatatga ageeatetg 1380 gaaaagtget gegetgaage eaateetee geatgetaeg goacagtget tgetgaattt 1440 eageetettg tagaagagee taagaaettg gteaaaacea actgtgatet ttaegagaag 1500 ettggagaat atggattee aaatgeeatt etagtteget acaceeagaa ageaeeteag 1560 gtgteaaeee eaaeteteg ggaggetgea agaaaeetag gaagagtggg caceaagtgt 1620 tgtaeaette etgaagatea gagaetgeet tgtgtggaag actatetgte tgeaateetg 1680 aacegtgtgt gtetgetgea tgagaagaee eeagtgagtg ageatgttae eaagtgetgt 1740 agtggateee tggtggaaag geggeeatge tteetetgete tgaeagttga tgeaaeatat 1800 gteeceaaag agtttaaage tgagaeette acetteeeat etgaatetg cacaetteea 1860 gagaaggaga ageagattaa gaaaeaaaeg getetgetg agetggtgaa geaeaageee 1920 aaggetaeag eggageaaet gaagaeetge atggatgat ttgeaeagtte etggataea 1980 tgttgeaagg etgetgaeaa ggaeeetge teteegatg aggetggtgaa geaeaageee 1920 aaggetaeag eggageaaet gaagaeetge atggatgat ttgeaeagtt eetggataea 1980 tgttgeaagg etgetgaeaa ggaeeetge teteegaetg aggggegaa eccaageee 1920 aggatgeaagg ageeettage eggaggggg ggtteeeaae etcaetgataa 2100 <210> SEQ ID NO 56 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORTMISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <<400> SEQUENCE: 56 atgagggtee eegetaget eetgageegg tgeetgaae eetgeeegg ggaggette sequeree agageetgae eggaaegtg tgeetgaae eetgeeeg gaagaagtg 180 ategeeaeet gaagaageg eeagaagtg tgeetgaae eetgeeegg agagageg 300 ggagggtegg aageaeaea gagtegeg aagageagg gtggaggeg tageggageg soo gagaggtegg aageaeaea agagteegg aagageage gtggaggeg tageggageg soo gagaggtegg aageaeaea agagtagee geeetgaee teceagaage teeagaaag 360 eatteeaaag geetagteet gatgeett teeeagaate teeagaaag deedaeaa 360 eatteeaaag geetagteet gatgeett teeeagaate teeagaage 480 eatteeaaag geetagteet gatgeett teeeagaate teeaagaaget 420 gageatgeea aattagtgea ggaagtaaca gaetttgea agaegtgtg tgeegatgag 480	atgeetgetg atetgeetge cattgetget gattttgttg agga	accagga agtgtgcaag	1260
<pre>gaaaagtgct gcgctgaagc caatceteee gcatgetaeg gcacagtget tgetgaattt 1440 cageetettg tagaagagee taagaaettg gteaaaacea actgtgatet ttaegagaag 1500 ettggagaat atggattee aaatgeeatt etagtteget acaeeeeaga ageaeeteag 1560 gtgteaaeee caaetetegt ggaggetgea agaaaeetag gaagagtggg caeeaagtgt 1620 tgtaeaette etgaagatea gagaetgeet tgtgtggaag actatetgte tgeaateetg 1680 aacegtgtgt gtetgetgea tgagaagaee ecagtgagtg ageatgttae caagtgetgt 1740 agtggateee tggtggaaag geggeeatge tteetetgete tgaeagttga tgaaaeatat 1800 gteeceaaag agtttaaage tgagaeette acetteeet etgaeagttga tgaaaeatat 1800 gteeceaaag agtttaaage tgagaeette acetteetgete tgaeagttga tgaaaeatat 1860 gagaaggaga ageagattaa gaaaeaaaeg geetetget gaegtggtgaa geaeageee 1920 aaggetaeag eggageaaet gaagaeetge atggatgat ttgeaeagte etetgeaatee 2040 agatgeaagg etgetgaeaa ggaeaeetge tteetegaet gagggeeaa eettgeeat 2040 agatgeaaag acgeettage eggaggggg ggtteeeae ateaeeae eettgeaat 2040 agatgeaaag acgeettage eggaggggge ggtteeeae ateaeeae teaetgataa 2100 <210> SEQ ID N0 56 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> OTHEN INFORMATION: Synthetie: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <<400> SEQUENCE: 56 atgagggtee eegeteaget eetggggete etgetgaeae ecetgeeeg ggeggaette 120 gagaacaatee agageetgae eggaagtgeeg tgeetgaae ecetgeeeg ggeggaette 120 gagaacatee agageetgae eggaagtege aagaegeeg gtggagegg tageggageg 300 ggagggtegg aageacaaa gagtgagate geeetaate teeagaaag tgeggageeg 300 ggagggtegg aageacaaa agagtagee aagaegeeg gtggagegg tageggageg 300 ggagggtegg aageacaaa agagtagee agaetgee teeagaaag etetteeaaa 360 eattteaaag geetagteet gatgeettt teeeagaate teeagaaagt eteataegat 420 gageatgeea aettggeea attagtgea ateeetteea acettttetg gagataeaa 360 eattteaaag geetagteet gatgeettt teeeagaate teeagaagt eteataegat 420 gageatgeea aettggeaa ateeetteea actetttttg gagataagt gtgetgeeatt 540</pre>	aactatgctg aggccaagga tgtcttcctg ggcacgttct tgta	atgaata ttcaagaaga	1320
<pre>cagectettg tagaagagec taagaacttg gteaaaacea actgtgatet ttaegagaag 1500 cttggagaat atggatteea aaatgeeatt etagtteget acaeceagaa ageaecteag 1560 gtgteaaece caactetegt ggaggetgea agaaaeetag gaagagtggg caceaagtgt 1620 tgtaeaette etgaagatea gagaetgeet tgtgtggaag actatetgte tgeaateetg 1680 aaeegtgtgt gtetgetgea tgagaagaee ecagtgagtg ageatgttae eaagtgetgt 1740 agtggateee tggtggaaag geggeeatge ttetetgeet tgaeagttga tgaaaeatat 1800 gteeceaaag agtttaaage tgagaeette acetteeaet etgatatetg eaeaetteea 1860 gagaaggaga ageagattaa gaaaeaaaeg getettgetg agetggtga geaeaageee 1920 aaggetaeag eggageaet gaagaeetge atggatgaet tgeeaagteg etgetgaaea 1980 tgttgeaagg etgetgaea ggageeetge ttetegeetg aggtgeeaa eetgeteeae 1920 agatgeaaag aegeettage eggagggge ggtteeeaee ateaeeae teaetgataa 2000 <210> SEQ ID NO 56 c212> typE: DNA c213> ENNETH: 2100 c212> TyPE: DNA c213> OTHER INFORMATION: Synthetie: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-Hie6 c400> SEQUENCE: 56 atgagggte eegteaget eetgggget eetggeete eetggeete acettgeeetg ggeggetee eiggaegetge agaageetge agaageage ggtgeetee acetgaeaeg 240 ateateatea agaagatet gaagteegg aagaageg tgeetgaae acetegg gtagagaeg 300 ggagggtegg aageaeeaa gagtgaget gecetaget teeeagaage ggtggagegg tageggage 300 ggagggtegg aageaeeaa gagtgagate geceategg ataatgatt gggagaeaa 360 cattteaaag geetagtee gatgeetge agatgeetg aagaegg diggagegg tageggage 300 ggaggtegg aageaeeaa gagtgagate geceategg aagaegg tgeegaaea 360 cattteaaag geetagteet gatgeetge agatgeetge agaegaage 420 gageatgeea aattagtgea ggaagtaeea gaetttgea agaegtgt tgeegaaga 360 cattteaaag geetagteet gatgeettt teeeagate teeagaaag 420 gageatgeea actgtgaea ateeetteea eacttteea agaegtgt tgeegaaga 360 cattteaaag geetagtee gaagteegg agaetaea gaetttgea agaeggegg 480 tegeegeea actgtgaeaa ateeetteea acettteea agaegtgt tgeegatga 480 tegeegeea actgtgaeaa ateeetteea acettteea agaegtgt tgeegatge 480 tegeegeea actgtgaeaa ateeetteea acettteea agaegtgtgt tgeegatge 480 tegeegeea actgtgaeaa ateeetteea acettteea agaegtgtgt tgeegatge 480 tegeegeea actgtgaeaa ateeett</pre>	caccctgatt actctgtatc cctgttgctg agacttgcta agaa	aatatga agccactctg	1380
<pre>cttggagaat atggattcca aaatgccatt ctagttcgct acacccagaa agcacctcag 1560 gtgtcaaccc caactctcgt ggaggctgca agaaacctag gaagagtggg caccaagtgt 1620 tgtacacttc ctgaagatca gagactgcct tgtgtggaag actatctgtc tgcaatcctg 1680 aaccgtgtgt gtctgctgca tgagaagacc ccagtgagt agcatgttac caagtgctgt 1740 agtggatccc tggtggaaag gcggccatgc ttctctgctc tgacagttga tgaaacatat 1800 gtccccaaag agtttaaagc tgagacctc accttccact ctgatatctg cacacttcca 1860 gagaaggaga agcagatta gaaacaaacg gctcttgctg agctggtga gcacaagccc 1920 aaggctacag cggagcaact gaagactgc atggatgatg agcaggtgag gcacaagcc 1920 aaggctacag cggagcaact gaagactgc atggatgatg agctggtga gcacaagcc 1920 aggtgcaaag acgcctgaca ggagcactg ttctcgactg aggggccaaa ccttgcact 2040 agatgcaaag acgccttagc cggaggggg ggttccacc atcaccact tcactgataa 2100 </pre>	gaaaagtgct gcgctgaagc caatcctccc gcatgctacg gcac	cagtgct tgctgaattt	1440
gtgtcaaccc caactetegt ggaggetgea agaaacctag gaagagtggg caccaagtgt 1620 tgtacactte etgaagatea gagaetgeet tgtgtggaag actatetgte tgeaateetg 1680 aacegtgtgt gtetgetgea tgagaagaee ecagtgagt ageatgttae eaagtgetgt 1740 agtggateee tggtggaaag geggeeatge ttetetget tgaeagttga tgaaacatat 1800 gteeceaaag agtttaaage tgagaeette acetteeae etgatatetg eaeaettee 1860 gagaaggaga ageagattaa gaaacaaaeg getettgetg agetggtgaa geacaageee 1920 aaggetacag eggageaaet gaagaeetge acettgeet agetggtgaa geacaageee 1920 aaggetacag eggageaaet gaagaeetge teteegaetg agetgetgaa geacaageee 1920 aaggetacag eggageaaet gaagaeetge teteegaetg agetgetgaa eetgetaee 2040 agatgeaaag acgeettage eggagggge ggtteeeaee aceaeeae eetgetaee 2040 agatgeaaag aegeettage eggagggge ggtteeeaee aceaeeae eetgetaee 2040 212 YTPE DNA 2135 ORGNNISM: Artificial Sequence 2205 FEATURE: 2235 ORENTEN INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <4005 SEQUENCE: 56 atgagggtee eegeteaget eetgegeee etgeeege ggtggaette 120 gagaeaatee agageetgae egtgaeeee etgeeege ggtggaette 120 gagaeaatee agageetgae egtgaeeee etgeeege agageageg gtggaggeg tageggagg 300 ggagggtegg aagaacaeaa gagtgagate geeeategg ataatgatt gggagaacaa 360 catteaaag geetagteet gatgeett teeeagtae teeagaatg teeeagaa 360 catteaaag geetagteet gatgeett teeeagtae teeagaatg teeeagaa 360 catteaaag geetagteet gatgeett teeeagtae teeagaatg teeeagaa 360 catteaaag geetagteet gatgeett teeeagtae teeagaatg teeeagaatg 480 tetgeegeea aettagtgea ggaagtaeaa acettteea agaegtggt tgeeggagg 480	cageetettg tagaagagee taagaaettg gteaaaaeea aete	gtgatct ttacgagaag	1500
tgtacacttc ctgaagatca gagactgoct tgtgtggaag actatctgtc tgcaatcotg 1680 aaccgtgtgt gtctgotgoa tgagaagacc ccagtgagtg agcatgttac caagtgotgt 1740 agtggatocc tggtggaaag goggocatge ttototgoto tgacagttga tgaaacatat 1800 gagaaggaga agcagattaa gaaacaaacg gotottgotg agotggtgaa gocacagooc 1920 aaggotacag oggagoaact gaagactgo atggatgat ttgoacagt cotggataca 1980 tgttgcaagg otgotgacaa ggacactge ttotogact gagggtogaa gocacagooc 1920 aggatgcaag oggagoaact gaagacotgo ttotogactg agggtocaaa cottgoaa 1980 tgttgcaagg otgotgacaa ggacacotgo ttotogactg agggtocaaa cottgoaa 2040 agatgcaaag acgoottago oggaggggg ggttoccaco atoaccaca toactgataa 2100 <210> SEQ ID NO 56 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atgagggtco cogotcagot ootggggoto ctgotgotot ggotoccag tgcacgatgt 60 gotgtggtgg oototgagot gagatgocag tgcotgaaca coetgococg ggtggactto 120 gagacaatco agagootga cgtgaacce cotggocot actgtacca gacagaagg 180 atcatcatca agaagatcot gaagtcogg aagagoagg tgcagggg tagoggago 300 ggagggtogg aagcacacaa gagtagat goccatcggt ataatgatt gggagaacaa 360 catttcaaag goctagtoot gattgoott toccagtat toccagaaag 420 acattcaaag goctagtoot gattgoott toccagtat toccagaaag 420 acattcaaa gacagatoot gattgoott toccagtat toccagaaag 420 acattcaaa gaagatcot gattgoott actgoot toccaga ataatgatt ggagaacaa 360 catttcaaag goctagtoot gattgoott toccagtat toccagaaag 420 gagoatgoca aattagtgoa ggaagtaaca gactttgoa agacgtgtg tgcoggaaga 360 catttcaaag goctagtoot gattgoott toccagtat toccagaaatg ctoatacgat 420 gagoatgoca aattagtgoa ggaagtaaca gactttgoa agacgtgtgt tgcogatgag 480 totgocgca actgtgacaa atcoottcac actottttg gagataagtt gtgtgccatt 540	cttggagaat atggatteea aaatgeeatt etagtteget acae	cccagaa agcacctcag	1560
aaccgtgtgt gtctgctgca tgagaagacc ccagtgagtg agcatgttac caagtgctgt 1740 agtggatcoc tggtggaaag gcggccatgc ttotctgctc tgacagttga tgaaacatat 1800 gtcoccaaag agtttaaagc tgagacettc accttccact ctgatatctg cacacttcca 1860 gagaaggaga agcagattaa gaaacaaacg gctcttgctg agctggtgaa gcacaagcoc 1920 aaggctacag cggagcaact gaagacetgc atggatgact ttgcacagtt cctggataca 1980 tgttgcaagg ctgctgacaa ggacacetgc ttotcgactg agggtccaaa ccttgtcact 2040 agatgcaaag acgoettage cggaggggge ggttcccace atcaccaca tcactgataa 2100 <2110 SEQ ID NO 56 c2112 LENGTH: 2100 c2122 TTPE: DNA c2133 ORGANISM: Artificial Sequence c2205 FEATURE: c2235 OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atgagggtce ccgetcaget cctggggcte ctgctgctet ggetcccagg tgcacgatgt 60 gctgtggtgg cctctgaget gagatgccag tgcctgaaca ccctgccccg ggtggactte 120 gagacaatec agagectgac cgtgaccce cctggecete actgtacca gacagaagtg 180 atcgccacce tgaaggacg caggaagtg tgcctgaate cccagggecg tagcggagg 300 ggagggtcgg aagcaccaa gagtgagate gcccateggt ataatgattt gggagaacaa 360 cattcaaag gcctagteet gattgcett teccagata ctcaagaa 360 cattcaaag gcctagteet gattgcett teccagaaag ccaagaagt 420 gagcatgcea aattagtgea ggaagtaaca gactttgcaa agacgtgtgt tgccgatga 420 acattcaaag gcctagteet gattgcett teccagaaag ctaagaagt 420 gagcatgcea aattagtgea ggaagtaca gactttgcaa agacgtgtt tgccgatga 420	gtgtcaaccc caactctcgt ggaggctgca agaaacctag gaag	gagtggg caccaagtgt	1620
agtggateee tggtggaaag geggeeatge ttetetgete tgacagttga tgaaacatat 1800 gteeecaaag agtttaaage tgagacette acetteeet etgatatetg eacaetteea 1860 gagaaggaga ageagattaa gaaacaaaeg getettgetg agetggtgaa geaeaageee 1920 aaggetaeag eggageaet gaagaetgte atggatgaet ttgeaeagte eetggataea 1980 tgttgeaagg etgetgaeaa ggacaeetge ttetegaetg agggteeaaa eettgteaet 2040 agatgeaaag aegeettage eggaggggge ggtteeeaee ateaeeaea eettgteaet 2040 agatgeaaag aegeettage eggaggggge ggtteeeaee ateaeeaeae eetagataa 2100 <210> SEQ ID NO 56 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INPORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atgagggtee eegeeteggeeteggeetegaeea eeetgeetegggeggeggt 120 gagacaatee agageetgae eggaeggeg tgeetgaaea eeetgeeteggeggaegte 120 ateateatea agaagateet gaagteegge aagageageg gtggaggeegg tageggagge gagagggeegg aageaeeaa gagtgagate geeeategg teaaagatt gggagaeeaa 360 eattteaaag geetagteet gatgeett teeeagtate teeagaaatg teeataegat 420 gageatgeea aattagtgea ggaagtaaea gaetttgeaa agaegtget tgeegatga 480 tetgeegeea aetgtgaeaa ateeetteae actettttg gagataagtt gtgtgeeatt 540	tgtacacttc ctgaagatca gagactgcct tgtgtggaag acta	atctgtc tgcaatcctg	1680
<pre>gtccccaaag agtttaaagc tgagaccttc acttccact ctgatatctg cacacttcca 1860 gagaagggaa agcagattaa gaaacaaacg gctcttgctg agctggtgaa gcacaagccc 1920 aaggctacag cggagcaact gaagactgtc atggatgact ttgcacagtt cctggataca 1980 tgttgcaagg ctgctgacaa ggacacctgc ttctcgactg agggtccaaa ccttgtcact 2040 agatgcaaag acgccttagc cggagggggc ggttcccacc atcaccacca tcactgataa 2100 <210> SEQ ID NO 56 c211> LENGTH: 2100 c212> TYPE: DNA c213> ORGANISM: Artificial Sequence c220> FEATURE: c223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt 60 gctgtggtgg cctctgagct gagatgccag tgcctgaaca ccctgccccg ggtggacttc 120 gagacaatcc agagcctgac cgtgaccccc cctggccct actgtacca gacagaagtg 180 atcgccaccc tgaaggacgg ccaggaagtg tgcctgaatc cccagggcc cagactccag 240 atcatcatca agaagatcct gaagtccgc aagagcagcg gtggaggcgg tagcggaggc 300 ggagggtcgg aagcaccaca gagtgagatc gcccatcggt ataatgatt gggagacaa 360 catttcaaag gcctagtcc gatgcctt tcccagtat tccagaaatg ctcatacgat 420 gagcatgcca aattagtgca ggaagtaca gacttgcaa agacgtgt tgccgatgg 480 tctgccgcca actgtgaca atccttcac actcttttg gagataagt gtgtgccatt 540</pre>	aaccgtgtgt gtctgctgca tgagaagacc ccagtgagtg agca	atgttac caagtgctgt	1740
<pre>gagaaggaga agcagattaa gaaacaaacg gctcttgctg agctggtgaa gcacaagccc 1920 aaggctacag cggagcaact gaagactgtc atggatgact ttgcacagtt cctggataca 1980 tgttgcaagg ctgctgacaa ggacacctgc ttctcgactg agggtccaaa ccttgtcact 2040 agatgcaaag acgccttagc cggagggggg ggttcccacc atcaccacca tcactgataa 2100 <210> SEQ ID NO 56 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atggaggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt 60 gctgtggtgg cctctgagct gagatgccag tgcctgaaca ccctgccccg ggtggacttc 120 gagacaatcc agagcctgac cgtgaccccc cctggccctc actgtaccca gacagaagtg 180 atcgccaccc tgaaggacgg ccaggaagtg tgcctgaatc cccagggcg tagcggaggc 300 ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa 360 catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat 420 gagcatgcca aattagtgca ggaagtacaa gactttgcaa agacgtgt tgccgatgg 480 tctgccgcca actgtgacaa atcccttcac actctttttg gagataagtt gtgtgccatt 540</pre>	agtggateee tggtggaaag geggeeatge ttetetgete tgae	cagttga tgaaacatat	1800
aaggetacag eggageaact gaagaetgte atggatgaet ttgeacagtt eetggataca 1980 tgttgeaagg etgetgacaa ggacaeetge ttetegaetg agggteeaaa eettgteaet 2040 agatgeaaag aegeettage eggaggggge ggtteeeaee ateaceaea teaetgataa 2100 <210> SEQ ID NO 56 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atgagggtee eegeeteggete etggeetegaeae eetggeeteg ggtggaette 120 gagacaatee agageetgae egtgaecee eetggeete actgtaecea gaeagaagtg 180 ategeeaeee tgaaggaegg eeaggaagtg tgeetgaate eeeaggeegg tageggagge 300 ggagggtegg aageaeaeaa gagtgagate geeeateggt ataatgatt gggagaacaa 360 eattteaaag geetagteet gattgeett teeeagtae teeagaatg ttgeeggatg 480 tetgeegeea aetgtgaeaa ateeetteae actettttg gagataagtt gtgtgeeatt 540	gtccccaaag agtttaaagc tgagacette acettecaet etga	atatctg cacacttcca	1860
tgttgcaagg ctgctgacaa ggacacctgc ttctcgactg agggtccaaa ccttgtcact 2040 agatgcaaag acgccttage eggaggggge ggtteecaee ateaccaeca teaetgataa 2100 <210> SEQ ID NO 56 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atgagggtce cegeteaget ectggggete etgetgetet ggeteceagg tgeaegatgt 60 gctgtggtgg cetetgaget gagatgeeag tgeetgaaca ceetgeeceg ggtggaette 120 gagacaatee agageetgae egtgacceee eetggeeete actgtaecea gaeagaagtg 180 ategeeacee tgaaggaegg ceaggaagtg tgeetgaate eccagggeee eagaeggegg tageggagge 300 ggagggtegg aageacaeaa gagteggee aagageageg gtggaggegg tageggagge 300 ggagggtegg aageacaeaa gagtgagate geeeategt teeeagaaatg eteataegat 420 gagacatee agageetgee gatgeett teeeagaaatg eteataegat 420 gageatgeea aattagtgea ggaagtaea gaettgeaa agaegtgtgt tgeegatgag 480 tetgeegeea actgtgaeaa ateeetteae actettttg gagataagt gtgtgeeatt 540	gagaaggaga agcagattaa gaaacaaacg gctcttgctg agct	tggtgaa gcacaagccc	1920
agatgcaaag acgccttagc cggagggggc ggttcccacc atcaccacca tcactgataa 2100 <210> SEQ ID NO 56 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> CTHER INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atgagggtcc ccgctcagct cctgggggtc ctgctgaaca ccctgccccg ggtggacttc 120 gagacaatcc agagcctgac cgtgaccccc cctggccct actgtaccca gacagaagtg 180 atcgccaccc tgaaggacgg ccaggaagtg tgcctgaatc cccagggcc cagactccag 240 atcatcatca agaagatcct gaagtccggc aagagcagcg gtggagggg tagcggagg 300 ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgatt gggagaacaa 360 catttcaaag gcctagtcc gatgcctt tcccagtatc tccagaaatg ctcatacgat 420 gagcatgcca aattagtgca ggaagtaca gacttgcaa agacgtgtgt tgccgatgag 480 tctgccgcca actgtgacaa atccttcac actttttg gagataagtt gtgtgccatt 540	aaggetacag eggageaact gaagaetgte atggatgaet ttge	cacagtt cctggataca	1980
<pre><210> SEQ ID NO 56 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atgagggtcc ccgctcagct cctgggggtc ctgctgacta ggctccagg tgcacgatgt 60 gctgtggtgg cctctgagct gagatgccag tgcctgaaca ccctgccccg ggtggacttc 120 gagaacaatcc agagcctgac cgtgaccccc cctggccctc actgtaccca gacagaagtg 180 atcgccaccc tgaaggacgg ccaggaagtg tgcctgaatc cccagggcg tagcggaggc 300 ggagggtcgg aagcaacaaa gagtgagatc gcccatcggt ataatgatt gggagaacaa 360 cattcaaag gcctagtcct gattgcctt tcccagtatc tccagaaatg tgccgataga 420 gagcatgcca aattagtgca ggaagtaaca gacttgcaa agacgtgtg tgccgatag 480 tctgccgcca actgtgacaa atccttcac actcttttg gagataagtt gtgtgccatt 540</pre>	tgttgcaagg ctgctgacaa ggacacctgc ttctcgactg aggg	gtccaaa ccttgtcact	2040
<pre><211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL328-100-(Gly4Ser)2- mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 56 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt 60 gctgtggtgg cctctgagct gagatgccag tgcctgaaca ccctgccccg ggtggacttc 120 gagacaatcc agagcctgac cgtgaccccc cctggccctc actgtaccca gacagaagtg 180 atcgccaccc tgaaggacgg ccaggaagtg tgcctgaatc cccagggccc cagactccag 240 atcatcatca agaagatcct gaagtccggc aagagcagcg gtggagggg tagcggaggc 300 ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgatt gggagaacaa 360 catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ttgccgatga 420 gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatga 480 tctgccgcca actgtgacaa atccttcac actcttttg gagataagtt gtgtgccatt 540</pre>	agatgcaaag acgcettage eggaggggge ggtteecaee atea	accacca tcactgataa	2100
atgagggtccccgctcagctcctggggctcctgctgctctggctcccaggtgcacgatgt60gctgtggtggcctctgagctgagatgccagtgcctgaacaccctgccccgggtggacttc120gagacaatccagagcctgaccgtggaccccccctggccctcactgtacccagacagaagtg180atcgccaccctgaaggacggccaggaagtgtgcctgaatccccagggccccagactccag240atcatcatcaagaagatcctgaagtccgcaagagcagggtggagggggtagcggaggc300ggaggggtcggaagcacacaagagtgagatcgcccatcggtataatgatttgggagaacaa360catttcaaaggcctagtcctgattgccttttcccagtatctccagaaatg420gagcatgccaaattagtgcaggaagtaacagactttgcaaagacgtgtgttgccgatgag480tctgccgccaactgtgacaaatccttcacactttttggagataagttgtgtgccatt540	<pre><211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXC</pre>	CL328-100-(Gly4Ser)	2-
getgtggtgg eetetgaget gagatgeeag tgeetgaaca eeetgeeeeg ggtggaette 120 gagaacaatee agageetgae egtgaeeeee eetggeeete aetgtaeeea gaeagaagtg 180 ategeeaeee tgaaggaegg eeaggaagtg tgeetgaate eeeagggeee eagaeteeag 240 ateateatea agaagateet gaagteegge aagageageg gtggaggegg tageggagge 300 ggagggtegg aageaeaea gagtgagate geeeateggt ataatgatt gggagaaeaa 360 eatteaaag geetagteet gatgeettt teeeagtae teeagaaatg eteataegat 420 gageatgeea aattagtgea ggaagtaaca gaettgeaa agaegtgtgt tgeegatgag 480 tetgeegeea aetgtgaeaa ateeetteae aetettttg gagataagtt gtgtgeeatt 540	<400> SEQUENCE: 56		
gagacaatec agageetgae egtgaecece ectggeeete actgtaecea gacagaagtg180ategeeaeee tgaaggaegg ecaggaagtg tgeetgaate eccagggeee eagaeteeag240ateateatea agaagateet gaagteegge aagageageg gtggaggeegg tageggagge300ggagggtegg aageeeaeaa gagtgagate geeeategt ataatgattt gggagaaeaa360cattteaaag geetagteet gattgeettt teeeagtate teeagaaatg eteataegat420gageatgeea aattagtgea ggaagtaaca gaetttgeaa agaegtgtgt tgeegatgag480tetgeegeea actgtgaeaa ateeetteea actettttg gagataagtt gtgtgeeatt540	atgagggtcc ccgctcagct cctggggctc ctgctgctct ggct	teecagg tgeacgatgt	60
atcgccaccc tgaaggacgg ccaggaagtg tgcctgaatc cccagggccc cagactccag 240 atcatcatca agaagatcct gaagtccggc aagagcagcg gtggaggcgg tagcggaggc 300 ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa 360 catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat 420 gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag 480 tctgccgcca actgtgacaa atcccttcac actcttttg gagataagtt gtgtgccatt 540	getgtggtgg eetetgaget gagatgeeag tgeetgaaca eeet	tgeeceg ggtggaette	120
atcatcatca agaagatcct gaagtccggc aagagcagcg gtggaggcgg tagcggaggc 300 ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa 360 catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat 420 gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag 480 tctgccgcca actgtgacaa atcccttcac actcttttg gagataagtt gtgtgccatt 540	gagacaatee agageetgae egtgaeeeee eetggeeete aetg	gtaccca gacagaagtg	180
ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataatgattt gggagaacaa 360 catttcaaag gcctagtcct gattgccttt tcccagtatc tccagaaatg ctcatacgat 420 gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag 480 tctgccgcca actgtgacaa atcccttcac actcttttg gagataagtt gtgtgccatt 540	atcgccaccc tgaaggacgg ccaggaagtg tgcctgaatc ccca	agggccc cagactccag	240
catttcaaag goctagtoot gattgoottt toocagtato tooagaaatg otoataogat 420 gagoatgooa aattagtgoa ggaagtaaca gaotttgoaa agaogtgtgt tgoogatgag 480 totgoogooa actgtgacaa atcoottcao actotttttg gagataagtt gtgtgooatt 540	atcatcatca agaagatcct gaagtccggc aagagcagcg gtgg	gaggegg tageggagge	300
gagcatgcca aattagtgca ggaagtaaca gactttgcaa agacgtgtgt tgccgatgag 480 tctgccgcca actgtgacaa atcccttcac actctttttg gagataagtt gtgtgccatt 540	ggagggtcgg aagcacacaa gagtgagatc gcccatcggt ataa	atgattt gggagaacaa	360
tctgccgcca actgtgacaa atcccttcac actctttttg gagataagtt gtgtgccatt 540	catttcaaag geetagteet gattgeettt teecagtate teea	agaaatg ctcatacgat	420
	gagcatgcca aattagtgca ggaagtaaca gactttgcaa agac	cgtgtgt tgccgatgag	480
ccaaacctcc gtgaaaacta tggtgaactg gctgactgct gtacaaaaca agagcccgaa 600	tetgeegeea actgtgaeaa ateeetteae actettttg gaga	ataagtt gtgtgccatt	540
	ccaaacctcc gtgaaaacta tggtgaactg gctgactgct gtac	caaaaca agagcccgaa	600

agaaacgaat gtttcctgca acacaaagat gacaacccca gcctgccacc atttgaaagg	660
ccagaggetg aggecatgtg caceteett aaggaaaaee caaceaeett tatgggaeae	720
tatttgcatg aagttgccag aagacateet tatttetatg eeecagaaet tetttaetat	780
gctgagcagt acaatgagat tctgacccag tgttgtgcag aggctgacaa ggaaagctgc	840
ctgaccccga agcttgatgg tgtgaaggag aaagcattgg tctcatctgt ccgtcagaga	900
atgaagtgct ccagtatgca gaagtttgga gagagagctt ttaaagcatg ggcagtagct	960
cgtctgagcc agacattccc caatgctgac tttgcagaaa tcaccaaatt ggcaacagac	1020
ctgaccaaag tcaacaagga gtgctgccat ggtgacctgc tggaatgcgc agatgacagg	1080
goggaacttg ccaagtacat gtgtgaaaac caggogacta totocagcaa actgoagact	1140
tgctgcgata aaccactgtt gaagaaagcc cactgtctta gtgaggtgga gcatgacacc	1200
atgeetgetg atetgeetge cattgetget gattttgttg aggaecagga agtgtgeaag	1260
aactatgctg aggccaagga tgtcttcctg ggcacgttct tgtatgaata ttcaagaaga	1320
caccetgatt actetgtate cetgttgetg agaettgeta agaaatatga ageeactetg	1380
gaaaagtgct gcgctgaagc caatceteee gcatgetaeg geacagtget tgetgaattt	1440
cageetettg tagaagagee taagaaettg gteaaaaeea aetgtgatet ttaegagaag	1500
cttggagaat atggattcca aaatgccatt ctagttcgct acacccagaa agcacctcag	1560
gtgtcaaccc caactctcgt ggaggctgca agaaacctag gaagagtggg caccaagtgt	1620
tgtacacttc ctgaagatca gagactgcct tgtgtggaag actatctgtc tgcaatcctg	1680
aaccgtgtgt gtctgctgca tgagaagacc ccagtgagtg agcatgttac caagtgctgt	1740
agtggatccc tggtggaaag gcggccatgc ttctctgctc tgacagttga tgaaacatat	1800
gtccccaaag agtttaaagc tgagacette acetteeaet etgatatetg cacaetteea	1860
gagaaggaga agcagattaa gaaacaaacg gctcttgctg agctggtgaa gcacaagccc	1920
aaggctacag cggagcaact gaagactgtc atggatgact ttgcacagtt cctggataca	1980
tgttgcaagg ctgctgacaa ggacacctgc ttctcgactg agggtccaaa ccttgtcact	2040
agatgcaaag acgcettage eggaggggge ggtteeeaec ateaceaeca teaetgataa	2100
<210> SEQ ID NO 57 <211> LENGTH: 2109 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL430-105-(Gly4Ser) mouse SA-(Gly4Ser)-His6	2-
<400> SEQUENCE: 57	
atgagggtcc ccgctcagct cctgggggctc ctgctgctct ggctcccagg tgcacgatgt	60
gtgacatctg ccggccctga ggaaagcgac ggcgatctgt cttgcgtgtg cgtgaaaacc	120
atcagcagcg gcatccacct gaagcacatc accagcctgg aagtgatcaa ggccggcagg	180
cactgtgccg tgcctcagct gattgccacc ctgaagaacg gccggaagat ctgcctggac	240
agacaggeee eeetgtacaa gaaagtgatt aagaagatee tggaaagegg tggaggeggt	300
agcggaggcg gagggtcgga agcacacaag agtgagatcg cccatcggta taatgatttg	360
ggagaacaac atttcaaagg cctagtcctg attgcctttt cccagtatct ccagaaatgc	420

cont	

-continued	
tcatacgatg agcatgccaa attagtgcag gaagtaacag actttgcaaa gacgtgtgtt	480
gccgatgagt ctgccgccaa ctgtgacaaa tcccttcaca ctcttttgg agataagttg	540
tgtgccattc caaacctccg tgaaaactat ggtgaactgg ctgactgctg tacaaaacaa	600
gageeegaaa gaaacgaatg ttteetgeaa cacaaagatg acaaeeeeag eetgeeacea	660
tttgaaagge cagaggetga ggeeatgtge aceteettta aggaaaaeee aaceaeett	720
atgggacact atttgcatga agttgccaga agacateett atttetatge eecagaaett	780
ctttactatg ctgagcagta caatgagatt ctgacccagt gttgtgcaga ggctgacaag	840
gaaagctgcc tgaccccgaa gcttgatggt gtgaaggaga aagcattggt ctcatctgtc	900
cgtcagagaa tgaagtgctc cagtatgcag aagtttggag agagagcttt taaagcatgg	960
gcagtagete gtetgageea gaeatteeee aatgetgaet ttgeagaaat eaceaattg	1020
gcaacagacc tgaccaaagt caacaaggag tgctgccatg gtgacctgct ggaatgcgca	1080
gatgacaggg cggaacttgc caagtacatg tgtgaaaacc aggcgactat ctccagcaaa	1140
ctgcagactt gctgcgataa accactgttg aagaaagccc actgtcttag tgaggtggag	1200
catgacacca tgcctgctga tctgcctgcc attgctgctg attttgttga ggaccaggaa	1260
gtgtgcaaga actatgctga ggccaaggat gtcttcctgg gcacgttctt gtatgaatat	1320
tcaagaagac accctgatta ctctgtatcc ctgttgctga gacttgctaa gaaatatgaa	1380
gccactctgg aaaagtgctg cgctgaagcc aatcctcccg catgctacgg cacagtgctt	1440
getgaattte ageetettgt agaagageet aagaaettgg teaaaaeeaa etgtgatett	1500
acgagaagc ttggagaata tggattccaa aatgccattc tagttcgcta cacccagaaa	1560
gcacctcagg tgtcaacccc aactctcgtg gaggctgcaa gaaacctagg aagagtgggc	1620
accaagtgtt gtacacttcc tgaagatcag agactgcctt gtgtggaaga ctatctgtct	1680
gcaateetga aeegtgtgtg tetgetgeat gagaagaeee eagtgagtga geatgttaee	1740
aagtgetgta gtggateeet ggtggaaagg eggeeatget tetetgetet gaeagttgat	1800
yaaacatatg teeecaaaga gtttaaaget gagaeettea eetteeaete tgatatetge	1860
acacttccag agaaggagaa gcagattaag aaacaaacgg ctcttgctga gctggtgaag	1920
cacaagccca aggctacagc ggagcaactg aagactgtca tggatgactt tgcacagttc	1980
ctggatacat gttgcaaggc tgctgacaag gacacctgct tctcgactga gggtccaaac	2040
rttgtcacta gatgcaaaga cgccttagcc ggaggggggg gttcccacca tcaccaccat	2100
Cactgataa	2109
<pre><210> SEQ ID NO 58 <211> LENGTH: 2094 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL548-118-(Gly4Ser) mouse SA-(Gly4Ser)-His6</pre>	2-
<400> SEQUENCE: 58	
atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt	60
gccaccgagc tgagatgcgt gtgcctgacc gtgaccccca agatcaaccc caagctgatc	120
gecaacetgg aagtgateee tgeeggeeet eagtgeeeea eegtggaagt gattgeeaag	180
rtgaagaacc agaaagaagt gtgcctggac cccgaggccc ccgtgatcaa gaagatcatc	240

-continued

cagaagatcc	tgggcagcga	caagaagaaa	gccggtggag	gcggtagcgg	aggcggaggg	300	
tcggaagcac	acaagagtga	gatcgcccat	cggtataatg	atttgggaga	acaacatttc	360	
aaaggcctag	tcctgattgc	cttttcccag	tatctccaga	aatgctcata	cgatgagcat	420	
gccaaattag	tgcaggaagt	aacagacttt	gcaaagacgt	gtgttgccga	tgagtctgcc	480	
gccaactgtg	acaaatccct	tcacactctt	tttggagata	agttgtgtgc	cattccaaac	540	
ctccgtgaaa	actatggtga	actggctgac	tgctgtacaa	aacaagagcc	cgaaagaaac	600	
gaatgtttcc	tgcaacacaa	agatgacaac	cccagcctgc	caccatttga	aaggccagag	660	
gctgaggcca	tgtgcacctc	ctttaaggaa	aacccaacca	cctttatggg	acactatttg	720	
catgaagttg	ccagaagaca	tccttatttc	tatgccccag	aacttcttta	ctatgctgag	780	
cagtacaatg	agattetgae	ccagtgttgt	gcagaggctg	acaaggaaag	ctgcctgacc	840	
ccgaagcttg	atggtgtgaa	ggagaaagca	ttggtctcat	ctgtccgtca	gagaatgaag	900	
tgctccagta	tgcagaagtt	tggagagaga	gcttttaaag	catgggcagt	agctcgtctg	960	
agccagacat	tccccaatgc	tgactttgca	gaaatcacca	aattggcaac	agacctgacc	1020	
aaagtcaaca	aggagtgctg	ccatggtgac	ctgctggaat	gcgcagatga	cagggcggaa	1080	
cttgccaagt	acatgtgtga	aaaccaggcg	actatctcca	gcaaactgca	gacttgctgc	1140	
gataaaccac	tgttgaagaa	agcccactgt	cttagtgagg	tggagcatga	caccatgcct	1200	
gctgatctgc	ctgccattgc	tgctgatttt	gttgaggacc	aggaagtgtg	caagaactat	1260	
gctgaggcca	aggatgtctt	cctgggcacg	ttcttgtatg	aatattcaag	aagacaccct	1320	
gattactctg	tatccctgtt	gctgagactt	gctaagaaat	atgaagccac	tctggaaaag	1380	
tgctgcgctg	aagccaatcc	tcccgcatgc	tacggcacag	tgcttgctga	atttcagcct	1440	
cttgtagaag	agcctaagaa	cttggtcaaa	accaactgtg	atctttacga	gaagcttgga	1500	
gaatatggat	tccaaaatgc	cattctagtt	cgctacaccc	agaaagcacc	tcaggtgtca	1560	
accccaactc	tcgtggaggc	tgcaagaaac	ctaggaagag	tgggcaccaa	gtgttgtaca	1620	
cttcctgaag	atcagagact	gccttgtgtg	gaagactatc	tgtctgcaat	cctgaaccgt	1680	
gtgtgtctgc	tgcatgagaa	gaccccagtg	agtgagcatg	ttaccaagtg	ctgtagtgga	1740	
tccctggtgg	aaaggcggcc	atgcttctct	gctctgacag	ttgatgaaac	atatgtcccc	1800	
aaagagttta	aagctgagac	cttcaccttc	cactctgata	tctgcacact	tccagagaag	1860	
gagaagcaga	ttaagaaaca	aacggctctt	gctgagctgg	tgaagcacaa	gcccaaggct	1920	
acagcggagc	aactgaagac	tgtcatggat	gactttgcac	agttcctgga	tacatgttgc	1980	
aaggctgctg	acaaggacac	ctgcttctcg	actgagggtc	caaaccttgt	cactagatgc	2040	
aaagacgcct	tagccggagg	gggcggttcc	caccatcacc	accatcactg	ataa	2094	
-2105 CEO 1	ID NO EQ						

<210> SEQ ID NO 59 <211> LENGTH: 2079 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL748-113-(Gly4Ser)2mouse SA-(Gly4Ser)-His6

<400> SEQUENCE: 59

-continued

		-concinued	
atcgagctgc ggtgccggtg	caccaacacc atcagcggca	tccctttcaa cagcatcagc	120
ctcgtgaacg tgtacagacc	cggcgtgcac tgcgccgacg	tggaagtgat tgctacactg	180
aagaatgggc agaaaacctg	cctggacccc aacgcccctg	gcgtgaagcg gatcgtgatg	240
aagattctgg aaggctacgg	tggaggcggt agcggaggcg	gagggtcgga agcacacaag	300
agtgagatcg cccatcggta	taatgatttg ggagaacaac	atttcaaagg cctagtcctg	360
attgcctttt cccagtatct	ccagaaatgc tcatacgatg	agcatgccaa attagtgcag	420
gaagtaacag actttgcaaa	gacgtgtgtt gccgatgagt	ctgccgccaa ctgtgacaaa	480
tcccttcaca ctctttttgg	agataagttg tgtgccattc	caaacctccg tgaaaactat	540
ggtgaactgg ctgactgctg	tacaaaacaa gagcccgaaa	gaaacgaatg tttcctgcaa	600
cacaaagatg acaaccccag	cctgccacca tttgaaaggc	cagaggctga ggccatgtgc	660
acctccttta aggaaaaccc	aaccaccttt atgggacact	atttgcatga agttgccaga	720
agacatcctt atttctatgc	cccagaactt ctttactatg	ctgagcagta caatgagatt	780
ctgacccagt gttgtgcaga	ggctgacaag gaaagctgcc	tgaccccgaa gcttgatggt	840
gtgaaggaga aagcattggt	ctcatctgtc cgtcagagaa	tgaagtgctc cagtatgcag	900
aagtttggag agagagcttt	taaagcatgg gcagtagctc	gtetgageea gaeatteeee	960
aatgctgact ttgcagaaat	caccaaattg gcaacagacc	tgaccaaagt caacaaggag	1020
tgctgccatg gtgacctgct	ggaatgcgca gatgacaggg	cggaacttgc caagtacatg	1080
tgtgaaaacc aggcgactat	ctccagcaaa ctgcagactt	gctgcgataa accactgttg	1140
aagaaagccc actgtcttag	tgaggtggag catgacacca	tgeetgetga tetgeetgee	1200
attgctgctg attttgttga	ggaccaggaa gtgtgcaaga	actatgctga ggccaaggat	1260
gtcttcctgg gcacgttctt	gtatgaatat tcaagaagac	accctgatta ctctgtatcc	1320
ctgttgctga gacttgctaa	gaaatatgaa gccactctgg	aaaagtgctg cgctgaagcc	1380
aatcctcccg catgctacgg	cacagtgctt gctgaatttc	agcetettgt agaagageet	1440
aagaacttgg tcaaaaccaa	ctgtgatctt tacgagaagc	ttggagaata tggattccaa	1500
aatgccattc tagttcgcta	cacccagaaa gcacctcagg	tgtcaacccc aactctcgtg	1560
gaggctgcaa gaaacctagg	aagagtgggc accaagtgtt	gtacacttcc tgaagatcag	1620
agactgcctt gtgtggaaga	ctatctgtct gcaatcctga	accgtgtgtg tctgctgcat	1680
gagaagaccc cagtgagtga	gcatgttacc aagtgctgta	gtggatccct ggtggaaagg	1740
cggccatgct tctctgctct	gacagttgat gaaacatatg	tccccaaaga gtttaaagct	1800
gagacettea cettecaete	tgatatctgc acacttccag	agaaggagaa gcagattaag	1860
aaacaaacgg ctcttgctga	gctggtgaag cacaagccca	aggctacagc ggagcaactg	1920
aagactgtca tggatgactt	tgcacagttc ctggatacat	gttgcaaggc tgctgacaag	1980
gacacctgct tctcgactga	gggtccaaac cttgtcacta	gatgcaaaga cgccttagcc	2040
ggagggggggg gttcccacca	tcaccaccat cactgataa		2079
<210> SEQ ID NO 60 <211> LENGTH: 2196 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE:	icial Sequence		

<220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL922-126-(Gly4Ser)2mouse SA-(Gly4Ser)-His6

<400> SEQUENCE: 60				
atgagggtcc ccgctcagct cctgggg	ctc ctgctgctct	ggctcccagg	tgcacgatgt	60
accctcgtga tccggaacgc ccggtgc	agc tgtatcagca	ccagcagagg	caccatccac	120
tacaagagcc tgaaggatct gaagcag	ttc gcccccagcc	ccaactgcaa	caagaccgag	180
attatcgcca cactgaaaaa cggggac	cag acctgtctgg	accccgacag	cgccaacgtg	240
aagaaactga tgaaggaatg ggagaag	aag atcagccaga	agaagaagca	gaagcgggggc	300
aagaaacacc agaaaaacat gaagaac	cgg aagcccaaga	ccccccagag	ccggcggaga	360
tccagaaaga ccacaggtgg aggcggt	agc ggaggcggag	ggtcggaagc	acacaagagt	420
gagatcgccc atcggtataa tgatttg	gga gaacaacatt	tcaaaggcct	agtcctgatt	480
gccttttccc agtatctcca gaaatgc	tca tacgatgagc	atgccaaatt	agtgcaggaa	540
gtaacagact ttgcaaagac gtgtgtt	gee gatgagtetg	ccgccaactg	tgacaaatcc	600
cttcacactc tttttggaga taagttg	tgt gccattccaa	acctccgtga	aaactatggt	660
gaactggctg actgctgtac aaaacaa	gag cccgaaagaa	acgaatgttt	cctgcaacac	720
aaagatgaca accccagcct gccacca	ttt gaaaggccag	aggctgaggc	catgtgcacc	780
teetttaagg aaaaeecaae caeettt	atg ggacactatt	tgcatgaagt	tgccagaaga	840
catcettatt tetatgeece agaaett	ctt tactatgctg	agcagtacaa	tgagattctg	900
acccagtgtt gtgcagaggc tgacaag	gaa agctgcctga	ccccgaagct	tgatggtgtg	960
aaggagaaag cattggtctc atctgtc	cgt cagagaatga	agtgctccag	tatgcagaag	1020
tttggagaga gagcttttaa agcatgg	gca gtagctcgtc	tgagccagac	attccccaat	1080
gctgactttg cagaaatcac caaattg	gca acagacctga	ccaaagtcaa	caaggagtgc	1140
tgccatggtg acctgctgga atgcgca	gat gacagggcgg	aacttgccaa	gtacatgtgt	1200
gaaaaccagg cgactatctc cagcaaa	ctg cagacttgct	gcgataaacc	actgttgaag	1260
aaagcccact gtcttagtga ggtggag	cat gacaccatgc	ctgctgatct	gcctgccatt	1320
gctgctgatt ttgttgagga ccaggaa	gtg tgcaagaact	atgctgaggc	caaggatgtc	1380
ttcctgggca cgttcttgta tgaatat	tca agaagacacc	ctgattactc	tgtatccctg	1440
ttgctgagac ttgctaagaa atatgaa	gcc actctggaaa	agtgctgcgc	tgaagccaat	1500
cctcccgcat gctacggcac agtgctt	gct gaatttcagc	ctcttgtaga	agagcctaag	1560
aacttggtca aaaccaactg tgatctt	tac gagaagcttg	gagaatatgg	attccaaaat	1620
gccattctag ttcgctacac ccagaaa	gca cctcaggtgt	caaccccaac	tctcgtggag	1680
gctgcaagaa acctaggaag agtgggc	acc aagtgttgta	cacttcctga	agatcagaga	1740
ctgccttgtg tggaagacta tctgtct	gca atcctgaacc	gtgtgtgtct	gctgcatgag	1800
aagaccccag tgagtgagca tgttacc	aag tgctgtagtg	gatccctggt	ggaaaggcgg	1860
ccatgcttct ctgctctgac agttgat	gaa acatatgtcc	ccaaagagtt	taaagctgag	1920
accttcacct tccactctga tatctgc	aca cttccagaga	aggagaagca	gattaagaaa	1980
caaacggctc ttgctgagct ggtgaag	cac aagcccaagg	ctacagcgga	gcaactgaag	2040
actgtcatgg atgactttgc acagttc	ctg gatacatgtt	gcaaggctgc	tgacaaggac	2100
acctgcttct cgactgaggg tccaaac	ctt gtcactagat	gcaaagacgc	cttagccgga	2160
gggggggggtt cccaccatca ccaccat	cac tgataa			2196

<210> SEQ ID NO 61 <211> LENGTH: 2112 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mCXCL1022-98-(Gly4Ser)2mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 61 atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg tgcacgatgt 60 atcccactgg ccagaaccgt gcggtgcaac tgcatccaca tcgacgatgg ccccgtgcgg 120 180 atqaqaqcca tcqqcaaqct qqaaatcatc cccqccaqcc tqaqctqccc caqaqtqqaa 240 attatcqcca ccatqaaqaa qaacqacqaq caqcqqtqcc tqaaccccqa qaqcaaqacc atcaagaacc tgatgaaggc ctttagccag aagcggagca agagggcccc aggtggaggc 300 ggtagcggag gcggagggtc ggaagcacac aagagtgaga tcgcccatcg gtataatgat 360 ttqqqaqaac aacatttcaa aqqcctaqtc ctqattqcct tttccccaqta tctcccaqaaa 420 tgctcatacg atgagcatgc caaattagtg caggaagtaa cagactttgc aaagacgtgt 480 gttgccgatg agtctgccgc caactgtgac aaatcccttc acactctttt tggagataag 540 600 ttqtqtqcca ttccaaacct ccqtqaaaac tatqqtqaac tqqctqactq ctqtacaaaa caagageeeg aaagaaaega atgttteetg caacacaaag atgacaaeee cageetgeea 660 ccatttgaaa ggccagaggc tgaggccatg tgcacctcct ttaaggaaaa cccaaccacc 720 tttatgggac actatttgca tgaagttgcc agaagacatc cttatttcta tgccccagaa 780 cttctttact atgctgagca gtacaatgag attctgaccc agtgttgtgc agaggctgac 840 aaggaaagct gcctgacccc gaagcttgat ggtgtgaagg agaaagcatt ggtctcatct 900 gtccgtcaga gaatgaagtg ctccagtatg cagaagtttg gagagagagc ttttaaagca 960 tgggcagtag ctcgtctgag ccagacattc cccaatgctg actttgcaga aatcaccaaa 1020 ttggcaacag acctgaccaa agtcaacaag gagtgctgcc atggtgacct gctggaatgc 1080 gcagatgaca gggcggaact tgccaagtac atgtgtgaaa accaggcgac tatctccagc 1140 aaactgcaga cttgctgcga taaaccactg ttgaagaaag cccactgtct tagtgaggtg 1200 gagcatgaca ccatgcctgc tgatctgcct gccattgctg ctgattttgt tgaggaccag 1260 gaagtgtgca agaactatgc tgaggccaag gatgtcttcc tgggcacgtt cttgtatgaa 1320 tattcaagaa gacaccctga ttactctgta tccctgttgc tgagacttgc taagaaatat 1380 gaagccactc tggaaaagtg ctgcgctgaa gccaatcctc ccgcatgcta cggcacagtg 1440 cttgctgaat ttcagcctct tgtagaagag cctaagaact tggtcaaaac caactgtgat 1500 ctttacgaga agettggaga atatggatte caaaatgeea ttetagtteg etacaeceag 1560 aaagcacctc aggtgtcaac cccaactctc gtggaggctg caagaaacct aggaagagtg 1620 ggcaccaagt gttgtacact tcctgaagat cagagactgc cttgtgtgga agactatctg 1680 tctgcaatcc tgaaccgtgt gtgtctgctg catgagaaga ccccagtgag tgagcatgtt 1740 accaagtgct gtagtggatc cctggtggaa aggcggccat gcttctctgc tctgacagtt 1800 gatgaaacat atgtccccaa agagtttaaa gctgagacct tcaccttcca ctctgatatc 1860 tgcacacttc cagagaagga gaagcagatt aagaaacaaa cggctcttgc tgagctggtg 1920

-continued

			-contir	nuea	
aagcacaagc ccaaggctac	agcggagcaa	ctgaagactg	tcatggatga	ctttgcacag	1980
ttcctggata catgttgcaa	ggctgctgac	aaggacacct	gcttctcgac	tgagggtcca	2040
aaccttgtca ctagatgcaa	agacgcctta	gccggagggg	gcggttccca	ccatcaccac	2100
catcactgat aa					2112
<210> SEQ ID NO 62 <211> LENGTH: 2118 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI mouse SA-(Gly4S	ON: Synthet		-mCXCL1122-	100- (Gly4Ser	·) 2-
<400> SEQUENCE: 62					
atgagggtcc ccgctcagct	cctggggctc	ctgctgctct	ggctcccagg	tgcacgatgt	60
ttcctgatgt tcaagcaggg	ccggtgcctg	tgcatcggcc	ctggaatgaa	ggccgtgaag	120
atggccgaga tcgagaaggc	cagcgtgatc	taccccagca	acggctgcga	caaggtggaa	180
gtgatcgtga ccatgaaggc	ccacaagcgg	cagagatgcc	tggaccccag	atccaagcag	240
gcccggctga tcatgcaggc	tatcgagaag	aagaatttcc	tgcggcggca	gaacatgggt	300
ggaggcggta gcggaggcgg	agggtcggaa	gcacacaaga	gtgagatcgc	ccatcggtat	360
aatgatttgg gagaacaaca	tttcaaaggc	ctagtcctga	ttgccttttc	ccagtatctc	420
cagaaatgct catacgatga	gcatgccaaa	ttagtgcagg	aagtaacaga	ctttgcaaag	480
acgtgtgttg ccgatgagtc	tgccgccaac	tgtgacaaat	cccttcacac	tctttttgga	540
gataagttgt gtgccattcc	aaacctccgt	gaaaactatg	gtgaactggc	tgactgctgt	600
acaaaacaag agcccgaaag	aaacgaatgt	ttcctgcaac	acaaagatga	caaccccagc	660
ctgccaccat ttgaaaggcc	agaggctgag	gccatgtgca	cctcctttaa	ggaaaaccca	720
accaccttta tgggacacta	tttgcatgaa	gttgccagaa	gacatcctta	tttctatgcc	780
ccagaacttc tttactatgc	tgagcagtac	aatgagattc	tgacccagtg	ttgtgcagag	840
gctgacaagg aaagctgcct	gaccccgaag	cttgatggtg	tgaaggagaa	agcattggtc	900
tcatctgtcc gtcagagaat	gaagtgctcc	agtatgcaga	agtttggaga	gagagctttt	960
aaagcatggg cagtagctcg	tctgagccag	acatteccca	atgctgactt	tgcagaaatc	1020
accaaattgg caacagacct	gaccaaagtc	aacaaggagt	gctgccatgg	tgacctgctg	1080
gaatgegeag atgaeaggge	ggaacttgcc	aagtacatgt	gtgaaaacca	ggcgactatc	1140
tccagcaaac tgcagacttg	ctgcgataaa	ccactgttga	agaaagccca	ctgtcttagt	1200
gaggtggagc atgacaccat	gcctgctgat	ctgcctgcca	ttgctgctga	ttttgttgag	1260
gaccaggaag tgtgcaagaa	ctatgctgag	gccaaggatg	tcttcctggg	cacgttcttg	1320
tatgaatatt caagaagaca	ccctgattac	tctgtatccc	tgttgctgag	acttgctaag	1380
aaatatgaag ccactctgga	aaagtgctgc	gctgaagcca	atcctcccgc	atgctacggc	1440
acagtgcttg ctgaatttca	gcctcttgta	gaagagccta	agaacttggt	caaaaccaac	1500
tgtgatcttt acgagaagct	tggagaatat	ggattccaaa	atgccattct	agttcgctac	1560
acccagaaag cacctcaggt			-		1620
agagtgggca ccaagtgttg					1680
tatctgtctg caatcctgaa					1740
callergeery caaleergaa	yıyıyıyı	cuycuydaug	uyaayaccee	agugagugag	T /40

-continued

acagttgatg aaacatatgt ccccaaagag tttaaagctg agaccttcac cttccactct gatatetgea caetteeaga gaaggagaag cagattaaga aacaaaegge tettgetgag ctggtgaagc acaagcccaa ggctacagcg gagcaactga agactgtcat ggatgacttt gcacagttcc tggatacatg ttgcaaggct gctgacaagg acacctgctt ctcgactgag ggtccaaacc ttgtcactag atgcaaagac gccttagccg gagggggggg ttcccaccat caccaccatc actgataa <210> SEQ ID NO 63 <211> LENGTH: 698 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL135-107-(Gly4Ser)2-mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 63 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Ala Ser Val Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr Leu Gln Gly Ile His Pro Lys Asn Ile Gln Ser Val Asn Val Lys Ser Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn Gly Arg Lys Ala Cys Leu Asn Pro Ala Ser Pro Ile Val Lys Lys Ile Ile Glu Lys Met Leu Asn Ser Asp Lys Ser Asn Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys

Ala	Glu	Ala 275	Asp	Lys	Glu	Ser	Сув 280	Leu	Thr	Pro	Lys	Leu 285	Asp	Gly	Val
Lys	Glu 290	Lys	Ala	Leu	Val	Ser 295	Ser	Val	Arg	Gln	Arg 300	Met	Lys	Суз	Ser
Ser 305	Met	Gln	Lys	Phe	Gly 310	Glu	Arg	Ala	Phe	Lys 315	Ala	Trp	Ala	Val	Ala 320
Arg	Leu	Ser	Gln	Thr 325	Phe	Pro	Asn	Ala	Asp 330	Phe	Ala	Glu	Ile	Thr 335	Lys
Leu	Ala	Thr	Asp 340	Leu	Thr	LYa	Val	Asn 345	ГЛа	Glu	Сүз	Сүз	His 350	Gly	Asp
Leu	Leu	Glu 355	Суз	Ala	Asp	Asp	Arg 360	Ala	Glu	Leu	Ala	Lys 365	Tyr	Met	Сүз
Glu	Asn 370	Gln	Ala	Thr	Ile	Ser 375	Ser	Lys	Leu	Gln	Thr 380	Суз	Cys	Asp	Lys
Pro 385	Leu	Leu	Lys	Гла	Ala 390	His	Суз	Leu	Ser	Glu 395	Val	Glu	His	Asp	Thr 400
Met	Pro	Ala	Asp	Leu 405	Pro	Ala	Ile	Ala	Ala 410	Asp	Phe	Val	Glu	Asp 415	Gln
Glu	Val	Cys	Lys 420	Asn	Tyr	Ala	Glu	Ala 425	Lys	Asp	Val	Phe	Leu 430	Gly	Thr
Phe	Leu	Tyr 435	Glu	Tyr	Ser	Arg	Arg 440	His	Pro	Asp	Tyr	Ser 445	Val	Ser	Leu
Leu	Leu 450	Arg	Leu	Ala	Lys	Lys 455	Tyr	Glu	Ala	Thr	Leu 460	Glu	Lys	Суз	Сүз
Ala 465	Glu	Ala	Asn	Pro	Pro 470	Ala	Сүз	Tyr	Gly	Thr 475	Val	Leu	Ala	Glu	Phe 480
Gln	Pro	Leu	Val	Glu 485	Glu	Pro	Lys	Asn	Leu 490	Val	Lys	Thr	Asn	Cys 495	Asp
Leu	Tyr	Glu	Lys 500	Leu	Gly	Glu	Tyr	Gly 505	Phe	Gln	Asn	Ala	Ile 510	Leu	Val
Arg	Tyr	Thr 515	Gln	ГЛа	Ala	Pro	Gln 520	Val	Ser	Thr	Pro	Thr 525	Leu	Val	Glu
Ala	Ala 530	Arg	Asn	Leu	Gly	Arg 535	Val	Gly	Thr	Lys	Cys 540	СЛа	Thr	Leu	Pro
Glu 545	Asp	Gln	Arg	Leu	Pro 550	Сүз	Val	Glu	Asp	Tyr 555	Leu	Ser	Ala	Ile	Leu 560
Asn	Arg	Val	Сүз	Leu 565	Leu	His	Glu	Lys	Thr 570	Pro	Val	Ser	Glu	His 575	Val
Thr	ГÀа	Суз	Суз 580	Ser	Gly	Ser	Leu	Val 585	Glu	Arg	Arg	Pro	Суз 590	Phe	Ser
Ala	Leu	Thr 595	Val	Asp	Glu	Thr	Tyr 600	Val	Pro	Lys	Glu	Phe 605	Lys	Ala	Glu
Thr	Phe 610	Thr	Phe	His	Ser	Asp 615	Ile	Суз	Thr	Leu	Pro 620	Glu	Lys	Glu	Lya
Gln 625	Ile	Lys	Lys	Gln	Thr 630	Ala	Leu	Ala	Glu	Leu 635	Val	Lys	His	Lys	Pro 640
Lys	Ala	Thr	Ala	Glu 645	Gln	Leu	Lys	Thr	Val 650	Met	Asp	Asp	Phe	Ala 655	Gln
Phe	Leu	Asp	Thr 660	Суз	Суз	Lys	Ala	Ala 665	Asp	Lys	Asp	Thr	Cys 670	Phe	Ser

-continued

Thr	Glu	Gly 675	Pro	Asn	Leu	Val	Thr 680	Arg	Сув	Lys	Asp	Ala 685	Leu	Ala	Gly
Gly	Gly 690	Gly	Ser	His	His	His 695	His	His	His						
<211 <212 <213 <220	L> LI 2> T 3> OF 0> FI 3> O	ENGTH (PE : RGAN] EATUH THER	ISM: RE: INF(98 Art:	rion	ial Syn	-		LS-1	nCXCI	L235	-107	- (Gly	/4Se:	r)2-mouse SA-
<400)> SI	EQUEI	NCE :	64											
Met 1	Arg	Val	Pro	Ala 5	Gln	Leu	Leu	Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
Gly	Ala	Arg	Суз 20	Ala	Pro	Leu	Ala	Thr 25	Glu	Leu	Arg	Суа	Gln 30	Суз	Leu
Gln	Thr	Leu 35	Gln	Gly	Ile	His	Leu 40	Гла	Asn	Ile	Gln	Ser 45	Val	Lys	Val
Lys	Ser 50	Pro	Gly	Pro	His	Сув 55	Ala	Gln	Thr	Glu	Val 60	Ile	Ala	Thr	Leu
Lys 65	Asn	Gly	Gln	Lys	Ala 70	Сүз	Leu	Asn	Pro	Ala 75	Ser	Pro	Met	Val	ГЛа 80
Lys	Ile	Ile	Glu	Lys 85	Met	Leu	Lys	Asn	Gly 90	Lys	Ser	Asn	Gly	Gly 95	Gly
Gly	Ser	Gly	Gly 100	Gly	Gly	Ser	Glu	Ala 105	His	Lys	Ser	Glu	Ile 110	Ala	His
Arg	Tyr	Asn 115	Asp	Leu	Gly	Glu	Gln 120	His	Phe	Lys	Gly	Leu 125	Val	Leu	Ile
Ala	Phe 130	Ser	Gln	Tyr	Leu	Gln 135	Lys	Суз	Ser	Tyr	Asp 140	Glu	His	Ala	Гла
Leu 145	Val	Gln	Glu	Val	Thr 150	Asp	Phe	Ala	Гла	Thr 155	Суз	Val	Ala	Asp	Glu 160
Ser	Ala	Ala	Asn	Cys 165	Asp	Lys	Ser	Leu	His 170	Thr	Leu	Phe	Gly	Asp 175	ГЛа
Leu	Cys	Ala	Ile 180	Pro	Asn	Leu	Arg	Glu 185	Asn	Tyr	Gly	Glu	Leu 190	Ala	Asp
Cys	Суз	Thr 195	Lys	Gln	Glu	Pro	Glu 200	Arg	Asn	Glu	Суз	Phe 205	Leu	Gln	His
Lys	Asp 210	Asp	Asn	Pro	Ser	Leu 215	Pro	Pro	Phe	Glu	Arg 220	Pro	Glu	Ala	Glu
Ala 225	Met	Суз	Thr	Ser	Phe 230	ГЛа	Glu	Asn	Pro	Thr 235	Thr	Phe	Met	Gly	His 240
Tyr	Leu	His	Glu	Val 245	Ala	Arg	Arg	His	Pro 250	Tyr	Phe	Tyr	Ala	Pro 255	Glu
Leu	Leu	Tyr	Tyr 260	Ala	Glu	Gln	Tyr	Asn 265	Glu	Ile	Leu	Thr	Gln 270	Cys	Сув
Ala	Glu	Ala 275	Asp	Lys	Glu	Ser	Cys 280	Leu	Thr	Pro	Гла	Leu 285	Asp	Gly	Val
ГЛа	Glu 290	Lys	Ala	Leu	Val	Ser 295	Ser	Val	Arg	Gln	Arg 300	Met	Гла	Суз	Ser
Ser 305	Met	Gln	Lys	Phe	Gly 310	Glu	Arg	Ala	Phe	Lys 315	Ala	Trp	Ala	Val	Ala 320

Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr 420 425 Phe Leu Tyr Glu Tyr Ser Arg Arg His Pro Asp Tyr Ser Val Ser Leu Leu Leu Arg Leu Ala Lys Lys Tyr Glu Ala Thr Leu Glu Lys Cys Cys Ala Glu Ala Asn Pro Pro Ala Cys Tyr Gly Thr Val Leu Ala Glu Phe Gln Pro Leu Val Glu Glu Pro Lys Asn Leu Val Lys Thr Asn Cys Asp Leu Tyr Glu Lys Leu Gly Glu Tyr Gly Phe Gln Asn Ala Ile Leu Val Arg Tyr Thr Gln Lys Ala Pro Gln Val Ser Thr Pro Thr Leu Val Glu Ala Ala Arg Asn Leu Gly Arg Val Gly Thr Lys Cys Cys Thr Leu Pro Glu Asp Gln Arg Leu Pro Cys Val Glu Asp Tyr Leu Ser Ala Ile Leu Asn Arg Val Cys Leu Leu His Glu Lys Thr Pro Val Ser Glu His Val Thr Lys Cys Cys Ser Gly Ser Leu Val Glu Arg Arg Pro Cys Phe Ser Ala Leu Thr Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Lys Ala Glu Thr Phe Thr Phe His Ser Asp Ile Cys Thr Leu Pro Glu Lys Glu Lys Gln Ile Lys Lys Gln Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly Gly Ser His His His His His His

<210> SEQ ID NO 65 <211> LENGTH: 698

<pre><12> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL335-107-(Gly4Ser)2-mouse SA- (Gly4Ser)-His6</pre>
<400> SEQUENCE: 65
Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro 1 5 10 15
Gly Ala Arg Cys Ala Ser Val Val Thr Glu Leu Arg Cys Gln Cys Leu 20 25 30
Gln Thr Leu Gln Gly Ile His Leu Lys Asn Ile Gln Ser Val Asn Val 35 40 45
Arg Ser Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu 50 55 60
Lys Asn Gly Lys Lys Ala Cys Leu Asn Pro Ala Ser Pro Met Val Gln 65 70 75 80
Lys Ile Ile Glu Lys Ile Leu Asn Lys Gly Ser Thr Asn Gly Gly Gly 85 90 95
Gly Ser Gly Gly Gly Gly Ser Glu Ala His Lys Ser Glu Ile Ala His 100 105 110
Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile 115 120 125
Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys 130 135 140
Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu 145 150 155 160
Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys 165 170 175
Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp 180 185 190
Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His 195 200 205
Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu 210 215 220
Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His225230235240
Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu 245 250 255
Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys 260 265 270
Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val 275 280 285
Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser 290 295 300
Ser Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala 305 310 315 320
Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys 325 330 335
Leu Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp 340 345 350
Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys 355 360 365

Glu Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr Phe Leu Tyr Glu Tyr Ser Arg Arg His Pro Asp Tyr Ser Val Ser Leu 435 440 445 Leu Leu Arg Leu Ala Lys Lys Tyr Glu Ala Thr Leu Glu Lys Cys Cys Ala Glu Ala Asn Pro Pro Ala Cys Tyr Gly Thr Val Leu Ala Glu Phe 470 475 Gln Pro Leu Val Glu Glu Pro Lys Asn Leu Val Lys Thr Asn Cys Asp Leu Tyr Glu Lys Leu Gly Glu Tyr Gly Phe Gln Asn Ala Ile Leu Val Arg Tyr Thr Gln Lys Ala Pro Gln Val Ser Thr Pro Thr Leu Val Glu Ala Ala Arg Asn Leu Gly Arg Val Gly Thr Lys Cys Cys Thr Leu Pro Glu Asp Gln Arg Leu Pro Cys Val Glu Asp Tyr Leu Ser Ala Ile Leu Asn Arg Val Cys Leu Leu His Glu Lys Thr Pro Val Ser Glu His Val Thr Lys Cys Cys Ser Gly Ser Leu Val Glu Arg Arg Pro Cys Phe Ser Ala Leu Thr Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Lys Ala Glu Thr Phe Thr Phe His Ser Asp Ile Cys Thr Leu Pro Glu Lys Glu Lys Gln Ile Lys Lys Gln Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly Gly Ser His His His His His His <210> SEQ ID NO 66 <211> LENGTH: 695 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL432-101-(Gly4Ser)2-mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 66

Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro

-continued

1				5					10					15	
Gly	Ala	Arg	Cys 20	Glu	Ala	Glu	Glu	Asp 25	Gly	Asp	Leu	Gln	Cys 30	Leu	Сүз
Val	Lys	Thr 35	Thr	Ser	Gln	Val	Arg 40	Pro	Arg	His	Ile	Thr 45	Ser	Leu	Glu
Val	Ile 50	Lys	Ala	Gly	Pro	His 55	Cys	Pro	Thr	Ala	Gln 60	Leu	Ile	Ala	Thr
Leu 65	Lys	Asn	Gly	Arg	Lys 70	Ile	Суз	Leu	Asp	Leu 75	Gln	Ala	Pro	Leu	Tyr 80
ГЛа	Lys	Ile	Ile	Lys 85	Гла	Leu	Leu	Glu	Ser 90	Gly	Gly	Gly	Gly	Ser 95	Gly
Gly	Gly	Gly	Ser 100	Glu	Ala	His	Lys	Ser 105	Glu	Ile	Ala	His	Arg 110	Tyr	Asn
Asp	Leu	Gly 115	Glu	Gln	His	Phe	Lys 120	Gly	Leu	Val	Leu	Ile 125	Ala	Phe	Ser
Gln	Tyr 130	Leu	Gln	Lys	Суз	Ser 135	Tyr	Asp	Glu	His	Ala 140	Lys	Leu	Val	Gln
Glu 145	Val	Thr	Asp	Phe	Ala 150	ГÀа	Thr	Сүз	Val	Ala 155	Asp	Glu	Ser	Ala	Ala 160
Asn	Cys	Asp	Lys	Ser 165	Leu	His	Thr	Leu	Phe 170	Gly	Asp	ГЛа	Leu	Cys 175	Ala
Ile	Pro	Asn	Leu 180	Arg	Glu	Asn	Tyr	Gly 185	Glu	Leu	Ala	Asp	Cys 190	Сув	Thr
Lys	Gln	Glu 195	Pro	Glu	Arg	Asn	Glu 200	Сүз	Phe	Leu	Gln	His 205	Lys	Asp	Aap
Asn	Pro 210	Ser	Leu	Pro	Pro	Phe 215	Glu	Arg	Pro	Glu	Ala 220	Glu	Ala	Met	Сүз
Thr 225	Ser	Phe	Lys	Glu	Asn 230	Pro	Thr	Thr	Phe	Met 235	Gly	His	Tyr	Leu	His 240
Glu	Val	Ala	Arg	Arg 245	His	Pro	Tyr	Phe	Tyr 250	Ala	Pro	Glu	Leu	Leu 255	Tyr
Tyr	Ala	Glu	Gln 260	Tyr	Asn	Glu	Ile	Leu 265	Thr	Gln	Сүз	Суз	Ala 270	Glu	Ala
Asp	Lys	Glu 275	Ser	Суз	Leu	Thr	Pro 280	Lys	Leu	Asp	Gly	Val 285	Lys	Glu	Lys
Ala	Leu 290	Val	Ser	Ser	Val	Arg 295	Gln	Arg	Met	Lys	Сүв 300	Ser	Ser	Met	Gln
Lуя 305	Phe	Gly	Glu	Arg	Ala 310	Phe	Lys	Ala	Trp	Ala 315	Val	Ala	Arg	Leu	Ser 320
Gln	Thr	Phe	Pro	Asn 325	Ala	Asp	Phe	Ala	Glu 330	Ile	Thr	ГЛа	Leu	Ala 335	Thr
Asp	Leu	Thr	Lys 340	Val	Asn	Гла	Glu	Сув 345	Сув	His	Gly	Asp	Leu 350	Leu	Glu
СЛа	Ala	Asp 355	Asp	Arg	Ala	Glu	Leu 360	Ala	Lys	Tyr	Met	Сув 365	Glu	Asn	Gln
Ala	Thr 370	Ile	Ser	Ser	ГЛа	Leu 375	Gln	Thr	Суз	Суз	Asp 380	ГЛа	Pro	Leu	Leu
Lys 385	Lys	Ala	His	Суз	Leu 390	Ser	Glu	Val	Glu	His 395	Asp	Thr	Met	Pro	Ala 400
Asp	Leu	Pro	Ala	Ile 405	Ala	Ala	Asp	Phe	Val 410	Glu	Asp	Gln	Glu	Val 415	Суз

-															
Lys	Asn	Tyr	Ala 420	Glu	Ala	Lys	Asp	Val 425	Phe	Leu	Gly	Thr	Phe 430	Leu	Tyr
Glu	Tyr	Ser 435	Arg	Arg	His	Pro	Asp 440	Tyr	Ser	Val	Ser	Leu 445	Leu	Leu	Arg
Leu	Ala 450	Lys	Lys	Tyr	Glu	Ala 455	Thr	Leu	Glu	Lys	Cys 460	Сүз	Ala	Glu	Ala
Asn 465	Pro	Pro	Ala	СЛа	Tyr 470	Gly	Thr	Val	Leu	Ala 475	Glu	Phe	Gln	Pro	Leu 480
Val	Glu	Glu	Pro	Lys 485	Asn	Leu	Val	Lys	Thr 490	Asn	СЛа	Asp	Leu	Tyr 495	Glu
Lys	Leu	Gly	Glu 500	Tyr	Gly	Phe	Gln	Asn 505	Ala	Ile	Leu	Val	Arg 510	Tyr	Thr
Gln	Lys	Ala 515	Pro	Gln	Val	Ser	Thr 520	Pro	Thr	Leu	Val	Glu 525	Ala	Ala	Arg
Asn	Leu 530	Gly	Arg	Val	Gly	Thr 535	Lys	Сүз	Суз	Thr	Leu 540	Pro	Glu	Asp	Gln
Arg 545	Leu	Pro	Суз	Val	Glu 550	Asp	Tyr	Leu	Ser	Ala 555	Ile	Leu	Asn	Arg	Val 560
САа	Leu	Leu	His	Glu 565	ГЛа	Thr	Pro	Val	Ser 570	Glu	His	Val	Thr	Lys 575	Сүз
Сүв	Ser	Gly	Ser 580	Leu	Val	Glu	Arg	Arg 585	Pro	Суз	Phe	Ser	Ala 590	Leu	Thr
Val	Asp	Glu 595	Thr	Tyr	Val	Pro	Lys 600	Glu	Phe	Lys	Ala	Glu 605	Thr	Phe	Thr
Phe	His 610	Ser	Asp	Ile	Сүз	Thr 615	Leu	Pro	Glu	Lys	Glu 620	LÀa	Gln	Ile	Lys
Lys 625	Gln	Thr	Ala	Leu	Ala 630	Glu	Leu	Val	Lys	His 635	Lys	Pro	Lys	Ala	Thr 640
Ala	Glu	Gln	Leu	Lys 645	Thr	Val	Met	Asp	Asp 650	Phe	Ala	Gln	Phe	Leu 655	Asp
Thr	Суз	Суз	Lys 660	Ala	Ala	Asp	Lys	Asp 665	Thr	Суз	Phe	Ser	Thr 670	Glu	Gly
Pro	Asn	Leu 675	Val	Thr	Arg	Сүз	Lys 680	Asp	Ala	Leu	Ala	Gly 685	Gly	Gly	Gly
Ser	His 690	His	His	His	His	His 695									
<210> SEQ ID NO 67 <211> LENGTH: 696 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL544-114-(Gly4Ser)2-mouse SA- (Gly4Ser)-His6															
<400)> SI	EQUEI	NCE :	67											
Met 1	Arg	Val	Pro	Ala 5	Gln	Leu	Leu	Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
Gly	Ala	Arg	Суз 20	Leu	Arg	Glu	Leu	Arg 25	Сув	Val	Сув	Leu	Gln 30	Thr	Thr
Gln	Gly	Val 35	His	Pro	Lys	Met	Ile 40	Ser	Asn	Leu	Gln	Val 45	Phe	Ala	Ile
Gly	Pro	Gln	Суз	Ser	ГЛа	Val	Glu	Val	Val	Ala	Ser	Leu	Lys	Asn	Gly

-	con	ti	.nu	.ed

	50					55					60				
Lys 65	Glu	Ile	Суз	Leu	Asp 70	Pro	Glu	Ala	Pro	Phe 75	Leu	Lys	Lys	Val	Ile 80
Gln	Lys	Ile	Leu	Asp 85	Gly	Gly	Asn	Гла	Glu 90	Asn	Gly	Gly	Gly	Gly 95	Ser
Gly	Gly	Gly	Gly 100	Ser	Glu	Ala	His	Lys 105	Ser	Glu	Ile	Ala	His 110	Arg	Tyr
Asn	Aab	Leu 115	Gly	Glu	Gln	His	Phe 120	Lys	Gly	Leu	Val	Leu 125	Ile	Ala	Phe
Ser	Gln 130	Tyr	Leu	Gln	Lys	Cys 135	Ser	Tyr	Asp	Glu	His 140	Ala	Lys	Leu	Val
Gln 145	Glu	Val	Thr	Asp	Phe 150	Ala	Lys	Thr	Cys	Val 155	Ala	Asp	Glu	Ser	Ala 160
Ala	Asn	Cys	Asp	Lys 165	Ser	Leu	His	Thr	Leu 170	Phe	Gly	Asp	Lys	Leu 175	СЛа
Ala	Ile	Pro	Asn 180	Leu	Arg	Glu	Asn	Tyr 185	Gly	Glu	Leu	Ala	Asp 190	Суз	СЛа
Thr	Lys	Gln 195	Glu	Pro	Glu	Arg	Asn 200	Glu	Суз	Phe	Leu	Gln 205	His	Lys	Asp
Asp	Asn 210	Pro	Ser	Leu	Pro	Pro 215	Phe	Glu	Arg	Pro	Glu 220	Ala	Glu	Ala	Met
Cys 225	Thr	Ser	Phe	Lys	Glu 230	Asn	Pro	Thr	Thr	Phe 235	Met	Gly	His	Tyr	Leu 240
His	Glu	Val	Ala	Arg 245	Arg	His	Pro	Tyr	Phe 250	Tyr	Ala	Pro	Glu	Leu 255	Leu
Tyr	Tyr	Ala	Glu 260	Gln	Tyr	Asn	Glu	Ile 265	Leu	Thr	Gln	Суз	Cys 270	Ala	Glu
Ala	Asp	Lys 275	Glu	Ser	Суз	Leu	Thr 280	Pro	Lys	Leu	Asp	Gly 285	Val	Lys	Glu
ГЛа	Ala 290	Leu	Val	Ser	Ser	Val 295	Arg	Gln	Arg	Met	Lys 300	Суз	Ser	Ser	Met
Gln 305	Lys	Phe	Gly	Glu	Arg 310	Ala	Phe	Lys	Ala	Trp 315	Ala	Val	Ala	Arg	Leu 320
Ser	Gln	Thr	Phe	Pro 325	Asn	Ala	Asp	Phe	Ala 330	Glu	Ile	Thr	Lys	Leu 335	Ala
Thr	Aab	Leu	Thr 340	Lys	Val	Asn	Lys	Glu 345	Cys	Cys	His	Gly	Asp 350	Leu	Leu
Glu	Суз	Ala 355	Asp	Asp	Arg	Ala	Glu 360	Leu	Ala	Lys	Tyr	Met 365	Cys	Glu	Asn
Gln	Ala 370	Thr	Ile	Ser	Ser	Lys 375	Leu	Gln	Thr	Суз	Суз 380	Asp	Lys	Pro	Leu
Leu 385	Lys	Lys	Ala	His	Сув 390	Leu	Ser	Glu	Val	Glu 395	His	Asp	Thr	Met	Pro 400
Ala	Asp	Leu	Pro	Ala 405	Ile	Ala	Ala	Asp	Phe 410	Val	Glu	Asp	Gln	Glu 415	Val
Cys	Lys	Asn	Tyr 420	Ala	Glu	Ala	Lys	Asp 425	Val	Phe	Leu	Gly	Thr 430	Phe	Leu
Tyr	Glu	Tyr 435	Ser	Arg	Arg	His	Pro 440	Asp	Tyr	Ser	Val	Ser 445	Leu	Leu	Leu
Arg	Leu 450	Ala	Гла	Гла	Tyr	Glu 455	Ala	Thr	Leu	Glu	Lys 460	Суз	Суз	Ala	Glu

-continued

Ala Asn Pro Pro Ala Cys Tyr Gly Thr Val Leu Ala Glu Phe Gln Pro Leu Val Glu Glu Pro Lys Asn Leu Val Lys Thr Asn Cys Asp Leu Tyr Glu Lys Leu Gly Glu Tyr Gly Phe Gln Asn Ala Ile Leu Val Arg Tyr Thr Gln Lys Ala Pro Gln Val Ser Thr Pro Thr Leu Val Glu Ala Ala Arg Asn Leu Gly Arg Val Gly Thr Lys Cys Cys Thr Leu Pro Glu Asp Gln Arg Leu Pro Cys Val Glu Asp Tyr Leu Ser Ala Ile Leu Asn Arg Val Cys Leu Leu His Glu Lys Thr Pro Val Ser Glu His Val Thr Lys 565 570 Cys Cys Ser Gly Ser Leu Val Glu Arg Arg Pro Cys Phe Ser Ala Leu Thr Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Lys Ala Glu Thr Phe Thr Phe His Ser Asp Ile Cys Thr Leu Pro Glu Lys Glu Lys Gln Ile Lys Lys Gln Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly Gly Ser His His His His His His <210> SEQ ID NO 68 <211> LENGTH: 697 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL643-114-(Gly4Ser)2-mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 68 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Val Leu Thr Glu Leu Arg Cys Thr Cys Leu Arg Val Thr Leu Arg Val Asn Pro Lys Thr Ile Gly Lys Leu Gln Val Phe Pro Ala Gly Pro Gln Cys Ser Lys Val Glu Val Val Ala Ser Leu Lys Asn Gly Lys Gln Val Cys Leu Asp Pro Glu Ala Pro Phe Leu Lys Lys Val Ile Gln Lys Ile Leu Asp Ser Gly Asn Lys Lys Asn Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ala His Lys Ser Glu Ile Ala His Arg

-continued

			100					105					110		
Tyr	Asn	Asp 115	Leu	Gly	Glu	Gln	His 120	Phe	Lys	Gly	Leu	Val 125	Leu	Ile	Ala
Phe	Ser 130	Gln	Tyr	Leu	Gln	Lys 135	Сүз	Ser	Tyr	Asp	Glu 140	His	Ala	Lys	Leu
Val 145	Gln	Glu	Val	Thr	Asp 150	Phe	Ala	ГЛЗ	Thr	Сув 155	Val	Ala	Asp	Glu	Ser 160
Ala	Ala	Asn	Суз	Asp 165	Lys	Ser	Leu	His	Thr 170	Leu	Phe	Gly	Asp	Lys 175	Leu
Суз	Ala	Ile	Pro 180	Asn	Leu	Arg	Glu	Asn 185	Tyr	Gly	Glu	Leu	Ala 190	Asp	Суз
Суз	Thr	Lys 195	Gln	Glu	Pro	Glu	Arg 200	Asn	Glu	Суз	Phe	Leu 205	Gln	His	Lys
Asp	Asp 210	Asn	Pro	Ser	Leu	Pro 215	Pro	Phe	Glu	Arg	Pro 220	Glu	Ala	Glu	Ala
Met 225	Суз	Thr	Ser	Phe	Lys 230	Glu	Asn	Pro	Thr	Thr 235	Phe	Met	Gly	His	Tyr 240
Leu	His	Glu	Val	Ala 245	Arg	Arg	His	Pro	Tyr 250	Phe	Tyr	Ala	Pro	Glu 255	Leu
Leu	Tyr	Tyr	Ala 260	Glu	Gln	Tyr	Asn	Glu 265	Ile	Leu	Thr	Gln	Cys 270	Суз	Ala
Glu	Ala	Asp 275	Lys	Glu	Ser	Суз	Leu 280	Thr	Pro	Lys	Leu	Asp 285	Gly	Val	Lys
Glu	Lys 290	Ala	Leu	Val	Ser	Ser 295	Val	Arg	Gln	Arg	Met 300	ГЛа	Сув	Ser	Ser
Met 305	Gln	Lys	Phe	Gly	Glu 310	Arg	Ala	Phe	Lys	Ala 315	Trp	Ala	Val	Ala	Arg 320
Leu	Ser	Gln	Thr	Phe 325	Pro	Asn	Ala	Asp	Phe 330	Ala	Glu	Ile	Thr	Lys 335	Leu
Ala	Thr	Asp	Leu 340	Thr	Lys	Val	Asn	Lys 345	Glu	Cys	Суз	His	Gly 350	Asp	Leu
Leu	Glu	Cys 355	Ala	Asp	Asp	Arg	Ala 360	Glu	Leu	Ala	Lys	Tyr 365	Met	Cys	Glu
Asn	Gln 370	Ala	Thr	Ile	Ser	Ser 375	Lys	Leu	Gln	Thr	Сув 380	Суз	Aab	Lys	Pro
Leu 385	Leu	Lys	LÀa	Ala	His 390	САа	Leu	Ser	Glu	Val 395	Glu	His	Aab	Thr	Met 400
Pro	Ala	Aab	Leu	Pro 405	Ala	Ile	Ala	Ala	Asp 410	Phe	Val	Glu	Aab	Gln 415	Glu
Val	Суз	Lys	Asn 420	Tyr	Ala	Glu	Ala	Lys 425	Asb	Val	Phe	Leu	Gly 430	Thr	Phe
Leu	Tyr	Glu 435	Tyr	Ser	Arg	Arg	His 440	Pro	Asp	Tyr	Ser	Val 445	Ser	Leu	Leu
Leu	Arg 450	Leu	Ala	ГЛа	ГЛа	Tyr 455	Glu	Ala	Thr	Leu	Glu 460	ГЛа	Сув	Сув	Ala
Glu 465	Ala	Asn	Pro	Pro	Ala 470	Суз	Tyr	Gly	Thr	Val 475	Leu	Ala	Glu	Phe	Gln 480
Pro	Leu	Val	Glu	Glu 485	Pro	Lys	Asn	Leu	Val 490	Lys	Thr	Asn	Cys	Asp 495	Leu
Tyr	Glu	Lys	Leu 500	Gly	Glu	Tyr	Gly	Phe 505	Gln	Asn	Ala	Ile	Leu 510	Val	Arg

-continued

	continued														
Tyr	Thr	Gln 515	Lys	Ala	Pro	Gln	Val 520	Ser	Thr	Pro	Thr	Leu 525	Val	Glu	Ala
Ala	Arg 530	Asn	Leu	Gly	Arg	Val 535	Gly	Thr	Lys	Суз	Cys 540	Thr	Leu	Pro	Glu
Asp 545	Gln	Arg	Leu	Pro	Cys 550	Val	Glu	Asp	Tyr	Leu 555	Ser	Ala	Ile	Leu	Asn 560
Arg	Val	Cys	Leu	Leu 565	His	Glu	Lys	Thr	Pro 570	Val	Ser	Glu	His	Val 575	Thr
ГЛЗ	Cys	Суз	Ser 580	Gly	Ser	Leu	Val	Glu 585	Arg	Arg	Pro	Сүз	Phe 590	Ser	Ala
Leu	Thr	Val 595	Asp	Glu	Thr	Tyr	Val 600	Pro	Гла	Glu	Phe	Lys 605	Ala	Glu	Thr
Phe	Thr 610	Phe	His	Ser	Asp	Ile 615	Суз	Thr	Leu	Pro	Glu 620	Гла	Glu	Lys	Gln
Ile 625	Lys	Lys	Gln	Thr	Ala 630	Leu	Ala	Glu	Leu	Val 635	Lys	His	Lys	Pro	Lys 640
Ala	Thr	Ala	Glu	Gln 645	Leu	Lys	Thr	Val	Met 650	Asp	Asp	Phe	Ala	Gln 655	Phe
Leu	Asp	Thr	Cys 660	Сүз	Lys	Ala	Ala	Asp 665	Lys	Asp	Thr	Сүз	Phe 670	Ser	Thr
Glu	Gly	Pro 675	Asn	Leu	Val	Thr	Arg 680	Сув	Lys	Asp	Ala	Leu 685	Ala	Gly	Gly
Gly	Gly 690	Ser	His	His	His	His 695	His	His							
<211 <212 <213 <220	0> SH L> LH 2> TY 3> OH 0> FH	ENGTH (PE : RGAN]	1: 68 PRT	38	ific:	ial :	Seque	ance							
	3> 01 ((THER Gly49	INF(Ser)·	-His	FION		-		LS-ł	nCXCI	759	-121	- (Gl ₃	y4Se:	r)2-mouse SA-
	3 > 01	THER Gly49	INF(Ser)·	-His	FION		-		LS-ł	ıCXCI	1759 ·	-121	- (Gl <u>3</u>	y4Se:	r)2-mouse SA-
<400	3> 01 ((THER 31y4: EQUEI	INF(Ser)· NCE:	-His 69	FION 5	: Syı	nthet	ic:					-	-	
<400 Met 1	3> 0] (()> SI	THER Gly49 EQUE Val	INF(Ser) NCE: Pro	-His 69 Ala 5	Gln	: Syı Leu	- nthet Leu	cic: Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
<400 Met 1 Gly	3> 01 ((D> SH Arg	THER Gly49 GQUEI Val Arg	INF(Ser) NCE: Pro Cys 20	-His 69 Ala 5 Ala	Gln Glu	: Syı Leu Leu	Leu Arg	Gly Cys 25	Leu 10 Met	Leu Cys	Leu Ile	Leu Lys	Trp Thr 30	Leu 15 Thr	Pro Ser
<400 Met 1 Gly Gly	3> 07 ((D> SH Arg Ala	THER Gly4: CQUEN Val Arg His 35	INF(Ser) NCE: Pro Cys 20 Pro	-His 69 Ala 5 Ala Lys	Gln Glu Asn	: Syr Leu Leu Ile	Leu Arg Gln 40	Gly Cys 25 Ser	Leu 10 Met Leu	Leu Cys Glu	Leu Ile Val	Leu Lys Ile 45	Trp Thr 30 Gly	Leu 15 Thr Lys	Pro Ser Gly
<400 Met 1 Gly Gly Thr	3> 07 (C D> SE Arg Ala Ile His	THER Sly45 EQUE Val Arg His 35 Cys	INF(Ser) NCE: Pro Cys 20 Pro Asn	-His 69 Ala 5 Ala Lys Gln	Gln Glu Asn Val	: Syn Leu Leu Ile Glu 55	Leu Arg Gln 40 Val	Gly Cys 25 Ser Ile	Leu 10 Met Leu Ala	Leu Cys Glu Thr	Leu Ile Val Leu 60	Leu Lys Ile 45 Lys	Trp Thr 30 Gly Asp	Leu 15 Thr Lys Gly	Pro Ser Gly Arg
<400 Met 1 Gly Gly Thr Lys 65	3> OT (C D> SH Arg Ala Ile His 50	THER GQUEN Val Arg His 35 Cys Cys	INF(Ser). VCE: Pro Cys 20 Pro Asn Leu	-His 69 Ala 5 Ala Lys Gln Asp	Gln Glu Asn Val Pro 70	: Syn Leu Leu Ile Glu 55 Asp	Leu Arg Gln 40 Val Ala	Gly Cys 25 Ser Ile Pro	Leu 10 Met Leu Ala Arg	Leu Cys Glu Thr Ile 75	Leu Ile Val Leu 60 Lys	Leu Lys Ile 45 Lys Lys	Trp Thr 30 Gly Asp Ile	Leu 15 Thr Lys Gly Val	Pro Ser Gly Arg Gln 80
<400 Met 1 Gly Gly Thr Lys 65 Lys	3> OT ((Arg Ala Ile His 50 Ile	THER Gly4: GQUET Val Arg His 35 Cys Cys Leu	INFC Ser). NCE: Pro Cys 20 Pro Asn Leu Gly	-His 69 Ala 5 Ala Lys Gln Asp Gly 85	Gln Glu Asn Val Pro 70 Gly	: Syn Leu Leu Ile Glu 55 Asp Gly	Leu Arg Gln 40 Val Ala Ser	Cys 25 Ser Ile Pro Gly	Leu 10 Met Leu Ala Arg Gly 90	Leu Cys Glu Thr Ile 75 Gly	Leu Ile Val Leu Eys Gly	Leu Lys Ile 45 Lys Lys Ser	Trp Thr 30 Gly Asp Ile Glu	Leu 15 Thr Lys Gly Val Ala 95	Pro Ser Gly Arg Gln 80 His
<400 Met 1 Gly Gly Thr Lys 65 Lys Lys	3> OT ((())> SE Arg Ala Ile His 50 Ile Lys	THER Sly43 CQUEN Val Arg His 35 Cys Cys Leu Glu	INFC Ser). NCE: Pro Cys 20 Pro Asn Leu Gly Ille	Hiso 69 Ala 5 Ala Lys Gln Asp Gly 85 Ala	Gln Glu Asn Val Pro 70 Gly His	: Syn Leu Leu Ile Glu 55 Asp Gly Arg	Leu Arg Gln 40 Val Ala Ser Tyr	Gly Cys 25 Ser Ile Pro Gly Asn 105	Leu 10 Met Leu Ala Arg Gly 90 Asp	Leu Cys Glu Thr Ile 75 Gly Leu	Leu Ile Val Leu 60 Lys Gly Gly	Leu Lys Ile 45 Lys Ser Glu	Trp Thr 30 Gly Asp Ile Glu Glu 110	Leu 15 Thr Lys Gly Val Ala 95 His	Pro Ser Gly Arg Gln 80 His Phe
<400 Met 1 Gly Gly Thr Lys 65 Lys Lys Lys	3> OT ((())> SH Arg Ala Ile Lis Ser Ser	THER Sly43 EQUEN Val Arg His 35 Cys Cys Leu Glu Leu L15	INFC Ser). NCE: Pro Cys 20 Pro Asn Leu Gly Ile 100 Val	Hiso 69 Ala 5 Ala Lys Gln Asp Gly 85 Ala Leu	Gln Glu Asn Val Pro 70 Gly His Ile	: Syn Leu Leu Ile Glu 55 Gly Arg Ala	Leu Arg Gln 40 Val Ala Ser Tyr Tyr Phe 120	Cys 25 Ser Ile Pro Gly Asn 105 Ser	Leu 10 Met Leu Ala Arg Gly 90 Asp Gln	Leu Cys Glu Thr Ile 75 Gly Leu Tyr	Leu Ile Val Lys Gly Leu	Leu Lys Ile 45 Lys Ser Glu Glu 125	Trp Thr 30 Gly Asp Ile Glu Glu Lys	Leu 15 Thr Lys Gly Val Ala 95 His Cys	Pro Ser Gly Arg Gln 80 His Phe Ser

-continued

											-	con	tin	ued	
145					150					155					160
Thr	Leu	Phe	Gly	Asp 165	ГЛа	Leu	Сүз	Ala	Ile 170	Pro	Asn	Leu	Arg	Glu 175	Asn
Tyr	Gly	Glu	Leu 180	Ala	Asp	Сүз	Сүз	Thr 185	Lys	Gln	Glu	Pro	Glu 190	Arg	Asn
Glu	Cys	Phe 195	Leu	Gln	His	ГЛЗ	Asp 200	Asp	Asn	Pro	Ser	Leu 205	Pro	Pro	Phe
Glu	Arg 210	Pro	Glu	Ala	Glu	Ala 215	Met	Суз	Thr	Ser	Phe 220	ГЛа	Glu	Asn	Pro
Thr 225	Thr	Phe	Met	Gly	His 230	Tyr	Leu	His	Glu	Val 235	Ala	Arg	Arg	His	Pro 240
Tyr	Phe	Tyr	Ala	Pro 245	Glu	Leu	Leu	Tyr	Tyr 250	Ala	Glu	Gln	Tyr	Asn 255	Glu
Ile	Leu	Thr	Gln 260	СЛа	Суа	Ala	Glu	Ala 265	Asp	Lys	Glu	Ser	Cys 270	Leu	Thr
Pro	Lys	Leu 275	Asp	Gly	Val	Lys	Glu 280	Lys	Ala	Leu	Val	Ser 285	Ser	Val	Arg
Gln	Arg 290	Met	Lys	Сүв	Ser	Ser 295	Met	Gln	Lys	Phe	Gly 300	Glu	Arg	Ala	Phe
Lys 305	Ala	Trp	Ala	Val	Ala 310	Arg	Leu	Ser	Gln	Thr 315	Phe	Pro	Asn	Ala	Asp 320
Phe	Ala	Glu	Ile	Thr 325	Lya	Leu	Ala	Thr	Asp 330	Leu	Thr	ГЛа	Val	Asn 335	Lys
Glu	Сув	Сув	His 340	Gly	Asp	Leu	Leu	Glu 345	Суз	Ala	Asp	Asp	Arg 350	Ala	Glu
Leu	Ala	Lys 355	Tyr	Met	Суз	Glu	Asn 360	Gln	Ala	Thr	Ile	Ser 365	Ser	Lys	Leu
Gln	Thr 370	Cys	Суз	Asp	Lys	Pro 375	Leu	Leu	Lys	Lys	Ala 380	His	Суз	Leu	Ser
Glu 385	Val	Glu	His	Asp	Thr 390	Met	Pro	Ala	Asp	Leu 395	Pro	Ala	Ile	Ala	Ala 400
Asp	Phe	Val	Glu	Asp 405	Gln	Glu	Val	Суз	Lys 410	Asn	Tyr	Ala	Glu	Ala 415	Lys
Asp	Val	Phe	Leu 420	Gly	Thr	Phe	Leu	Tyr 425	Glu	Tyr	Ser	Arg	Arg 430	His	Pro
Asp	Tyr	Ser 435	Val	Ser	Leu	Leu	Leu 440	Arg	Leu	Ala	ГЛа	Lys 445	Tyr	Glu	Ala
Thr	Leu 450	Glu	Lys	СЛа	Суа	Ala 455	Glu	Ala	Asn	Pro	Pro 460	Ala	Суз	Tyr	Gly
Thr 465	Val	Leu	Ala	Glu	Phe 470	Gln	Pro	Leu	Val	Glu 475	Glu	Pro	Lys	Asn	Leu 480
Val	Lys	Thr	Asn	Cys 485	Aap	Leu	Tyr	Glu	Lys 490	Leu	Gly	Glu	Tyr	Gly 495	Phe
Gln	Asn	Ala	Ile 500	Leu	Val	Arg	Tyr	Thr 505	Gln	Lys	Ala	Pro	Gln 510	Val	Ser
Thr	Pro	Thr 515	Leu	Val	Glu	Ala	Ala 520	Arg	Asn	Leu	Gly	Arg 525	Val	Gly	Thr
Lys	Суз 530	Суз	Thr	Leu	Pro	Glu 535	Asp	Gln	Arg	Leu	Pro 540	СЛа	Val	Glu	Asp
Tyr 545	Leu	Ser	Ala	Ile	Leu 550	Asn	Arg	Val	Суз	Leu 555	Leu	His	Glu	Lys	Thr 560
					550					555					500

Pr	o Val	Ser	Glu	His 565	Val	Thr	Lys	СЛа	Суз 570	Ser	Gly	Ser	Leu	Val 575	Glu
Ar	g Arg	Pro	Cys 580	Phe	Ser	Ala	Leu	Thr 585	Val	Asp	Glu	Thr	Tyr 590	Val	Pro
Γλ	s Glu	Phe 595	Lys	Ala	Glu	Thr	Phe 600	Thr	Phe	His	Ser	Asp 605	Ile	Сүз	Thr
Le	u Pro 610	Glu	Lys	Glu	Гла	Gln 615	Ile	ГÀа	Lys	Gln	Thr 620	Ala	Leu	Ala	Glu
Le 62	u Val 5	Lys	His	Lys	Pro 630	Lys	Ala	Thr	Ala	Glu 635	Gln	Leu	Lys	Thr	Val 640
Me	t Asp	Asp	Phe	Ala 645	Gln	Phe	Leu	Asp	Thr 650	Суз	СЛа	ГЛа	Ala	Ala 655	Asp
Lу	a Yab	Thr	Cys 660	Phe	Ser	Thr	Glu	Gly 665	Pro	Asn	Leu	Val	Thr 670	Arg	Cys
Lу	a yab	Ala 675	Leu	Ala	Gly	Gly	Gly 680	Gly	Ser	His	His	His 685	His	His	His
<2 <2 <2 <2		ENGT YPE : RGAN EATU THER	H: 6 PRT ISM: RE:	97 Art: ORMA	TION		-		LS-]	hCXCI	L828	-99-	(Gly4	1Ser)	2-mouse SA-
< 4	00> SI	EQUE	NCE :	70											
Me 1	t Arg	Val	Pro	Ala 5	Gln	Leu	Leu	Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
Gl	y Ala	Arg	Суз 20	Ser	Ala	Lys	Glu	Leu 25	Arg	Сүз	Gln	Сүз	Ile 30	Lys	Thr
Ту	r Ser	Lys 35	Pro	Phe	His	Pro	Lys 40	Phe	Ile	Lys	Glu	Leu 45	Arg	Val	Ile
Gl	u Ser 50	Gly	Pro	His	Cys	Ala 55	Asn	Thr	Glu	Ile	Ile 60	Val	Lys	Leu	Ser
As 65	p Gly	Arg	Glu	Leu	Cys 70	Leu	Asp	Pro	Lys	Glu 75	Asn	Trp	Val	Gln	Arg 80
Va	l Val	Glu	Lys	Phe 85	Leu	Lys	Arg	Ala	Glu 90	Asn	Ser	Gly	Gly	Gly 95	Gly
Se	r Gly	Gly	Gly 100	Gly	Ser	Glu	Ala	His 105	Lys	Ser	Glu	Ile	Ala 110	His	Arg
ту	r Asn	Asp 115	Leu	Gly	Glu	Gln	His 120	Phe	Lys	Gly	Leu	Val 125	Leu	Ile	Ala
Ph	e Ser 130	Gln	Tyr	Leu	Gln	Lys 135	Сүз	Ser	Tyr	Asp	Glu 140	His	Ala	Lys	Leu
Va 14	l Gln 5	Glu	Val	Thr	Asp 150	Phe	Ala	Lys	Thr	Cys 155	Val	Ala	Asp	Glu	Ser 160
Al	a Ala	Asn	Суз	Asp 165	Lys	Ser	Leu	His	Thr 170	Leu	Phe	Gly	Asp	Lys 175	Leu
Су	s Ala	Ile	Pro 180	Asn	Leu	Arg	Glu	Asn 185	Tyr	Gly	Glu	Leu	Ala 190	Asp	Cys
су	s Thr	Lys 195	Gln	Glu	Pro	Glu	Arg 200	Asn	Glu	Суз	Phe	Leu 205	Gln	His	Lys
As	p Asp	Asn	Pro	Ser	Leu	Pro	Pro	Phe	Glu	Arg	Pro	Glu	Ala	Glu	Ala

_	CC	ont	:i	n	ue	ed
	~~				~	- 0

	210					215					220				
Met 225	Cys	Thr	Ser	Phe	Lys 230	Glu	Asn	Pro	Thr	Thr 235	Phe	Met	Gly	His	Tyr 240
Leu	His	Glu	Val	Ala 245	Arg	Arg	His	Pro	Tyr 250	Phe	Tyr	Ala	Pro	Glu 255	Leu
Leu	Tyr	Tyr	Ala 260	Glu	Gln	Tyr	Asn	Glu 265	Ile	Leu	Thr	Gln	Cys 270	Cys	Ala
Glu	Ala	Asp 275	Lys	Glu	Ser	Суз	Leu 280	Thr	Pro	Lys	Leu	Asp 285	Gly	Val	Lys
Glu	Lys 290	Ala	Leu	Val	Ser	Ser 295	Val	Arg	Gln	Arg	Met 300	Lys	Cys	Ser	Ser
Met 305	Gln	Lys	Phe	Gly	Glu 310	Arg	Ala	Phe	Lys	Ala 315	Trp	Ala	Val	Ala	Arg 320
Leu	Ser	Gln	Thr	Phe 325	Pro	Asn	Ala	Asp	Phe 330	Ala	Glu	Ile	Thr	Lys 335	Leu
Ala	Thr	Aab	Leu 340	Thr	Lys	Val	Asn	Lys 345	Glu	Сув	Сүз	His	Gly 350	Aab	Leu
Leu	Glu	Сув 355	Ala	Asp	Asp	Arg	Ala 360	Glu	Leu	Ala	Гла	Tyr 365	Met	Сув	Glu
Asn	Gln 370	Ala	Thr	Ile	Ser	Ser 375	Lys	Leu	Gln	Thr	Сув 380	СЛа	Asp	Lys	Pro
Leu 385	Leu	Lys	Lys	Ala	His 390	Сүз	Leu	Ser	Glu	Val 395	Glu	His	Asp	Thr	Met 400
Pro	Ala	Aap	Leu	Pro 405	Ala	Ile	Ala	Ala	Asp 410	Phe	Val	Glu	Asp	Gln 415	Glu
Val	Cys	Lys	Asn 420	Tyr	Ala	Glu	Ala	Lys 425	Asp	Val	Phe	Leu	Gly 430	Thr	Phe
Leu	Tyr	Glu 435	Tyr	Ser	Arg	Arg	His 440	Pro	Asp	Tyr	Ser	Val 445	Ser	Leu	Leu
Leu	Arg 450	Leu	Ala	Lys	Lys	Tyr 455	Glu	Ala	Thr	Leu	Glu 460	ГЛЗ	Суз	Суз	Ala
Glu 465	Ala	Asn	Pro	Pro	Ala 470	Суз	Tyr	Gly	Thr	Val 475	Leu	Ala	Glu	Phe	Gln 480
Pro	Leu	Val	Glu	Glu 485	Pro	Lys	Asn	Leu	Val 490	Lys	Thr	Asn	Суз	Asp 495	Leu
Tyr	Glu	Lys	Leu 500	Gly	Glu	Tyr	Gly	Phe 505	Gln	Asn	Ala	Ile	Leu 510	Val	Arg
Tyr	Thr	Gln 515	Lys	Ala	Pro	Gln	Val 520	Ser	Thr	Pro	Thr	Leu 525	Val	Glu	Ala
Ala	Arg 530	Asn	Leu	Gly	Arg	Val 535	Gly	Thr	Lys	Cys	Cys 540	Thr	Leu	Pro	Glu
Asp 545	Gln	Arg	Leu	Pro	Cys 550	Val	Glu	Asp	Tyr	Leu 555	Ser	Ala	Ile	Leu	Asn 560
Arg	Val	Cys	Leu	Leu 565	His	Glu	Lys	Thr	Pro 570	Val	Ser	Glu	His	Val 575	Thr
Lys	Cys	Cys	Ser 580	Gly	Ser	Leu	Val	Glu 585	Arg	Arg	Pro	Cys	Phe 590	Ser	Ala
Leu	Thr	Val 595	Asp	Glu	Thr	Tyr	Val 600	Pro	Lys	Glu	Phe	Lys 605	Ala	Glu	Thr
Phe	Thr 610	Phe	His	Ser	Asp	Ile 615	Сүз	Thr	Leu	Pro	Glu 620	Lys	Glu	Lys	Gln

Ile Lys Lys Gln Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly Gly Ser His His His His His His 690 695 <210> SEQ ID NO 71 <211> LENGTH: 728 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL923-115-(Gly4Ser)2-mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 71 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Thr Pro Val Val Arg Lys Gly Arg Cys Ser Cys Ile 2.0 Ser Thr Asn Gln Gly Thr Ile His Leu Gln Ser Leu Lys Asp Leu Lys Gln Phe Ala Pro Ser Pro Ser Cys Glu Lys Ile Glu Ile Ile Ala Thr Leu Lys Asn Gly Val Gln Thr Cys Leu Asn Pro Asp Ser Ala Asp Val Lys Glu Leu Ile Lys Lys Trp Glu Lys Gln Val Ser Gln Lys Lys Gln Lys Asn Gly Lys Lys His Gln Lys Lys Lys Val Leu Lys Val Arg Lys Ser Gln Arg Ser Arg Gln Lys Lys Thr Thr Gly Gly Gly Ser Gly Gly Gly Ser Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe 145 150 155 160 Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu

-continued

			260					265					270		
His	Glu	Val 275	Ala	Arg	Arg	His	Pro 280	Tyr	Phe	Tyr	Ala	Pro 285	Glu	Leu	Leu
Tyr	Tyr 290	Ala	Glu	Gln	Tyr	Asn 295	Glu	Ile	Leu	Thr	Gln 300	СЛа	Суз	Ala	Glu
Ala 305	Asp	Lys	Glu	Ser	Cys 310	Leu	Thr	Pro	Lys	Leu 315	Asp	Gly	Val	Lys	Glu 320
Гла	Ala	Leu	Val	Ser 325	Ser	Val	Arg	Gln	Arg 330	Met	ГЛЗ	Суз	Ser	Ser 335	Met
Gln	Lys	Phe	Gly 340	Glu	Arg	Ala	Phe	Lys 345	Ala	Trp	Ala	Val	Ala 350	Arg	Leu
Ser	Gln	Thr 355	Phe	Pro	Asn	Ala	Asp 360	Phe	Ala	Glu	Ile	Thr 365	ГÀа	Leu	Ala
Thr	Asp 370	Leu	Thr	ГÀа	Val	Asn 375	ГЛа	Glu	Суз	Сүз	His 380	Gly	Asp	Leu	Leu
Glu 385	Суз	Ala	Asp	Asp	Arg 390	Ala	Glu	Leu	Ala	Lys 395	Tyr	Met	САа	Glu	Asn 400
Gln	Ala	Thr	Ile	Ser 405	Ser	ГЛа	Leu	Gln	Thr 410	Сув	Сүз	Asp	LÀa	Pro 415	Leu
Leu	Lys	Lys	Ala 420	His	САа	Leu	Ser	Glu 425	Val	Glu	His	Asp	Thr 430	Met	Pro
Ala	Asp	Leu 435	Pro	Ala	Ile	Ala	Ala 440	Asp	Phe	Val	Glu	Asp 445	Gln	Glu	Val
Суз	Lys 450	Asn	Tyr	Ala	Glu	Ala 455	Lys	Asp	Val	Phe	Leu 460	Gly	Thr	Phe	Leu
Tyr 465	Glu	Tyr	Ser	Arg	Arg 470	His	Pro	Asp	Tyr	Ser 475	Val	Ser	Leu	Leu	Leu 480
Arg	Leu	Ala	Lys	Lys 485	Tyr	Glu	Ala	Thr	Leu 490	Glu	Lys	САа	Суз	Ala 495	Glu
Ala	Asn	Pro	Pro 500	Ala	Сүз	Tyr	Gly	Thr 505	Val	Leu	Ala	Glu	Phe 510	Gln	Pro
Leu	Val	Glu 515	Glu	Pro	Гла	Asn	Leu 520	Val	LÀ2	Thr	Asn	Сув 525	Asp	Leu	Tyr
Glu	Lys 530	Leu	Gly	Glu	Tyr	Gly 535	Phe	Gln	Asn	Ala	Ile 540	Leu	Val	Arg	Tyr
Thr 545	Gln	Lys	Ala	Pro	Gln 550	Val	Ser	Thr	Pro	Thr 555	Leu	Val	Glu	Ala	Ala 560
Arg	Asn	Leu	Gly	Arg 565	Val	Gly	Thr	ГЛЗ	Cys 570	Суз	Thr	Leu	Pro	Glu 575	Asp
Gln	Arg	Leu	Pro 580	СЛа	Val	Glu	Asp	Tyr 585	Leu	Ser	Ala	Ile	Leu 590	Asn	Arg
Val	Сув	Leu 595	Leu	His	Glu	Lys	Thr 600	Pro	Val	Ser	Glu	His 605	Val	Thr	Lys
Сув	Cys 610	Ser	Gly	Ser	Leu	Val 615	Glu	Arg	Arg	Pro	Суз 620	Phe	Ser	Ala	Leu
Thr 625	Val	Asp	Glu	Thr	Tyr 630	Val	Pro	Lys	Glu	Phe 635	ГЛа	Ala	Glu	Thr	Phe 640
Thr	Phe	His	Ser	Asp 645	Ile	Cys	Thr	Leu	Pro 650	Glu	Lys	Glu	Lys	Gln 655	Ile
Lys	Lys	Gln	Thr 660	Ala	Leu	Ala	Glu	Leu 665	Val	Lys	His	ГЛа	Pro 670	Lys	Ala

Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly 705 710 Gly Ser His His His His His <210> SEQ ID NO 72 <211> LENGTH: 702 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL1022-98-(Gly4Ser)2-mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 72 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Val Pro Leu Ser Arg Thr Val Arg Cys Thr Cys Ile 20 25 30 Ser Ile Ser Asn Gln Pro Val Asn Pro Arg Ser Leu Glu Lys Leu Glu Ile Ile Pro Ala Ser Gln Phe Cys Pro Arg Val Glu Ile Ile Ala Thr Met Lys Lys Gly Glu Lys Arg Cys Leu Asn Pro Glu Ser Lys Ala Ile Lys Asn Leu Leu Lys Ala Val Ser Lys Glu Arg Ser Lys Arg Ser Pro Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys

-continued

		275					280					285			
Leu	Asp 290	Gly	Val	Lys	Glu	Lys 295	Ala	Leu	Val	Ser	Ser 300	Val	Arg	Gln	Arg
Met 305	Lys	Cys	Ser	Ser	Met 310	Gln	Lys	Phe	Gly	Glu 315	Arg	Ala	Phe	Lys	Ala 320
Trp	Ala	Val	Ala	Arg 325	Leu	Ser	Gln	Thr	Phe 330	Pro	Asn	Ala	Asp	Phe 335	Ala
Glu	Ile	Thr	Lys 340	Leu	Ala	Thr	Asp	Leu 345	Thr	Lys	Val	Asn	Lys 350	Glu	Суз
Суа	His	Gly 355	Asp	Leu	Leu	Glu	Суз 360	Ala	Asp	Asp	Arg	Ala 365	Glu	Leu	Ala
Lys	Tyr 370	Met	Суз	Glu	Asn	Gln 375	Ala	Thr	Ile	Ser	Ser 380	ГЛа	Leu	Gln	Thr
Суя 385	Cys	Asp	Lys	Pro	Leu 390	Leu	Lys	Lys	Ala	His 395	Суз	Leu	Ser	Glu	Val 400
Glu	His	Asp	Thr	Met 405	Pro	Ala	Asp	Leu	Pro 410	Ala	Ile	Ala	Ala	Asp 415	Phe
Val	Glu	Asp	Gln 420	Glu	Val	Суз	Lys	Asn 425	Tyr	Ala	Glu	Ala	Lys 430	Asp	Val
Phe	Leu	Gly 435	Thr	Phe	Leu	Tyr	Glu 440	Tyr	Ser	Arg	Arg	His 445	Pro	Asp	Tyr
Ser	Val 450	Ser	Leu	Leu	Leu	Arg 455	Leu	Ala	Lys	Lys	Tyr 460	Glu	Ala	Thr	Leu
Glu 465	Lys	Cys	Сүз	Ala	Glu 470	Ala	Asn	Pro	Pro	Ala 475	Суз	Tyr	Gly	Thr	Val 480
Leu	Ala	Glu	Phe	Gln 485	Pro	Leu	Val	Glu	Glu 490	Pro	ГЛЗ	Asn	Leu	Val 495	Lys
Thr	Asn	Суз	Asp 500	Leu	Tyr	Glu	Lys	Leu 505	Gly	Glu	Tyr	Gly	Phe 510	Gln	Asn
Ala	Ile	Leu 515	Val	Arg	Tyr	Thr	Gln 520	Lys	Ala	Pro	Gln	Val 525	Ser	Thr	Pro
Thr	Leu 530	Val	Glu	Ala	Ala	Arg 535	Asn	Leu	Gly	Arg	Val 540	Gly	Thr	Lys	Суз
Суз 545	Thr	Leu	Pro	Glu	Asp 550	Gln	Arg	Leu	Pro	Суз 555	Val	Glu	Asp	Tyr	Leu 560
Ser	Ala	Ile	Leu	Asn 565	Arg	Val	Сүз	Leu	Leu 570	His	Glu	ГЛа	Thr	Pro 575	Val
Ser	Glu	His	Val 580	Thr	ГÀа	САа	Сүз	Ser 585	Gly	Ser	Leu	Val	Glu 590	Arg	Arg
Pro	Cys	Phe 595	Ser	Ala	Leu	Thr	Val 600	Asp	Glu	Thr	Tyr	Val 605	Pro	Lys	Glu
Phe	Lys 610	Ala	Glu	Thr	Phe	Thr 615	Phe	His	Ser	Asp	Ile 620	Сүз	Thr	Leu	Pro
Glu 625	Lys	Glu	Lys	Gln	Ile 630	Lys	Lys	Gln	Thr	Ala 635	Leu	Ala	Glu	Leu	Val 640
Lys	His	Lys	Pro	Lys 645	Ala	Thr	Ala	Glu	Gln 650	Leu	ГЛа	Thr	Val	Met 655	Asp
Asp	Phe	Ala	Gln 660	Phe	Leu	Asp	Thr	Cys 665	Cys	Lys	Ala	Ala	Asp 670	Lys	Asp
Thr	Сув	Phe 675	Ser	Thr	Glu	Gly	Pro 680	Asn	Leu	Val	Thr	Arg 685	Суз	Lys	Asp

-continued

Ala Leu Ala Gly Gly Gly Gly Ser His His His His His His <210> SEQ ID NO 73 <211> LENGTH: 698 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL1122-94-(Gly4Ser)2-mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 73 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Phe Pro Met Phe Lys Arg Gly Arg Cys Leu Cys Ile 20 \$25\$ 30 Gly Pro Gly Val Lys Ala Val Lys Val Ala Asp Ile Glu Lys Ala Ser 35 40 45 Ile Met Tyr Pro Ser Asn Asn Cys Asp Lys Ile Glu Val Ile Ile Thr Leu Lys Glu Asn Lys Gly Gln Arg Cys Leu Asn Pro Lys Ser Lys Gln 65 70 75 80 Ala Arg Leu Ile Ile Lys Lys Val Glu Arg Lys Asn Phe Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys 130 135 Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys

-continued

				325					330					335	
Leu	Ala	Thr	Asp 340	Leu	Thr	Гла	Val	Asn 345	Lys	Glu	Сүз	Сүз	His 350	Gly	Asp
Leu	Leu	Glu 355	Суз	Ala	Asp	Asp	Arg 360	Ala	Glu	Leu	Ala	Lys 365	Tyr	Met	Суз
Glu	Asn 370	Gln	Ala	Thr	Ile	Ser 375	Ser	Lys	Leu	Gln	Thr 380	Суз	Суз	Asp	Lys
Pro 385	Leu	Leu	Lys	Гла	Ala 390	His	Суз	Leu	Ser	Glu 395	Val	Glu	His	Asp	Thr 400
Met	Pro	Ala	Asp	Leu 405	Pro	Ala	Ile	Ala	Ala 410	Asp	Phe	Val	Glu	Asp 415	Gln
Glu	Val	Cys	Lys 420	Asn	Tyr	Ala	Glu	Ala 425	Lys	Asp	Val	Phe	Leu 430	Gly	Thr
Phe	Leu	Tyr 435	Glu	Tyr	Ser	Arg	Arg 440	His	Pro	Asp	Tyr	Ser 445	Val	Ser	Leu
Leu	Leu 450	Arg	Leu	Ala	Lys	Lys 455	Tyr	Glu	Ala	Thr	Leu 460	Glu	Lys	Сүз	Cys
Ala 465	Glu	Ala	Asn	Pro	Pro 470	Ala	Сүз	Tyr	Gly	Thr 475	Val	Leu	Ala	Glu	Phe 480
Gln	Pro	Leu	Val	Glu 485	Glu	Pro	Lys	Asn	Leu 490	Val	Lys	Thr	Asn	Cys 495	Asp
Leu	Tyr	Glu	Lys 500	Leu	Gly	Glu	Tyr	Gly 505	Phe	Gln	Asn	Ala	Ile 510	Leu	Val
Arg	Tyr	Thr 515	Gln	Гла	Ala	Pro	Gln 520	Val	Ser	Thr	Pro	Thr 525	Leu	Val	Glu
Ala	Ala 530	Arg	Asn	Leu	Gly	Arg 535	Val	Gly	Thr	Lys	Cys 540	Суз	Thr	Leu	Pro
Glu 545	Asp	Gln	Arg	Leu	Pro 550	Суз	Val	Glu	Asp	Tyr 555	Leu	Ser	Ala	Ile	Leu 560
Asn	Arg	Val	Суз	Leu 565	Leu	His	Glu	Lys	Thr 570	Pro	Val	Ser	Glu	His 575	Val
Thr	Lys	Суз	Cys 580	Ser	Gly	Ser	Leu	Val 585	Glu	Arg	Arg	Pro	Cys 590	Phe	Ser
Ala	Leu	Thr 595	Val	Asp	Glu	Thr	Tyr 600	Val	Pro	Lys	Glu	Phe 605	Lys	Ala	Glu
Thr	Phe 610	Thr	Phe	His	Ser	Asp 615	Ile	Суз	Thr	Leu	Pro 620	Glu	Lys	Glu	Lys
Gln 625	Ile	Lys	Lys	Gln	Thr 630	Ala	Leu	Ala	Glu	Leu 635	Val	ГЛа	His	Lys	Pro 640
Lys	Ala	Thr	Ala	Glu 645	Gln	Leu	Lys	Thr	Val 650	Met	Asp	Asp	Phe	Ala 655	Gln
Phe	Leu	Asp	Thr 660	Сув	Суз	Lys	Ala	Ala 665	Asp	Lys	Asp	Thr	Cys 670	Phe	Ser
Thr	Glu	Gly 675	Pro	Asn	Leu	Val	Thr 680	Arg	Суз	Lys	Aap	Ala 685	Leu	Ala	Gly
Gly	Gly 690	Gly	Ser	His	His	His 695	His	His	His						

<210> SEQ ID NO 74 <211> LENGTH: 697 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence

-continued

<220> <223>	OTH	ER	INFO	ORMA: Hise		: Syr	nthet	ic:	LS-T	nCXCI	L125	-96-	(Gly	lSer)	2-mouse SA-
<400>	SEQ	UEN	CE :	74											
Met A: 1	rg V	al	Pro	Ala 5	Gln	Leu	Leu	Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
Gly A	la A		Суз 20	Ala	Pro	Ile	Ala	Asn 25	Glu	Leu	Arg	Сүз	Gln 30	Cys	Leu
Gln T		let 5	Ala	Gly	Ile	His	Leu 40	Lys	Asn	Ile	Gln	Ser 45	Leu	Lys	Val
Leu P: 5		er	Gly	Pro	His	Суз 55	Thr	Gln	Thr	Glu	Val 60	Ile	Ala	Thr	Leu
Lys A: 65	sn G	ly	Arg	Glu	Ala 70	Суз	Leu	Asp	Pro	Glu 75	Ala	Pro	Leu	Val	Gln 80
Lys I	le V	al	Gln	Lys 85	Met	Leu	Lys	Gly	Val 90	Pro	Lys	Gly	Gly	Gly 95	Gly
Ser G	ly G		Gly 100	Gly	Ser	Glu	Ala	His 105	Lys	Ser	Glu	Ile	Ala 110	His	Arg
Tyr A		ap 15	Leu	Gly	Glu	Gln	His 120	Phe	Lys	Gly	Leu	Val 125	Leu	Ile	Ala
Phe Se 1	er G 30	ln	Tyr	Leu	Gln	Lys 135	Сүз	Ser	Tyr	Asp	Glu 140	His	Ala	Lys	Leu
Val G 145	ln G	lu	Val	Thr	Asp 150	Phe	Ala	Lys	Thr	Сув 155	Val	Ala	Asp	Glu	Ser 160
Ala A	la A	sn	Суз	Asp 165	Lys	Ser	Leu	His	Thr 170	Leu	Phe	Gly	Asp	Lys 175	Leu
Сув А	la I		Pro 180	Asn	Leu	Arg	Glu	Asn 185	Tyr	Gly	Glu	Leu	Ala 190	Asp	Сув
Cys Tl		ys 95	Gln	Glu	Pro	Glu	Arg 200	Asn	Glu	Суз	Phe	Leu 205	Gln	His	Lys
Asp As 2	sp A 10	sn	Pro	Ser	Leu	Pro 215	Pro	Phe	Glu	Arg	Pro 220	Glu	Ala	Glu	Ala
Met C 225	ys T	'hr	Ser	Phe	Lys 230	Glu	Asn	Pro	Thr	Thr 235	Phe	Met	Gly	His	Tyr 240
Leu H	is G	lu	Val	Ala 245	Arg	Arg	His	Pro	Tyr 250	Phe	Tyr	Ala	Pro	Glu 255	Leu
Leu T	yr T	-	Ala 260	Glu	Gln	Tyr	Asn	Glu 265	Ile	Leu	Thr	Gln	Cys 270	Суз	Ala
Glu A		sp 75	rÀa	Glu	Ser	СЛа	Leu 280	Thr	Pro	Lys	Leu	Asp 285	Gly	Val	Гла
Glu Ly 2	ув А 90	la	Leu	Val	Ser	Ser 295	Val	Arg	Gln	Arg	Met 300	ГÀа	Сув	Ser	Ser
Met G 305	ln L	ys	Phe	Gly	Glu 310	Arg	Ala	Phe	Lys	Ala 315	Trp	Ala	Val	Ala	Arg 320
Leu S	er G	ln	Thr	Phe 325	Pro	Asn	Ala	Asp	Phe 330	Ala	Glu	Ile	Thr	Lys 335	Leu
Ala T	hr A	-	Leu 340	Thr	Lys	Val	Asn	Lys 345	Glu	Сув	Сүз	His	Gly 350	Asp	Leu
Leu G		уя 55	Ala	Asp	Asp	Arg	Ala 360	Glu	Leu	Ala	Lys	Tyr 365	Met	Суз	Glu
Asn G	ln A	la	Thr	Ile	Ser	Ser	Lys	Leu	Gln	Thr	Сүз	Сүз	Asp	Lys	Pro

	370					375					380				
Leu 385	Leu	Lys	Lys	Ala	His 390	Сүз	Leu	Ser	Glu	Val 395	Glu	His	Asp	Thr	Met 400
Pro	Ala	Asp	Leu	Pro 405	Ala	Ile	Ala	Ala	Asp 410	Phe	Val	Glu	Asp	Gln 415	Glu
Val	Cys	Lys	Asn 420	Tyr	Ala	Glu	Ala	Lys 425	Asp	Val	Phe	Leu	Gly 430	Thr	Phe
Leu	Tyr	Glu 435	Tyr	Ser	Arg	Arg	His 440	Pro	Asp	Tyr	Ser	Val 445	Ser	Leu	Leu
Leu	Arg 450	Leu	Ala	ГÀа	ГЛа	Tyr 455	Glu	Ala	Thr	Leu	Glu 460	ГЛа	Суз	Суз	Ala
Glu 465	Ala	Asn	Pro	Pro	Ala 470	Суз	Tyr	Gly	Thr	Val 475	Leu	Ala	Glu	Phe	Gln 480
Pro	Leu	Val	Glu	Glu 485	Pro	Lys	Asn	Leu	Val 490	Lys	Thr	Asn	Cys	Asp 495	Leu
Tyr	Glu	Lys	Leu 500	Gly	Glu	Tyr	Gly	Phe 505	Gln	Asn	Ala	Ile	Leu 510	Val	Arg
Tyr	Thr	Gln 515	Lys	Ala	Pro	Gln	Val 520	Ser	Thr	Pro	Thr	Leu 525	Val	Glu	Ala
Ala	Arg 530	Asn	Leu	Gly	Arg	Val 535	Gly	Thr	Lys	Сув	Cys 540	Thr	Leu	Pro	Glu
Asp 545	Gln	Arg	Leu	Pro	Cys 550	Val	Glu	Asp	Tyr	Leu 555	Ser	Ala	Ile	Leu	Asn 560
Arg	Val	Сув	Leu	Leu 565	His	Glu	Lys	Thr	Pro 570	Val	Ser	Glu	His	Val 575	Thr
Lys	Суз	Суз	Ser 580	Gly	Ser	Leu	Val	Glu 585	Arg	Arg	Pro	Суз	Phe 590	Ser	Ala
Leu	Thr	Val 595	Asp	Glu	Thr	Tyr	Val 600	Pro	Lys	Glu	Phe	Lys 605	Ala	Glu	Thr
Phe	Thr 610	Phe	His	Ser	Asp	Ile 615	Суз	Thr	Leu	Pro	Glu 620	Lys	Glu	Lys	Gln
Ile 625	Lys	Lys	Gln	Thr	Ala 630	Leu	Ala	Glu	Leu	Val 635	ГЛЗ	His	Lys	Pro	Lys 640
Ala	Thr	Ala	Glu	Gln 645	Leu	Lys	Thr	Val	Met 650	Asp	Asp	Phe	Ala	Gln 655	Phe
Leu	Aab	Thr	Cys 660	Сүз	Lys	Ala	Ala	Asp 665	Lys	Asp	Thr	Сүз	Phe 670	Ser	Thr
Glu	Gly	Pro 675	Asn	Leu	Val	Thr	Arg 680	Сув	Lys	Asp	Ala	Leu 685	Ala	Gly	Gly
Gly	Gly 690	Ser	His	His	His	His 695	His	His							
<213 <213 <213 <220)> FH 3> 01	ENGTH YPE : RGANI EATUH FHER	H: 69 PRT ISM: RE: INF(98 Art:			-		LS-1	nCXC)	L228	-100	- (Gl ₃	y4Sei	r)2-mouse SA-
<400)> SI	equei	NCE :	75											
Met 1	Arg	Val	Pro	Ala 5	Gln	Leu	Leu	Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro

-continued

_												con		uea	
Gly	Ala	Arg	Cys 20	Ala	Val	Val	Ala	Ser 25	Glu	Leu	Arg	Сув	Gln 30	Сув	Leu
Lys	Thr	Leu 35	Pro	Arg	Val	Asp	Phe 40	Lys	Asn	Ile	Gln	Ser 45	Leu	Ser	Val
Thr	Pro 50	Pro	Gly	Pro	His	Суз 55	Ala	Gln	Thr	Glu	Val 60	Ile	Ala	Thr	Leu
Lys 65	Gly	Gly	Gln	ГЛа	Val 70	Суз	Leu	Asp	Pro	Glu 75	Ala	Pro	Leu	Val	Gln 80
ГЛа	Ile	Ile	Gln	Lys 85	Ile	Leu	Asn	Lys	Gly 90	Lys	Ala	Asn	Gly	Gly 95	Gly
Gly	Ser	Gly	Gly 100	Gly	Gly	Ser	Glu	Ala 105	His	Lys	Ser	Glu	Ile 110	Ala	His
Arg	Tyr	Asn 115	Aap	Leu	Gly	Glu	Gln 120	His	Phe	Lys	Gly	Leu 125	Val	Leu	Ile
Ala	Phe 130		Gln	Tyr	Leu	Gln 135	Lys	Суз	Ser	Tyr	Asp 140		His	Ala	Lys
Leu 145		Gln	Glu	Val	Thr 150	Asp	Phe	Ala	Lys	Thr 155		Val	Ala	Asp	Glu 160
	Ala	Ala	Asn				Ser	Leu			Leu	Phe	Gly		
Leu	Суз	Ala		165 Pro	Asn	Leu	Arg		170 Asn	Tyr	Gly	Glu		175 Ala	Asp
Суз	Cys		180 Lys	Gln	Glu	Pro	Glu	185 Arg	Asn	Glu	Суз		190 Leu	Gln	His
Lys		195 Asp	Asn	Pro	Ser	Leu	200 Pro	Pro	Phe	Glu	Arg	205 Pro	Glu	Ala	Glu
Ala	210 Met	Сув	Thr	Ser	Phe	215 Lys	Glu	Asn	Pro	Thr	220 Thr	Phe	Met	Gly	His
225		-			230	-	Arg			235				-	240
-				245		-	-		250	-		-		255	
		-	260				Tyr	265					270	-	-
Ala	Glu	Ala 275	Asp	Lys	Glu	Ser	Cys 280	Leu	Thr	Pro	ГЛЗ	Leu 285	Asp	Gly	Val
ГЛа	Glu 290	Lys	Ala	Leu	Val	Ser 295	Ser	Val	Arg	Gln	Arg 300	Met	Lys	Суз	Ser
Ser 305	Met	Gln	ГЛа	Phe	Gly 310		Arg	Ala	Phe	Lys 315	Ala	Trp	Ala	Val	Ala 320
Arg	Leu	Ser	Gln	Thr 325	Phe	Pro	Asn	Ala	Asp 330	Phe	Ala	Glu	Ile	Thr 335	Lys
Leu	Ala	Thr	Asp 340	Leu	Thr	Lys	Val	Asn 345	Lys	Glu	Суз	Суз	His 350	Gly	Asp
Leu	Leu	Glu 355	Суз	Ala	Asp	Asp	Arg 360	Ala	Glu	Leu	Ala	Lys 365	Tyr	Met	Суз
Glu	Asn 370	Gln	Ala	Thr	Ile	Ser 375	Ser	Lys	Leu	Gln	Thr 380	СЛа	Суз	Asp	Lya
Pro 385		Leu	Lys	Lys	Ala 390	His	Сув	Leu	Ser	Glu 395		Glu	His	Asp	Thr 400
	Pro	Ala	Asp				Ile	Ala			Phe	Val	Glu	-	
Glu	Val	Cys	Lys	405 Asn	Tyr	Ala	Glu	Ala	410 Lys	Asp	Val	Phe	Leu	415 Gly	Thr
		1.0	1.5		1-				1.5	- L				-1	

-	cont	iı	nu	ed

									-	con	tin	ued	
	420					425					430		
Phe Leu Ty 43		Tyr	Ser	Arg	Arg 440	His	Pro	Asp	Tyr	Ser 445	Val	Ser	Leu
Leu Leu Ar 450	rg Leu	Ala	Lys	Lys 455	Tyr	Glu	Ala	Thr	Leu 460	Glu	Lys	Сүз	Суз
Ala Glu Al 465	.a Asn	Pro	Pro 470	Ala	Суз	Tyr	Gly	Thr 475	Val	Leu	Ala	Glu	Phe 480
Gln Pro Le	eu Val	Glu 485	Glu	Pro	Lys	Asn	Leu 490	Val	Гла	Thr	Asn	Cys 495	Asp
Leu Tyr Gl	u Lys. 500		Gly	Glu	Tyr	Gly 505	Phe	Gln	Asn	Ala	Ile 510	Leu	Val
Arg Tyr Th 51		Lys	Ala	Pro	Gln 520	Val	Ser	Thr	Pro	Thr 525	Leu	Val	Glu
Ala Ala Ar 530	g Asn	Leu	Gly	Arg 535	Val	Gly	Thr	Lys	Cys 540	Суз	Thr	Leu	Pro
Glu Asp Gl 545	.n Arg	Leu	Pro 550	Суз	Val	Glu	Asp	Tyr 555	Leu	Ser	Ala	Ile	Leu 560
Asn Arg Va	al Cys	Leu 565	Leu	His	Glu	Гла	Thr 570	Pro	Val	Ser	Glu	His 575	Val
Thr Lys Cy	78 Cys 580		Gly	Ser	Leu	Val 585	Glu	Arg	Arg	Pro	Сув 590	Phe	Ser
Ala Leu Th 59	nr Val		Glu	Thr	Tyr 600		Pro	Lys	Glu	Phe 605		Ala	Glu
Thr Phe Tr 610		His	Ser	Asp 615		Суз	Thr	Leu	Pro 620		Lys	Glu	Гла
Gln Ile Ly 625	vs Lys	Gln	Thr 630		Leu	Ala	Glu	Leu 635		Lys	His	Lys	Pro 640
Lys Ala Tr	nr Ala	Glu 645		Leu	Гла	Thr	Val 650		Asp	Asp	Phe	Ala 655	
Phe Leu As		Cys	Cys	Гла	Ala			Lys	Asp	Thr			Ser
Thr Glu Gl	-		Leu	Val		665 Arg	Суз	Lys	Asp		670 Leu	Ala	Gly
67 Gly Gly Gl		His	His		680 His	His	His			685			
690				695									
<210> SEQ <211> LENG <212> TYPE	GTH: 6	98											
<213> ORGA <220> FEAT	NISM:		ific:	ial :	Seque	ence							
	ER INF 74Ser)			: Syı	nthe	cic:	LS-T	nCXCI	L328-	-100	- (Gl <u>}</u>	/4Sei	r)2-mouse SA-
<400> SEQU	JENCE :	76											
Met Arg Va 1	al Pro	Ala 5	Gln	Leu	Leu	Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
Gly Ala Ar	сд Суз 20	Ala	Val	Val	Ala	Ser 25	Glu	Leu	Arg	Суа	Gln 30	Суз	Leu
Asn Thr Le 35		Arg	Val	Asp	Phe 40	Glu	Thr	Ile	Gln	Ser 45	Leu	Thr	Val
Thr Pro Pr 50		Pro	His	Суз 55		Gln	Thr	Glu	Val 60		Ala	Thr	Leu
50				55					00				

													CIII	<u>ucu</u>	
Lys 65	Asp	Gly	Gln	Glu	Val 70	Суз	Leu	Asn	Pro	Gln 75	Gly	Pro	Arg	Leu	Gln 80
Ile	Ile	Ile	Гла	Lys 85	Ile	Leu	Lys	Ser	Gly 90	Lys	Ser	Ser	Gly	Gly 95	Gly
Gly	Ser	Gly	Gly 100	Gly	Gly	Ser	Glu	Ala 105	His	Lys	Ser	Glu	Ile 110	Ala	His
Arg	Tyr	Asn 115	Asp	Leu	Gly	Glu	Gln 120	His	Phe	Lys	Gly	Leu 125	Val	Leu	Ile
Ala	Phe 130	Ser	Gln	Tyr	Leu	Gln 135	-	Суз	Ser	Tyr	Asp 140	Glu	His	Ala	Lys
Leu 145	Val	Gln	Glu	Val	Thr 150	Asp	Phe	Ala	Lys	Thr 155	Суз	Val	Ala	Asp	Glu 160
Ser	Ala	Ala	Asn	Cys 165	Asp	LÀa	Ser	Leu	His 170	Thr	Leu	Phe	Gly	Asp 175	Lys
Leu	Cys	Ala	Ile 180	Pro	Asn	Leu	Arg	Glu 185	Asn	Tyr	Gly	Glu	Leu 190	Ala	Asp
Сүз	Cys	Thr 195	Lys	Gln	Glu	Pro	Glu 200	Arg	Asn	Glu	Суз	Phe 205	Leu	Gln	His
Lys	Asp 210	Asp	Asn	Pro	Ser	Leu 215	Pro	Pro	Phe	Glu	Arg 220	Pro	Glu	Ala	Glu
Ala 225	Met	Сув	Thr	Ser	Phe 230	-	Glu	Asn	Pro	Thr 235	Thr	Phe	Met	Gly	His 240
Tyr	Leu	His	Glu	Val 245	Ala	Arg	Arg	His	Pro 250	Tyr	Phe	Tyr	Ala	Pro 255	Glu
Leu	Leu	Tyr	Tyr 260	Ala	Glu	Gln	Tyr	Asn 265	Glu	Ile	Leu	Thr	Gln 270	Сүз	Сув
Ala	Glu	Ala 275	Asp	Lys	Glu	Ser	Cys 280	Leu	Thr	Pro	Lys	Leu 285	Asp	Gly	Val
ГЛа	Glu 290	Lys	Ala	Leu	Val	Ser 295	Ser	Val	Arg	Gln	Arg 300	Met	Lys	Cys	Ser
Ser 305	Met	Gln	Lys	Phe	Gly 310	Glu	Arg	Ala	Phe	Lys 315	Ala	Trp	Ala	Val	Ala 320
Arg	Leu	Ser	Gln	Thr 325	Phe	Pro	Asn	Ala	Asp 330	Phe	Ala	Glu	Ile	Thr 335	Lys
Leu	Ala	Thr	Asp 340		Thr	Lys	Val	Asn 345		Glu	Сүз	Суз	His 350		Asp
Leu	Leu	Glu 355		Ala	Asp	Asp	Arg 360	Ala	Glu	Leu	Ala	Lys 365		Met	Суа
Glu	Asn 370		Ala	Thr	Ile	Ser 375	Ser	Lys	Leu	Gln	Thr 380		Сув	Asp	Lys
Pro 385		Leu	Lys	Lys	Ala 390	His		Leu	Ser	Glu 395		Glu	His	Asp	Thr 400
	Pro	Ala	Asp	Leu 405			Ile	Ala	Ala 410		Phe	Val	Glu	Asp 415	
Glu	Val	Суз	-		Tyr	Ala	Glu	Ala		Asp	Val	Phe			Thr
Phe	Leu	-	420 Glu	Tyr	Ser	Arg	Arg	425 His	Pro	Asp	Tyr		430 Val	Ser	Leu
Leu	Leu	435 Arg	Leu	Ala	Lys	Lys	440 Tyr	Glu	Ala	Thr	Leu	445 Glu	Lys	Cys	Cys
	450	-			-	455	-				460		-	-	-
AIA	GIU	AId	ASI	PI0	PIO	AId	сув	Tyr	σту	1111	val	цец	MIG	GIU	File

-continued

465															
N 7					470					475					480
in	Pro	Leu	Val	Glu 485	Glu	Pro	Lys	Asn	Leu 490	Val	ГЛа	Thr	Asn	Cys 495	Asp
Jeu	Tyr	Glu	Lys 500	Leu	Gly	Glu	Tyr	Gly 505	Phe	Gln	Asn	Ala	Ile 510	Leu	Val
Arg	Tyr	Thr 515	Gln	Lys	Ala	Pro	Gln 520	Val	Ser	Thr	Pro	Thr 525	Leu	Val	Glu
Ala	Ala 530	Arg	Asn	Leu	Gly	Arg 535	Val	Gly	Thr	Lys	Суз 540	СЛа	Thr	Leu	Pro
Glu 545	Asp	Gln	Arg	Leu	Pro 550	Суа	Val	Glu	Asp	Tyr 555	Leu	Ser	Ala	Ile	Leu 560
Asn	Arg	Val	Cys	Leu 565	Leu	His	Glu	Lys	Thr 570	Pro	Val	Ser	Glu	His 575	Val
Γhr	Lys	Cys	Cys 580	Ser	Gly	Ser	Leu	Val 585	Glu	Arg	Arg	Pro	Суз 590	Phe	Ser
Ala	Leu	Thr 595	Val	Asp	Glu	Thr	Tyr 600	Val	Pro	Lys	Glu	Phe 605	Lys	Ala	Glu
Γhr	Phe 610	Thr	Phe	His	Ser	Asp 615	Ile	Cys	Thr	Leu	Pro 620	Glu	Lys	Glu	Lys
Gln 625	Ile	Lys	Lys	Gln	Thr 630	Ala	Leu	Ala	Glu	Leu 635	Val	Lya	His	Lys	Pro 640
lys	Ala	Thr	Ala	Glu 645	Gln	Leu	Lys	Thr	Val 650	Met	Asp	Asp	Phe	Ala 655	Gln
Phe	Leu	Asp	Thr 660	Суз	Сүз	Гла	Ala	Ala 665	Asp	Lys	Asp	Thr	Cys 670	Phe	Ser
Γhr	Glu	Gly 675	Pro	Asn	Leu	Val	Thr 680	Arg	Cys	Lys	Asp	Ala 685	Leu	Ala	Gly
Jly	Gly 690		Ser	His	His	His 695	His	His	His						
				77											
<211 <212 <213 <220	L> LH 2> TY 3> OH 0> FH 3> OY	EATUR THER	H: 70 PRT ISM: RE: INF0	01 Art: DRMAT			-		LS-n	nCXCI	J430-	-105-	-(Gl}	/4Sei)2-mouse SA-
<211 <212 <213 <220 <223	L> LH 2> TY 3> OH 0> FH 3> OT (C	ENGTH (PE : RGAN] EATUH	H: 70 PRT ISM: RE: INFO Ser)	D1 Art: DRMA1 -Hise	TION		-		LS-n	nCXCI	J430-	-105-	-(Gl}	/4Sei)2-mouse SA-
<211 <212 <213 <220 <223 <400	L> LH 2> TY 3> OH 0> FH 3> OY (C	ENGTH (PE: RGANI SATUH THER Gly45 EQUEN	H: 7(PRT SM: E: INF(Ser)-	D1 Art: DRMA -Hise 77	TION	: Syı	nthet	ic:					_		
<211 <212 <213 <220 <223 <400 Met 1	L> LH 2> TY 3> OH 0> FH 3> OT (C 0> SH Arg	ENGTH (PE: RGANI EATUH THER Gly45 EQUEN Val	H: 70 PRT ISM: RE: INFO Ser)- JCE: Pro	D1 Art: DRMAT -Hise 77 Ala 5	FION 6	: Syı Leu	nthet Leu	cic: Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
<211 <212 <213 <220 <223 <400 Met 1 Gly	L> LH 2> TY 3> OF 0> FH 3> OT ((0)> SH Arg Ala	ENGTH (PE: RGANI EATUR THER Sly45 EQUEN Val Arg	H: 70 PRT ISM: RE: INFO Ser)- NCE: Pro Cys 20	D1 Art: DRMAT -Hise 77 Ala 5 Val	FION 6 Gln	: Syn Leu Ser	Leu Ala	Gly Gly 25	Leu 10 Pro	Leu Glu	Leu Glu	Leu Ser	Trp Asp 30	Leu 15 Gly	Pro Asp
<213 <212 <213 <220 <220 <400 Met 1 Gly Leu	L> LH 2> TY 3> OF 0> FH 3> OY (C 0> SH Arg Ala Ser	ENGTH (PE: CGANI EATUR (HER Gly45 EQUEN Val Arg Cys 35	H: 70 PRT ISM: ISM: Te: INF(Ser) JCE: Pro Cys 20 Val	D1 Art: DRMAT -Hise 77 Ala 5 Val Cys	Gln Thr	: Syı Leu Ser Lys	Leu Ala Thr 40	Gly Gly 25 Ile	Leu 10 Pro Ser	Leu Glu Ser	Leu Glu Gly	Leu Ser Ile 45	Trp Asp 30 His	Leu 15 Gly Leu	Pro Asp Lys
<211 <212 <212 <223 <220 <223 <400 Met 1 Gly Leu His	<pre>L> LH 2> TY 3> OF 3> OF 3> OT ((0)> SH Arg Ala Ser Ille 50</pre>	ENGTH (PE: RGANJ EATUH FHER Sly4S EQUEN Val Arg Cys 35 Thr	H: 7(PRT ISM: ISM: INF(Ser). JCE: Pro Cys 20 Val Ser	D1 Art: DRMA: -Hise 77 Ala 5 Val Cys Leu	Gln Thr Val	: Syn Leu Ser Lys Val 55	Leu Ala Thr 40 Ile	Gly Gly 25 Ile Lys	Leu 10 Pro Ser Ala	Leu Glu Ser Gly	Leu Glu Gly Arg 60	Leu Ser Ile 45 His	Trp Asp 30 His Cys	Leu 15 Gly Leu Ala	Pro Asp Lys Val
<211 <212 <212 <223 <220 <400 Met 1 Gly Leu His Pro 65	L> LH 2> TY 3> OF 0> FH 3> OT (C 0> SH Arg Ala Ser Ile 50 Gln	ENGTH (PE: CGADUS CATUR CHER Sly4S SQUEN Val Arg Cys 35 Thr Leu	H: 70 PRT (SM: CE: INFC Ger). VCE: Pro Val Ser Ile	Art: Art: -Hise 77 Ala 5 Val Cys Leu Ala	Gln Gln Val Glu Thr	: Syn Leu Ser Lys Val 55 Leu	Leu Ala Thr 40 Ile Lys	Gly Gly 25 Ile Lys Asn	Leu 10 Pro Ser Ala Gly	Leu Glu Ser Gly Arg 75	Leu Glu Gly Arg 60 Lys	Leu Ser Ile 45 His Ile	Trp Asp 30 His Cys Cys	Leu 15 Gly Leu Ala Leu	Pro Asp Lys Val Asp 80

												COII		ueu	
Ile	Ala	His 115	Arg	Tyr	Asn	Asp	Leu 120	Gly	Glu	Gln	His	Phe 125	Lys	Gly	Leu
Val	Leu 130	Ile	Ala	Phe	Ser	Gln 135	Tyr	Leu	Gln	Lys	Cys 140	Ser	Tyr	Asp	Glu
His 145	Ala	Lys	Leu	Val	Gln 150	Glu	Val	Thr	Asp	Phe 155	Ala	ГÀЗ	Thr	Суз	Val 160
Ala	Asp	Glu	Ser	Ala 165	Ala	Asn	Суз	Asp	Lys 170	Ser	Leu	His	Thr	Leu 175	Phe
Gly	Asp	Lys	Leu 180	Суз	Ala	Ile	Pro	Asn 185	Leu	Arg	Glu	Asn	Tyr 190	Gly	Glu
Leu	Ala	Asp 195	Cys	Сув	Thr	Lys	Gln 200	Glu	Pro	Glu	Arg	Asn 205	Glu	Cys	Phe
Leu	Gln 210	His	Lys	Asp	Asp	Asn 215	Pro	Ser	Leu	Pro	Pro 220	Phe	Glu	Arg	Pro
Glu 225	Ala	Glu	Ala	Met	Сув 230	Thr	Ser	Phe	Lys	Glu 235	Asn	Pro	Thr	Thr	Phe 240
Met	Gly	His	Tyr	Leu 245	His	Glu	Val	Ala	Arg 250		His	Pro	Tyr	Phe 255	Tyr
Ala	Pro	Glu	Leu 260	Leu	Tyr	Tyr	Ala	Glu 265	Gln	Tyr	Asn	Glu	Ile 270	Leu	Thr
Gln	Сув	Cys 275	Ala	Glu	Ala	Asp	Lys 280	Glu	Ser	Суз	Leu	Thr 285	Pro	Lys	Leu
Asp	Gly 290	Val	Lys	Glu	Lys	Ala 295	Leu	Val	Ser	Ser	Val 300	Arg	Gln	Arg	Met
Lys 305	Сув	Ser	Ser	Met	Gln 310	Lys	Phe	Gly	Glu	Arg 315	Ala	Phe	Lys	Ala	Trp 320
Ala	Val	Ala	Arg	Leu 325	Ser	Gln	Thr	Phe	Pro 330	Asn	Ala	Asp	Phe	Ala 335	Glu
Ile	Thr	Lys	Leu 340	Ala	Thr	Asp	Leu	Thr 345	ГЛа	Val	Asn	ГЛа	Glu 350	Суз	Суз
His	Gly	Asp 355	Leu	Leu	Glu	Суз	Ala 360	Asp	Asp	Arg	Ala	Glu 365	Leu	Ala	ГЛЗ
Tyr	Met 370	Сув	Glu	Asn	Gln	Ala 375	Thr	Ile	Ser	Ser	Lуз 380	Leu	Gln	Thr	Суз
Суз 385	Asp	Lys	Pro	Leu	Leu 390	Lys	Lys	Ala	His	Суз 395	Leu	Ser	Glu	Val	Glu 400
His	Asp	Thr	Met	Pro 405	Ala	Asp	Leu	Pro	Ala 410		Ala	Ala	Asp	Phe 415	Val
Glu	Asp	Gln	Glu 420	Val	Cys	Lys	Asn	Tyr 425	Ala	Glu	Ala	Lys	Asp 430	Val	Phe
Leu	Gly	Thr 435	Phe	Leu	Tyr	Glu	Tyr 440	Ser	Arg	Arg	His	Pro 445	Asp	Tyr	Ser
Val	Ser 450	Leu	Leu	Leu	Arg	Leu 455	Ala	Гла	ГЛа	Tyr	Glu 460	Ala	Thr	Leu	Glu
Lys 465	Сув	Сув	Ala	Glu	Ala 470	Asn	Pro	Pro	Ala	Cys 475	Tyr	Gly	Thr	Val	Leu 480
Ala	Glu	Phe	Gln	Pro 485	Leu	Val	Glu	Glu	Pro 490	Lys	Asn	Leu	Val	Lys 495	Thr
Asn	Сув	Asp	Leu 500	Tyr	Glu	Lys	Leu	Gly 505	Glu	Tyr	Gly	Phe	Gln 510	Asn	Ala
Ile	Leu	Val	Arg	Tyr	Thr	Gln	Lys	Ala	Pro	Gln	Val	Ser	Thr	Pro	Thr

-continued

		515					520					525			
Leu V 5	Val 530	Glu	Ala	Ala	Arg	Asn 535	Leu	Gly	Arg	Val	Gly 540	Thr	Lys	Суз	Сув
Thr I 545	Leu	Pro	Glu	Asp	Gln 550	Arg	Leu	Pro	Суз	Val 555	Glu	Asp	Tyr	Leu	Ser 560
Ala 1	Ile	Leu	Asn	Arg 565	Val	Суз	Leu	Leu	His 570	Glu	Lys	Thr	Pro	Val 575	Ser
Glu H	His	Val	Thr 580	Lys	Суз	Суа	Ser	Gly 585	Ser	Leu	Val	Glu	Arg 590	Arg	Pro
CÀa 1	Phe	Ser 595		Leu	Thr	Val	Asp 600		Thr	Tyr	Val	Pro 605		Glu	Phe
Lys A	Ala 610		Thr	Phe	Thr	Phe 615		Ser	Asp	Ile	Суз 620		Leu	Pro	Glu
Lys C		Lys	Gln	Ile			Gln	Thr	Ala			Glu	Leu	Val	
625 His I	Lys	Pro	Lys		630 Thr	Ala	Glu	Gln		635 Lys	Thr	Val	Met		640 Asp
Phe A	Ala	Gln		645 Leu	Asp	Thr	Сув	-	650 Lys	Ala	Ala	Asp	-	655 Asp	Thr
Cys I	Phe		660 Thr	Glu	Gly	Pro		665 Leu	Val	Thr	Arg	-	670 Lys	Asp	Ala
Leu A	Ala	675 Gly	Gly	Gly	Gly	Ser	680 His	His	His	His	His	685 His			
e	690					695					700				
<210> <211> <212> <213> <223>	> LE > TY > OR > FE > OI	INGTH PE: GANJ ATUF HER	H: 69 PRT SM: RE: INFO	96 Art:	rion		-		LS-1	nCXCI	L548-	-118	- (Gl ₃	74Sei	r)2-mouse SA-
<400>		-													
Met A 1	Arg	Val	Pro	Ala 5	Gln	Leu	Leu	Gly	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
Gly A	Ala	Arg	Cys 20	Ala	Thr	Glu	Leu	Arg 25	Суз	Val	Суа	Leu	Thr 30	Val	Thr
Pro I	Lya	Ile 35	Asn	Pro	ГЛа	Leu	Ile 40	Ala	Asn	Leu	Glu	Val 45	Ile	Pro	Ala
Gly E	Pro 50	Gln	Cys	Pro	Thr	Val 55	Glu	Val	Ile	Ala	Lys 60	Leu	Lys	Asn	Gln
Lys (65	Glu	Val	Cys	Leu	Asp 70	Pro	Glu	Ala	Pro	Val 75	Ile	ГЛа	Lys	Ile	Ile 80
Gln I	Lys	Ile	Leu	Gly 85	Ser	Asp	Lys	Lys	Lys 90	Ala	Gly	Gly	Gly	Gly 95	Ser
Gly C	Gly	Gly	-		Glu	Ala	His	-		Glu	Ile	Ala	His 110		Tyr
			100					105							
Asn A	Asp			Glu	Gln	His		Lys	Gly	Leu	Val			Ala	Phe
Asn A		115	Gly				120					125	Ile		
Ser C	Gln 130	115 Tyr	Gly Leu	Gln	Lys	Cys 135	120 Ser	Tyr	Asp	Glu	His 140	125 Ala	Ile Lys	Leu	Val

											-	con	tin	ued	
Ala	Asn	Сув	Asp	Lys 165	Ser	Leu	His	Thr	Leu 170	Phe	Gly	Aap	Lys	Leu 175	Сув
Ala	Ile	Pro	Asn 180	Leu	Arg	Glu	Asn	Tyr 185	Gly	Glu	Leu	Ala	Asp 190	Суз	Сүз
Thr	Lys	Gln 195	Glu	Pro	Glu	Arg	Asn 200	Glu	Cys	Phe	Leu	Gln 205	His	Lys	Asp
Asp	Asn 210	Pro	Ser	Leu	Pro	Pro 215	Phe	Glu	Arg	Pro	Glu 220	Ala	Glu	Ala	Met
Cys 225	Thr	Ser	Phe	Lys	Glu 230	Asn	Pro	Thr	Thr	Phe 235	Met	Gly	His	Tyr	Leu 240
His	Glu	Val	Ala	Arg 245	Arg	His	Pro	Tyr	Phe 250	Tyr	Ala	Pro	Glu	Leu 255	Leu
Tyr	Tyr	Ala	Glu 260	Gln	Tyr	Asn	Glu	Ile 265	Leu	Thr	Gln	Суа	Cys 270	Ala	Glu
Ala	Aab	Lys 275	Glu	Ser	Суа	Leu	Thr 280	Pro	Lys	Leu	Asp	Gly 285	Val	Lys	Glu
Lys	Ala 290	Leu	Val	Ser	Ser	Val 295	Arg	Gln	Arg	Met	Lys 300	Cys	Ser	Ser	Met
Gln 305	Lys	Phe	Gly	Glu	Arg 310	Ala	Phe	Lys	Ala	Trp 315	Ala	Val	Ala	Arg	Leu 320
Ser	Gln	Thr	Phe	Pro 325	Asn	Ala	Asp	Phe	Ala 330	Glu	Ile	Thr	Lys	Leu 335	Ala
Thr	Asp	Leu	Thr 340	Гла	Val	Asn	Lys	Glu 345	Суз	Сув	His	Gly	Asp 350	Leu	Leu
Glu	Cys	Ala 355	Asp	Asp	Arg	Ala	Glu 360	Leu	Ala	Lys	Tyr	Met 365	Суз	Glu	Asn
Gln	Ala 370	Thr	Ile	Ser	Ser	Lys 375	Leu	Gln	Thr	Сув	Cys 380	Asp	Lys	Pro	Leu
Leu 385	Lys	Lys	Ala	His	Сув 390	Leu	Ser	Glu	Val	Glu 395	His	Asp	Thr	Met	Pro 400
Ala	Asp	Leu	Pro	Ala 405	Ile	Ala	Ala	Asp	Phe 410	Val	Glu	Asp	Gln	Glu 415	Val
Cys	Lys	Asn	Tyr 420	Ala	Glu	Ala	Lys	Asp 425	Val	Phe	Leu	Gly	Thr 430	Phe	Leu
Tyr	Glu	Tyr 435	Ser	Arg	Arg	His	Pro 440	Asp	Tyr	Ser	Val	Ser 445	Leu	Leu	Leu
Arg	Leu 450	Ala	Lys	ГЛЗ	Tyr	Glu 455	Ala	Thr	Leu	Glu	Lys 460	Суз	Суз	Ala	Glu
Ala 465	Asn	Pro	Pro	Ala	Cys 470	Tyr	Gly	Thr	Val	Leu 475	Ala	Glu	Phe	Gln	Pro 480
Leu	Val	Glu	Glu	Pro 485	Гла	Asn	Leu	Val	Lys 490	Thr	Asn	Суз	Asp	Leu 495	Tyr
Glu	Lys	Leu	Gly 500	Glu	Tyr	Gly	Phe	Gln 505	Asn	Ala	Ile	Leu	Val 510	Arg	Tyr
Thr	Gln	Lys 515	Ala	Pro	Gln	Val	Ser 520	Thr	Pro	Thr	Leu	Val 525	Glu	Ala	Ala
Arg	Asn 530		Gly	Arg	Val	Gly 535		Lys	Сув	Сув	Thr 540		Pro	Glu	Asp
		Leu	Pro	Суа			Asp	Tyr	Leu			Ile	Leu	Asn	-
545 Val	Cys	Leu	Leu	His	550 Glu	Lys	Thr	Pro	Val	555 Ser	Glu	His	Val	Thr	560 Lys

-continued

565570575CyoCyoSerGlySerLeuSerSerAlaLeu580CyoCyoPheSerAlaLeuSerAlaGluThrPheThrValSerAngIleCyoGluPheLyoAlaGluThrPhe610FibHisSerAngIleCyoGluPheLyoGluThrPhe610FibSerAngIleCyoNuValSerProLyoAla625CyoGluThrAlaGluLyoPheAlaGluPheAla625CyoLyoAlaLauAlaAngAngAngPheAlaGluFibCyo626CyoLyoAlaAlaAngLyoAngAngPheAlaGluGluFibCyo637CyoLyoAlaAlaAngLyoAng </th <th></th>																	
580 585 590 Thr Val App Glu Thr Tyr Val Pro Lys Glu Phe Lys Ala Glu Thr Phe 605 Thr Phe His Ser Asp 11e Cys Thr Leu Pro Glu Lys Glu Lys Glu Lys Gln 11e c10 610 Thr Ala Glu Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala c25 Glu Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala 640 c35 Glu Glu Che Lys Thr Val Met App App Ala Clu Phe Ala Glu The Leu 640 c40 Glu Glu Che Lys Thr Val Met App App Ala Leu Ala Gly Gly Gly Gly Gly Gly Gly Cross Fire 650 Gly Pro Asn Leu Val Thr Arg Cys Lys App Ala Leu Ala Gly Gly Gly Gly Gly Gly Gross Fire 650 c210 - SEO ID NO 79 650 650 c212 - YEP PET 700 70 c410 - Hei Glu Leu Arg Cys Lys App Ala Leu Leu Leu Trp Leu Pro 15 c210 - SEO ID NO 79 71 c211 - SEQUENCE: 79 71 wet Arg Val Pro Ala Glu Leu Leu Gly Leu Leu Leu Leu Trp Leu Pro 15 Gly Ala Arg Cys Ile Glu Leu Arg Cys Arg Cys Thr Asn Thr Ile Ser 70 Gly Ile Pro Phe Asn Ser Ile Ser Leu Val Asn Val Trp Arg Pro Gly 45 Gly Thr Cys Leu App Pro Asn Ala Pro Gly Val Lys Arg Ile Val Net 80 Gly Ile Pro Phe Asn Ser Ile Ser Clu Val Asn Val Trp Arg Pro Gly 10					565					570					575		
595600605The Phe His Ser Amp IIe Cya Thr Leu Pro Glu Lya Glu Lya Glu Lya Gln IIe 615Lya Lya Glu Thr Ala Leu Ala Glu Leu Val Lya His Lya Pro Lya Ala 630Gin Thr Ala Leu Ala Glu Leu Val Lya His Lya Pro Lya Ala 640Cya Lya Glu Thr Ala Clu Glu Leu Va Thr Val Met Amp Amp Amp Phe Ala Glu Phe See 660Gin Phe See 670Gin Glu Glu Clua Uya Clua Clua Clua Clua Clua Clua Clua Clu	САа	Cys	Ser	-	Ser	Leu	Val	Glu	-	Arg	Pro	Суз	Phe		Ala	Leu	
610615620Lye Lye Gin Thr Ala Leu Ala Glu Leu Val Lye His Lye Pro Lye Ala 630GasCastGasGasThr Ala Glu Gin Leu Lye Thr Val Met App App Phe Ala Gin Phe Leu 645GasAmp Thr Cye Cye Lye Ala Ala Asp Lye Asp Thr Cye Phe Ser Thr Glu 660Gis Fir Cye Pro Asi Leu Val Thr Arg Cye Lye Asp Ala Leu Ala Gly Gly Gly Gly 685Gly Pro Asi Leu Val Thr Arg Cye Lye Asp Ala Leu Ala Gly Gly Gly Gly 675Gis Fir Sin His His His His His 695Callo SEQ ID NO 79 Callo CRAHIGM: 691Callo SEQ UDN CFI PRT Callo SCQUENCE: 79Met Arg Val Pro Ala Glin Leu Leu Gly Leu Leu Leu Trp Leu Pro 10Gly Ala Arg Cye Ile Glu Leu Arg Cye Arg Cye Thr Am Thr Ile Ser 20Gly Ala Arg Cye Ile Glu Leu Arg Cye Arg Cye Thr Am Thr Ile Ser 20Gly Ja Pro Asi Asp Val Glu Val Ile Ala Thr Leu Lye Asp Gly Gli 40Val Hie Cye Ala Asp Val Glu Val Ile Ala Thr Leu Lye Asp Gly Gli 40So Cos Cye Cye Lye Asp Pro Asi Ala Pro Gly Val Lye Arg Ile Val Met 60So Cye Ser Tyr Ang Glu Ile Ala His Arg Tyr Asi Asp Leu Gly Glu 100Glin His Phe Lye Gly Leu Val Leu Ile Ala Phe Ser Glin Tyr Leu Gli 115Glin His Phe Lye Gly Cal Leu Asp Glu Ser 90Glu Asi Tyr Cye Val Ala Asp Glu Ser Ala Asp Cye Asp Asp Asp Asp Leu Gli Glu Val Thr Asp 116Glu Asi Tyr Arg Glu His Ala Asp Glu Ser Ala Asp Cye Asp Tyr Leu Glin 115Glu Ala His Lyes Cer Glu Ile Ala His Tyr Eu Glin Uli Thr Asp 1120Glu Ala His Lyes Cer Glu Ile Ala Asp Glu Ser Ala Asp Cye Asp Asp 150Glu Ala His Lyes Cer Tyr Asp Glu His Ala Asp Glu Ser Ala Ala Asp Cye Asp Lye 150Glu Ala His Lyes Cer Tyr Asp Glu His Al	Thr	Val	-	Glu	Thr	Tyr	Val		Lys	Glu	Phe	Гла		Glu	Thr	Phe	
625 630 630 635 640 Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu 650 660 660 660 660 660 660 660 660 660	Thr		His	Ser	Asp	Ile	-	Thr	Leu	Pro	Glu	-	Glu	Lys	Gln	Ile	
645 650 655 Asg Thr Cys Cys Lys Ala Ala Asp Lys Asg Thr Cys Phe Ser Thr Glu 675 Thr Glu Gly Pro Asg Leu Val Thr Arg Cys Lys Asg Ala Leu Ala Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Ser His His His His His His 695 695 Gly Ser His His His His His His 690 SEQ ID NO 79 691 695 Gly Ser His His His His His His 6212> TYPE PRT Class Sequence 692 695 Gly Ser His His His His His 6210> SEQUENCE: 79 Met Arg Val Pro Ala Glu Leu Arg Cys Arg Cys Thr Asg Thr I Leu Pro 15 Gly Ala Arg Cys Ile Glu Leu Arg Cys Arg Cys Thr Asg Thr I Leu Pro 15 Gly Ala Arg Cys Ala Asg Val Glu Val Ile Ala Thr Leu Lys Asg Ile Val Met 60 50 10 55 Gly Ala Arg Cys Ala Asg Val Glu Val Ile Ala Thr Leu Lys Asg Ile Val Met 50 10 10 51 10 10 52 11 Ala Thr Leu Gly		Lys	Gln	Thr	Ala		Ala	Glu	Leu	Val		His	Lys	Pro	Lys		
$\begin{array}{c} 660 \\ 665 \\ 670 \\ 670 \\ 670 \\ 671 \\ 680 \\ 685 \\ 680 \\ 685 \\$	Thr	Ala	Glu	Gln		ГЛЗ	Thr	Val	Met	_	Asp	Phe	Ala	Gln		Leu	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Asp	Thr	Cys		Lys	Ala	Ala	Asp		Asp	Thr	Сүз	Phe		Thr	Glu	
690 695 <210> SEQ ID NO 79 <211> LENGTH: 691 <212> TTFE: PRT <223> OTHER INFORMATION: Synthetic: LS-mCXCL748-113- (GLy4Ser) 2-mouse SA-(GLy4Ser)-His6 <400> SEQUENCE: 79 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Tr Leu Pro 1 Gly Ala Arg Cys Ile Glu Leu Arg Cys Arg Cys Thr Asn Thr Ile Ser 20 Gly Ile Pro Phe Asn Ser Ile Ser Leu Val Asn Val Tyr Arg Pro Gly 45 Val His Cys Ala Asp Val Glu Val Ile Ala Thr Leu Lys Asn Gly Gln 55 Gly Ile Leu Gly Tyr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 90 Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu 100 Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu 1120 Glu Ala His Lys Gyr Leu Val Leu II Ala Pro Ser Gli Glu Glu Glu Glu 120 Glu Ala His Lys Thr Cys Val Ala Asp Glu Ser Ala Asp Tyr Asn Asp Leu Gly Glu 130 Glu Ala His Lys Thr Cys Val Ala Asp Glu Ser Ala Asp Tyr Asn Asp Leu Gli Glu 140 Glu Ala His Thr Leu Fin Cys Val Ala Asp Glu Ser Ala Ala Asp Cys Asp Asp Asp Lys 140 His Thr Leu Fin Cys Val Ala Asp Glu Ser Ala Asp Cys Cys Thr Lys Gln Glu Pro 150 Fin Cys Glu Asp Tyr Gly Asp Lys Leu Cys Ala II Pro Asp Leu 175 Arg Glu Asp Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro 190	Gly	Pro		Leu	Val	Thr	Arg		Lys	Asp	Ala	Leu		Gly	Gly	Gly	
<pre><211> LENGTH: 691 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL748-113- (Gly4Ser)2-mouse SA- (Gly4Ser)-Hie6 <</pre>	Gly		His	His	His	His		His									
Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp Leu Pro 1 Gly Ala Arg Cys Ile Glu Leu Arg Cys Arg Cys Thr Asn Thr Ile Ser 20 Gly Ile Pro Pro Asn Ser Ile Ser Leu Val Asn Val Tyr Arg Pro Gly 35 Val His Cys Ala Asp Val Glu Val Ile Ala Thr Leu Lys Asn Gly Gln 55 Cys Thr Cys Leu Asp Pro Asn Ala Pro Gly Val Lys Arg Ile Val Met 80 Lys Thr Cys Leu Asp Pro Asn Ala Pro Gly Gly Ser Gly Gly Gly Ser Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu 110 Gln His Phe Lys Gly Leu Val Leu Ile Ala Pro Ser Gln Tyr Leu Gln 115 115 115 115 116 117 118 119 110 110 110 110 110 110 111 115 115	<21: <21: <21: <22: <22:	l > LH 2 > T 3 > OH 0 > FH 3 > OT (C	ENGTH (PE: RGANI EATUF THER Gly45	H: 69 PRT SM: E: INF(Ser)	91 Art: ORMA -Hise	TION		-		LS-1	nCXCI	L748-	-113-	- (Gl ₃	/4Sei)2-mouse SA-	-
1 5 10 15 Gly Ala Arg Cys Ile Gu Leu Arg Cys Th Asn Th Asn Th Son Ile Ser Gly Ile Pro Phe Asn Son Val Son Ile Son Gly Asn Th Asn Th Ile Ser Gly Val Pro Pro Pro Pro Pro Pro Gly Asn Val Typ Arg Pro Gly Val Pro	<40)> SH	EQUEN	ICE :	79												
20 25 30 G1 11e See Val See Val See Val See See G1y Val Sin Val See Val See Val See Val See G1y See G1y Val Sin Val See Val See Val See Val See See </td <td></td> <td>Arg</td> <td>Val</td> <td>Pro</td> <td></td> <td>Gln</td> <td>Leu</td> <td>Leu</td> <td>Gly</td> <td></td> <td>Leu</td> <td>Leu</td> <td>Leu</td> <td>Trp</td> <td></td> <td>Pro</td> <td></td>		Arg	Val	Pro		Gln	Leu	Leu	Gly		Leu	Leu	Leu	Trp		Pro	
35 40 45 Val His Cys Ala Asp Val S5 Val Ala Val S5 Val Ile Ala Thr Leu Lys Asn Glu Glu S S Glu S S Glu Glu S S S Glu S S S Glu S	Gly	Ala	Arg		Ile	Glu	Leu	Arg		Arg	Суз	Thr	Asn		Ile	Ser	
50 55 60 Lys Thr Cys Leu Asp Pro Asn Ala Pro Gly Val Lys Arg Ile Val Met Lys Thr Cys Leu Gly	Gly	Ile		Phe	Asn	Ser	Ile		Leu	Val	Asn	Val	-	Arg	Pro	Gly	
65 70 75 80 Lys Ile Leu Gly	Val		Суз	Ala	Asp	Val		Val	Ile	Ala	Thr		Lys	Asn	Gly	Gln	
85 90 90 95 Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Glu Glu Glu Glu Glu Ile Ala His Arg Tyr Asn Asp Leu Glu Glu Glu Glu Glu Glu Glu Ile Ile Ala Phe Ser Glu Glu Val Into Glu Asp Ile Val Into Glu		Thr	Суз	Leu	Asp		Asn	Ala	Pro	Gly		ГЛа	Arg	Ile	Val		
100 105 110 Gln His Phe Lys Gly Leu Val Leu Phe Ser Gln Tyr Leu Gln Lys Cys Fur Tyr Asp Gln His Ala Lus Fur Ser Gln Tyr Leu Gln Lys Cys Fur Tyr Asp Gln His Ala Lys Luc Gln Tyr Lys Gln Lys Ala Lys Tyr Lys Tyr Lys Asp Lys	Lys	Ile	Leu	Glu	-	Tyr	Gly	Gly	Gly	-	Ser	Gly	Gly	Gly	-	Ser	
115120125LysCysSerTyrAspGluHisAlaLysLeuValGluGluValThrAsp130ThrCysSerTyrAspGluHisAlaLysLeuValGluValThrAspPheAlaLysThrCysValAlaAspGluSerAlaAlaAsnCysAspLys145ThrLeuPhoGlyAspGlySerAlaAlaAsnCysAlaAsnCysAspLys145ThrLeuPhoGlyAspLysLeuCysAlaAlaAsnCysAsnLeu145ThrLeuPhoGlyAspLysLysLeuCysAlaAlaProAsnLeu145ThrLeuPhoAspCysCysThrLysGlnGluPro145ThrLeuAlaAspCysCysThrLysGlnGluPro146ThrLeuAlaAspCysCysThrLysGlnGluPro147ThrLeuAlaAspCysCysThrLysGlnGluPro148CysPhoLeuGluHisLysAspAspAsnProSerLeu149T	Glu	Ala	His		Ser	Glu	Ile	Ala		Arg	Tyr	Asn	Asp		Gly	Glu	
130 135 140 Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys 150 155 145 150 155 160 Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu 175 175 Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro 180 185 190 Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asp Asn Pro Ser Leu 115 140	Gln	His		Lys	Gly	Leu	Val		Ile	Ala	Phe	Ser		Tyr	Leu	Gln	
145 150 155 160 Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu 175 160 Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro 180 180 190 Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asp Asn Pro Ser Leu 150 160	ГÀа	-	Ser	Tyr	Asp	Glu		Ala	Lys	Leu	Val		Glu	Val	Thr	Aap	
165170175Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro 180185190Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asp Pro Ser Leu		Ala	Lys	Thr	CÀa		Ala	Asp	Glu	Ser		Ala	Asn	Cys	Asp	-	
180 185 190 Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu	Ser	Leu	His	Thr		Phe	Gly	Asp	Lys		Суз	Ala	Ile	Pro		Leu	
	Arg	Glu	Asn		Gly	Glu	Leu	Ala		Cys	Сүз	Thr	Lys		Glu	Pro	
	Glu	Arg		Glu	Сүз	Phe	Leu		His	Lys	Asp	Asp		Pro	Ser	Leu	

Pro	Pro 210	Phe	Glu	Arg	Pro	Glu 215	Ala	Glu	Ala	Met	Сув 220	Thr	Ser	Phe	Lys
Glu 225	Asn	Pro	Thr	Thr	Phe 230	Met	Gly	His	Tyr	Leu 235	His	Glu	Val	Ala	Arg 240
Arg	His	Pro	Tyr	Phe 245	Tyr	Ala	Pro	Glu	Leu 250	Leu	Tyr	Tyr	Ala	Glu 255	Gln
Tyr	Asn	Glu	Ile 260	Leu	Thr	Gln	Суз	Суз 265	Ala	Glu	Ala	Asp	Lys 270	Glu	Ser
Сүз	Leu	Thr 275	Pro	Lys	Leu	Asp	Gly 280	Val	Lys	Glu	Lys	Ala 285	Leu	Val	Ser
Ser	Val 290	Arg	Gln	Arg	Met	Lys 295	Cys	Ser	Ser	Met	Gln 300	ГЛа	Phe	Gly	Glu
Arg 305	Ala	Phe	Lys	Ala	Trp 310	Ala	Val	Ala	Arg	Leu 315	Ser	Gln	Thr	Phe	Pro 320
Asn	Ala	Asp	Phe	Ala 325	Glu	Ile	Thr	Lys	Leu 330	Ala	Thr	Asp	Leu	Thr 335	Lys
Val	Asn	Lys	Glu 340	Суз	Суа	His	Gly	Asp 345	Leu	Leu	Glu	Суз	Ala 350	Asp	Asp
Arg	Ala	Glu 355	Leu	Ala	ГЛа	Tyr	Met 360	Суз	Glu	Asn	Gln	Ala 365	Thr	Ile	Ser
Ser	Lys 370		Gln	Thr	Сув	Сув 375	Asp	Lys	Pro	Leu	Leu 380		Lys	Ala	His
Сув 385	Leu	Ser	Glu	Val	Glu 390	His	Asp	Thr	Met	Pro 395	Ala	Asp	Leu	Pro	Ala 400
	Ala	Ala	Asp	Phe 405	Val	Glu	Asp	Gln	Glu 410		Сүз	Lys	Asn	Tyr 415	Ala
Glu	Ala	Lys	Asp 420		Phe	Leu	Gly	Thr 425		Leu	Tyr	Glu	Tyr 430		Arg
Arg	His	Pro 435		Tyr	Ser	Val	Ser 440		Leu	Leu	Arg	Leu 445		Lys	Lys
Tyr	Glu 450		Thr	Leu	Glu	Lys 455		Суз	Ala	Glu	Ala 460		Pro	Pro	Ala
Cys 465		Gly	Thr	Val	Leu 470		Glu	Phe	Gln	Pro 475		Val	Glu	Glu	Pro 480
	Asn	Leu	Val		Thr	Asn	Суз	Asp			Glu	ГЛа	Leu		
Tyr	Gly	Phe		485 Asn	Ala	Ile	Leu		490 Arg	Tyr	Thr	Gln		495 Ala	Pro
Gln	Val		500 Thr	Pro	Thr	Leu		505 Glu	Ala	Ala	Arg		510 Leu	Gly	Arg
Val		515 Thr	Lys	Суа	Сув		520 Leu	Pro	Glu	Asp		525 Arg	Leu	Pro	Суз
Val	530 Glu	Asp	Tyr	Leu	Ser	535 Ala	Ile	Leu	Asn	Arq	540 Val	Cys	Leu	Leu	His
545		-	-		550					555		-			560
	-			565	Ser				570	-	-	-		575	
Leu	Val	Glu	Arg 580	Arg	Pro	Сув	Phe	Ser 585	Ala	Leu	Thr	Val	Asp 590	Glu	Thr
Tyr	Val	Pro 595	Lys	Glu	Phe	Lys	Ala 600	Glu	Thr	Phe	Thr	Phe 605	His	Ser	Asp
Ile	Суз	Thr	Leu	Pro	Glu	ГЛа	Glu	ГЛа	Gln	Ile	ГЛа	ГЛа	Gln	Thr	Ala

-	cor	ıti	nu	ed

Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly Gly Ser His His His His His His <210> SEQ ID NO 80 <211> LENGTH: 730 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL922-126-(Gly4Ser)2-mouse SA-(Gly4Ser)-His6 <400> SEOUENCE: 80 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Thr Leu Val Ile Arg Asn Ala Arg Cys Ser Cys Ile Ser Thr Ser Arg Gly Thr Ile His Tyr Lys Ser Leu Lys Asp Leu Lys Gln Phe Ala Pro Ser Pro Asn Cys Asn Lys Thr Glu Ile Ile Ala Thr Leu Lys Asn Gly Asp Gln Thr Cys Leu Asp Pro Asp Ser Ala Asn Val Lys Lys Leu Met Lys Glu Trp Glu Lys Lys Ile Ser Gln Lys Lys Lys Gln Lys Arg Gly Lys Lys His Gln Lys Asn Met Lys Asn Arg Lys Pro Lys Thr Pro Gln Ser Arg Arg Arg Ser Arg Lys Thr Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu

-continued

												con	tin	ued	
Ala	Met	Сув	Thr 260	Ser	Phe	Lys	Glu	Asn 265	Pro	Thr	Thr	Phe	Met 270	Gly	His
Tyr	Leu	His 275	Glu	Val	Ala	Arg	Arg 280	His	Pro	Tyr	Phe	Tyr 285	Ala	Pro	Glu
Leu	Leu 290	Tyr	Tyr	Ala	Glu	Gln 295	Tyr	Asn	Glu	Ile	Leu 300	Thr	Gln	Суз	Суз
Ala 305	Glu	Ala	Asp	Lys	Glu 310	Ser	Суз	Leu	Thr	Pro 315	Lys	Leu	Asp	Gly	Val 320
Lys	Glu	Lys	Ala	Leu 325	Val	Ser	Ser	Val	Arg 330	Gln	Arg	Met	Lys	Cys 335	Ser
Ser	Met	Gln	Lys 340	Phe	Gly	Glu	Arg	Ala 345	Phe	Lys	Ala	Trp	Ala 350	Val	Ala
Arg	Leu	Ser 355		Thr	Phe	Pro	Asn 360		Asp	Phe	Ala	Glu 365		Thr	Lys
Leu	Ala 370		Aap	Leu	Thr	Lys 375		Asn	Lys	Glu	Суа 380		His	Gly	Asp
		Glu	Суз	Ala	_	Asp	Arg	Ala	Glu			Lys	Tyr	Met	-
385 Glu	Asn	Gln	Ala		390 Ile	Ser	Ser	Lys		395 Gln	Thr	Cys	Cys		400 Lys
Pro	Leu	Leu	-	405 Lys	Ala	His	Сүз		410 Ser	Glu	Val	Glu		415 Asp	Thr
Met	Pro	Ala	420 Asp	Leu	Pro	Ala	Ile	425 Ala	Ala	Asp	Phe	Val	430 Glu	Asp	Gln
		435	-			Ala	440			-		445		-	
	450	-	-		-	455			-	-	460			-	
465	ьец	IÀT	GIU	IÀT	470	Arg	Arg	HIS	PIO	Авр 475	IÀT	ser	vai	ser	480
Leu	Leu	Arg	Leu	Ala 485	Lys	Lys	Tyr	Glu	Ala 490	Thr	Leu	Glu	Lys	Cys 495	Сүз
Ala	Glu	Ala	Asn 500	Pro	Pro	Ala	Сүз	Tyr 505		Thr	Val	Leu	Ala 510	Glu	Phe
Gln	Pro	Leu 515	Val	Glu	Glu	Pro	Lys 520	Asn	Leu	Val	ГЛЗ	Thr 525	Asn	Суз	Asp
Leu	Tyr 530	Glu	Lys	Leu	Gly	Glu 535	Tyr	Gly	Phe	Gln	Asn 540	Ala	Ile	Leu	Val
Arg 545	Tyr	Thr	Gln	Lys	Ala 550	Pro	Gln	Val	Ser	Thr 555	Pro	Thr	Leu	Val	Glu 560
Ala	Ala	Arg	Asn	Leu 565	Gly	Arg	Val	Gly	Thr 570	Lys	Суа	Суа	Thr	Leu 575	Pro
Glu	Asp	Gln	Arg 580	Leu	Pro	Суа	Val	Glu 585	Asp	Tyr	Leu	Ser	Ala 590	Ile	Leu
Asn	Arg	Val 595	Сүз	Leu	Leu	His	Glu 600	Lys	Thr	Pro	Val	Ser 605	Glu	His	Val
Thr			Суз	Ser	Gly	Ser		Val	Glu	Arg			Суз	Phe	Ser
Ala	610 Leu	Thr	Val	Aap	Glu	615 Thr	Tyr	Val	Pro	Lys	620 Glu	Phe	Lys	Ala	Glu
625 Thr	Phe	Thr	Phe	Ніе	630 Ser	Asp	T10	Cve	Thr	635 Leu	Pro	Glu	Ive	Glu	640 Lvs
				645		-		-	650				-	655	-
Gln	Ile	Lys	Lys	Gln	Thr	Ala	Leu	Ala	Glu	Leu	Val	Lys	His	Lys	Pro

-continued

Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly 705 710 Gly Gly Gly Ser His His His His His <210> SEQ ID NO 81 <211> LENGTH: 702 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL1022-98-(Gly4Ser)2-mouse SA-(Gly4Ser)-His6 <400> SEOUENCE: 81 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Ile Pro Leu Ala Arg Thr Val Arg Cys Asn Cys Ile His Ile Asp Asp Gly Pro Val Arg Met Arg Ala Ile Gly Lys Leu Glu Ile Ile Pro Ala Ser Leu Ser Cys Pro Arg Val Glu Ile Ile Ala Thr Met Lys Lys Asn Asp Glu Gln Arg Cys Leu Asn Pro Glu Ser Lys Thr Ile Lys Asn Leu Met Lys Ala Phe Ser Gln Lys Arg Ser Lys Arg Ala Pro Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly 180 185 190 Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu

													ιΠ	ueu	
Thr	Gln	Cys 275	Суз	Ala	Glu	Ala	Asp 280	Lys	Glu	Ser	Сув	Leu 285	Thr	Pro	ГЛа
Leu	Asp 290	Gly	Val	ГÀа	Glu	Lys 295	Ala	Leu	Val	Ser	Ser 300	Val	Arg	Gln	Arg
Met 305	Lys	Суз	Ser	Ser	Met 310	Gln	Lys	Phe	Gly	Glu 315	Arg	Ala	Phe	Lys	Ala 320
Trp	Ala	Val	Ala	Arg 325		Ser	Gln	Thr	Phe 330	Pro	Asn	Ala	Asp	Phe 335	Ala
Glu	Ile	Thr	Lys 340	Leu	Ala	Thr	Asp	Leu 345	Thr	Lys	Val	Asn	Lys 350	Glu	СЛа
Сүз	His	Gly 355	Asp	Leu	Leu	Glu	Сув 360	Ala	Asp	Asp	Arg	Ala 365	Glu	Leu	Ala
ГЛа	Tyr 370	Met	Суз	Glu	Asn	Gln 375	Ala	Thr	Ile	Ser	Ser 380	Lys	Leu	Gln	Thr
Cys 385	Cys	Asp	Lys	Pro	Leu 390	Leu	Lys	Lys	Ala	His 395	Суз	Leu	Ser	Glu	Val 400
	His	Aab	Thr	Met 405		Ala	Asp	Leu	Pro 410		Ile	Ala	Ala	Asp 415	
Val	Glu	Asp	Gln 420		Val	Суз	Lys	Asn 425		Ala	Glu	Ala	Lys 430		Val
Phe	Leu	Gly 435		Phe	Leu	Tyr	Glu 440		Ser	Arg	Arg	His 445		Asp	Tyr
Ser			Leu	Leu	Leu		Leu	Ala	Lys	Lys			Ala	Thr	Leu
	450 Lys	Сув	Суз	Ala		455 Ala	Asn	Pro	Pro		460 Cys	Tyr	Gly	Thr	
465 Leu	Ala	Glu	Phe		470 Pro	Leu	Val	Glu		475 Pro	Lys	Asn	Leu		480 Lys
Thr	Asn	Суз	_	485 Leu	Tyr	Glu	Lys		490 Gly	Glu	Tyr	Gly	Phe	495 Gln	Asn
Ala	Ile	Leu	500 Val	Arg	Tyr	Thr	Gln	505 Lys	Ala	Pro	Gln	Val	510 Ser	Thr	Pro
		515					520 Asn					525			
	530					535			-	-	540	-		-	-
545					550		Arg			555			-	-	560
				565			Сүз		570					575	
Ser	Glu	His	Val 580	Thr	Lys	Суз	Сүз	Ser 585		Ser	Leu	Val	Glu 590	Arg	Arg
Pro	Сув	Phe 595	Ser	Ala	Leu	Thr	Val 600	Asp	Glu	Thr	Tyr	Val 605	Pro	Lys	Glu
Phe	Lys 610	Ala	Glu	Thr	Phe	Thr 615	Phe	His	Ser	Asp	Ile 620	Cys	Thr	Leu	Pro
Glu 625	Lys	Glu	Lys	Gln	Ile 630	Lys	Lys	Gln	Thr	Ala 635	Leu	Ala	Glu	Leu	Val 640
Lys	His	Lys	Pro	Lys 645	Ala	Thr	Ala	Glu	Gln 650	Leu	Lys	Thr	Val	Met 655	Asp
Asp	Phe	Ala	Gln 660		Leu	Asp	Thr	Cys 665		Lys	Ala	Ala	Asp 670		Asp
Thr	Cys	Phe		Thr	Glu	Gly	Pro		Leu	Val	Thr	Arg		Lys	Asp

-continued

Ala Leu Ala Gly Gly Gly Gly Ser His His His His His His 690 695 <210> SEQ ID NO 82 <211> LENGTH: 704 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL1122-100-(Gly4Ser)2-mouse SA-(Gly4Ser)-His6 <400> SEQUENCE: 82 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Phe Leu Met Phe Lys Gln Gly Arg Cys Leu Cys Ile 20 25 30 Gly Pro Gly Met Lys Ala Val Lys Met Ala Glu Ile Glu Lys Ala Ser Val Ile Tyr Pro Ser Asn Gly Cys Asp Lys Val Glu Val Ile Val Thr Met Lys Ala His Lys Arg Gln Arg Cys Leu Asp Pro Arg Ser Lys Gln Ala Arg Leu Ile Met Gln Ala Ile Glu Lys Lys Asn Phe Leu Arg Arg Gln Asn Met Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Lys Phe Gly Glu Arg Ala Phe

														uea	
Lys	Ala	Trp	Ala	Val 325	Ala	Arg	Leu	Ser	Gln 330	Thr	Phe	Pro	Asn	Ala 335	Asp
Phe	Ala	Glu	Ile 340	Thr	Lys	Leu	Ala	Thr 345	Asp	Leu	Thr	Lys	Val 350	Asn	Lys
Glu	Cys	Суз 355	His	Gly	Asp	Leu	Leu 360	Glu	Суз	Ala	Asp	Asp 365	Arg	Ala	Glu
Leu	Ala 370	Lys	Tyr	Met	Сүз	Glu 375	Asn	Gln	Ala	Thr	Ile 380	Ser	Ser	Lys	Leu
Gln 385	Thr	Суз	Суз	Asp	Lys 390	Pro	Leu	Leu	Lys	Lys 395	Ala	His	Суз	Leu	Ser 400
Glu	Val	Glu	His	Asp 405	Thr	Met	Pro	Ala	Asp 410	Leu	Pro	Ala	Ile	Ala 415	Ala
Asp	Phe	Val	Glu 420	Asp	Gln	Glu	Val	Cys 425	Lys	Asn	Tyr	Ala	Glu 430	Ala	Lys
Asp	Val	Phe 435	Leu	Gly	Thr	Phe	Leu 440	Tyr	Glu	Tyr	Ser	Arg 445	Arg	His	Pro
Asp	Tyr 450	Ser	Val	Ser	Leu	Leu 455	Leu	Arg	Leu	Ala	Lys 460	ГЛа	Tyr	Glu	Ala
Thr 465	Leu	Glu	Lys	Сүз	Cys 470	Ala	Glu	Ala	Asn	Pro 475	Pro	Ala	Cys	Tyr	Gly 480
Thr	Val	Leu	Ala	Glu 485	Phe	Gln	Pro	Leu	Val 490	Glu	Glu	Pro	Lys	Asn 495	Leu
Val	Lys	Thr	Asn 500		Asp	Leu	Tyr	Glu 505	Lys	Leu	Gly	Glu	Tyr 510		Phe
Gln	Asn	Ala 515	Ile	Leu	Val	Arg	Tyr 520	Thr	Gln	Lys	Ala	Pro 525	Gln	Val	Ser
Thr	Pro 530	Thr	Leu	Val	Glu	Ala 535	Ala	Arg	Asn	Leu	Gly 540	Arg	Val	Gly	Thr
Lys 545	Cys	Суз	Thr	Leu	Pro 550	Glu	Asp	Gln	Arg	Leu 555	Pro	Суз	Val	Glu	Asp 560
Tyr	Leu	Ser	Ala	Ile 565	Leu	Asn	Arg	Val	Cys 570	Leu	Leu	His	Glu	Lys 575	Thr
Pro	Val	Ser	Glu 580	His	Val	Thr	Lys	Cys 585	Суз	Ser	Gly	Ser	Leu 590	Val	Glu
Arg	Arg	Pro 595	Суз	Phe	Ser	Ala	Leu 600		Val	Asp	Glu	Thr 605		Val	Pro
Lys	Glu 610			Ala	Glu	Thr 615	Phe	Thr	Phe	His	Ser 620		Ile	Суз	Thr
Leu 625		Glu	Lys	Glu	Lys 630	Gln	Ile	Lys	Lys	Gln 635		Ala	Leu	Ala	Glu 640
	Val	Lys	His	Lys 645	Pro		Ala	Thr	Ala 650		Gln	Leu	Lys	Thr 655	
Met	Asp	Asp				Phe	Leu			Суз	Суз	ГЛа			Asp
Lys	Asp	Thr	660 Cys	Phe	Ser	Thr	Glu	665 Gly	Pro	Asn	Leu	Val	670 Thr	Arg	Суз
Lys	Asp	675 Ala	Leu	Ala	Glv	Glv	680 Gly	Glv	Ser	His	His	685 His	His	His	His
-1-	690		Doa			695	-	011	201		700				

<211> LENGTH: 2652 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

<pre><220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Se: (VL-VH) CK138-(Gly4Ser)-His6</pre>	r)3-scFv
<400> SEQUENCE: 83	
atggacatga gagtgeetge teagetgetg ggeetgetge tgetgtgget geetg	gtgct 60
agatgegaag cacacaagag tgagategee categgtata atgatttggg agaac	aacat 120
ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacg	atgag 180
catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatg	agtct 240
gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgcca	ttcca 300
aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccg	aaaga 360
aacgaatgtt teetgeaaca caaagatgae aaceecagee taecaceatt tgaaa	ggcca 420
gaggetgagg ceatgtgeae etectttaag gaaaaeeeaa eeaeetttat gggae	actat 480
ttgcatgaag ttgccagaag acateettat ttetatgeee cagaaettet ttaet	atgct 540
gagcagtaca atgagattet gacceagtgt tgtgeagagg etgaeaagga aaget	gcctg 600
accccgaagc ttgatggtgt gaaggagaaa gcattggtct catctgtccg tcaga	gaatg 660
aagtgeteea gtatgeagaa gtttggagag agagetttta aageatggge agtag	ctcgt 720
ctgagccaga cattecccaa tgetgaettt geagaaatea eeaaattgge aacag	acctg 780
accaaagtca acaaggagtg ctgccatggt gacctgctgg aatgcgcaga tgaca	gggcg 840
gaacttgcca agtacatgtg tgaaaaccag gcgactatct ccagcaaact gcaga	cttgc 900
tgcgataaac cactgttgaa gaaagcccac tgtcttagtg aggtggagca tgaca	ccatg 960
cctgctgatc tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgca	agaac 1020
tatgctgagg ccaaggatgt cttcctgggc acgttcttgt atgaatattc aagaa	gacac 1080
cctgattact ctgtatccct gttgctgaga cttgctaaga aatatgaagc cactc	tggaa 1140
aagtgetgeg etgaageeaa teeteeegea tgetaeggea eagtgettge tgaat	ttcag 1200
cctcttgtag aagagcctaa gaacttggtc aaaaccaact gtgatcttta cgaga	agctt 1260
ggagaatatg gatteeaaaa tgeeatteta gttegetaca eecagaaage acete	aggtg 1320
tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa gagtgggcac caagt	gttgt 1380
acactteetg aagateagag actgeettgt gtggaagaet atetgtetge aatee	tgaac 1440
cgtgtgtgtc tgctgcatga gaagacccca gtgagtgagc atgttaccaa gtgct	gtagt 1500
ggatccctgg tggaaaggcg gccatgcttc tctgctctga cagttgatga aacat	atgtc 1560
cccaaagagt ttaaagctga gaccttcacc ttccactctg atatctgcac acttc	cagag 1620
aaggagaagc agattaagaa acaaacggct cttgctgagc tggtgaagca caagc	ccaag 1680
gctacagcgg agcaactgaa gactgtcatg gatgactttg cacagttcct ggata	catgt 1740
tgcaaggctg ctgacaagga cacctgcttc tcgactgagg gtccaaacct tgtca	ctaga 1800
tgcaaagacg ccttagccgg tggaggaggc tctggtggag gcggtagcgg aggcg	gaggg 1860
toggotatec agatgaccog gtoccogage teoetgtoog eetetgtggg egata	gggtc 1920
accatcacct gccgtgccag tcagtaccac gacggttctg cagcctggta tcaac	agaaa 1980
ccaggaaaag ctccgaagct tctgatttac ggtgcatcct acctctactc tggag	tccct 2040
teccgettet etggtageeg tteegggaeg gattteacte tgaceateag eagte	
	-

ccggaagact tcgcaactta ttactgtcag caatcttctt attctctgat cacgttcgga	2160
cagggtacca aggtggagat caaaggtact actgccgcta gtggtagtag tggtggcagt	2220
agcagtggtg ccgaggttca gctggtggag tctgacggtg gcctggtgca gccagggggc	2280
tcactcogtt tgtootgtgc agottotggo ttoaacotot ottactaogg tatgoactgg	2340
gtgcgtcagg ccccgggtaa gggcctggaa tgggttgcat acattgcttc ttaccctggc	2400
tacacttett atgeegatag egteaaggge egttteaeta taagegeaga eacateeaaa	2460
aacacageet acetacaaat gaacagetta agagetgagg acaetgeegt etaetattgt	2520
gctcgctctg gttacagtta ctctccgtat tattcttggt tctctgctgg tatgaactac	2580
tggggtcaag gagccctggt caccgtctcc tcgggagggg gcggttccca ccatcaccac	2640
catcactgat ag	2652
<210> SEQ ID NO 84 <211> LENGTH: 2625 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK157-(Gly4Ser)-His6	'v
<400> SEQUENCE: 84	
atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct	60
agatgcgaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat	120
ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag	180
catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct	240
geegecaact gtgacaaate eetteacaet etttttggag ataagttgtg tgeeatteea	300
aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga	360
aacgaatgtt teetgeaaca caaagatgae aaceecagee taecaceatt tgaaaggeea	420
gaggetgagg ceatgtgeae eteettaag gaaaaeeeaa eeaeettat gggaeaetat	480
ttgcatgaag ttgccagaag acateettat ttetatgeee cagaaettet ttaetatget	540
gagcagtaca atgagattet gacceagtgt tgtgeagagg etgacaagga aagetgeetg	600
accccgaagc ttgatggtgt gaaggagaaa gcattggtct catctgtccg tcagagaatg	660
aagtgctcca gtatgcagaa gtttggagag agagctttta aagcatgggc agtagctcgt	720
ctgagccaga catteeccaa tgetgaettt geagaaatea eeaaattgge aacagaeetg	780
accaaagtca acaaggagtg ctgccatggt gacctgctgg aatgcgcaga tgacagggcg	840
gaacttgcca agtacatgtg tgaaaaccag gcgactatct ccagcaaact gcagacttgc	900
tgcgataaac cactgttgaa gaaagcccac tgtcttagtg aggtggagca tgacaccatg	960
cctgctgatc tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgcaagaac	1020
tatgetgagg ceaaggatgt etteetggge aegttettgt atgaatatte aagaagaeae	1080
cctgattact ctgtatccct gttgctgaga cttgctaaga aatatgaagc cactctggaa	1140
aagtgetgeg etgaageeaa teeteeegea tgetaeggea eagtgettge tgaatteag	1200
cctcttgtag aagagcctaa gaacttggtc aaaaccaact gtgatcttta cgagaagctt	1260
ggagaatatg gattccaaaa tgccattcta gttcgctaca cccagaaagc acctcaggtg	1320

tcaaccccaa	ctctcgtgga	ggctgcaaga	aacctaggaa	gagtgggcac	caagtgttgt	1380		
acacttcctg	aagatcagag	actgccttgt	gtggaagact	atctgtctgc	aatcctgaac	1440		
cgtgtgtgtc	tgctgcatga	gaagacccca	gtgagtgagc	atgttaccaa	gtgctgtagt	1500		
ggatccctgg	tggaaaggcg	gccatgcttc	tctgctctga	cagttgatga	aacatatgtc	1560		
cccaaagagt	ttaaagctga	gaccttcacc	ttccactctg	atatctgcac	acttccagag	1620		
aaggagaagc	agattaagaa	acaaacggct	cttgctgagc	tggtgaagca	caagcccaag	1680		
gctacagcgg	agcaactgaa	gactgtcatg	gatgactttg	cacagttcct	ggatacatgt	1740		
tgcaaggctg	ctgacaagga	cacctgcttc	tcgactgagg	gtccaaacct	tgtcactaga	1800		
tgcaaagacg	ccttagccgg	tggaggaggc	tctggtggag	gcggtagcgg	aggcggaggg	1860		
tcggatatcc	agatgaccca	gtccccgagc	teeetgteeg	cctctgtggg	cgatagggtc	1920		
accatcacct	gccgtgccag	tcagtcttac	ggtggtgtag	cctggtatca	acagaaacca	1980		
ggaaaagccc	cgaagcttct	gatttactct	gcatcctacc	tctactctgg	agtcccttct	2040		
cgcttctctg	gtagccgttc	cgggacggat	ttcactctga	ccatcagcag	tctgcagccg	2100		
gaagacttcg	caacttatta	ctgtcagcaa	ccatctcatc	tgatcacgtt	cggacagggt	2160		
accgaggtgg	agatcaaagg	tactactgcc	gctagtggta	gtagtggtgg	cagtagcagt	2220		
ggtgccgagg	ttcagctggt	ggagtctggc	ggtggcctgg	tgcagccagg	gggctcactc	2280		
cgtttgtcct	gtgcagcttc	tggctccaac	ccctactact	acggtggtac	gcactgggtg	2340		
cgtcaggccc	cgggtgagga	gctggaatgg	gttgcatcta	ttggttctta	ccctggctac	2400		
actgactatg	ccgatagcgt	caagggccgt	ttcactataa	gcgcagacac	atccaaaaac	2460		
acagcctacc	tacaaatgaa	cagcttaaga	gctgaggaca	ctgccgtcta	ttattgtgct	2520		
cgccattact	actggtacga	tgctactgac	tactggggtc	aaggaaccct	ggtcaccgtc	2580		
tcctcgggag	ggggcggttc	ccaccatcac	caccatcact	gatag		2625		
<220> FEAT <223> OTHE	TH: 2646 : DNA NISM: Artif: URE:	ON: Synthet:	ic: gWiz-LS	-mouse SA-((Sly4Ser)3-scF	v		
<400> SEQU	ENCE: 85							
atggacatga	gagtgcctgc	tcagctgctg	ggcctgctgc	tgctgtggct	gcctggtgct	60		
agatgcgaag	cacacaagag	tgagatcgcc	catcggtata	atgatttggg	agaacaacat	120		
ttcaaaggcc	tagtcctgat	tgccttttcc	cagtatctcc	agaaatgctc	atacgatgag	180		
catgccaaat	tagtgcagga	agtaacagac	tttgcaaaga	cgtgtgttgc	cgatgagtct	240		
gccgccaact	gtgacaaatc	ccttcacact	ctttttggag	ataagttgtg	tgccattcca	300		
aacctccgtg	aaaactatgg	tgaactggct	gactgctgta	caaaacaaga	gcccgaaaga	360		
aacgaatgtt	tcctgcaaca	caaagatgac	aaccccagcc	taccaccatt	tgaaaggcca	420		
gaggctgagg	ccatgtgcac	ctcctttaag	gaaaacccaa	ccacctttat	gggacactat	480		
ttgcatgaag	ttgccagaag	acatccttat	ttctatgccc	cagaacttct	ttactatgct	540		
gagcagtaca	atgagattct	gacccagtgt	tgtgcagagg	ctgacaagga	aagctgcctg	600		
accccgaagc	ttgatggtgt	gaaggagaaa	gcattggtct	catctgtccg	tcagagaatg	660		

<210> SEQ ID NO 86 <211> LENGTH: 2652 <212> TYPE: DNA

<220> FEATURE:

<213> ORGANISM: Artificial Sequence

<223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scFv

201

aagtgctcca	gtatgcagaa	gtttggagag	agagctttta	aagcatgggc	agtagctcgt	720
ctgagccaga	cattccccaa	tgctgacttt	gcagaaatca	ccaaattggc	aacagacctg	780
accaaagtca	acaaggagtg	ctgccatggt	gacctgctgg	aatgcgcaga	tgacagggcg	840
gaacttgcca	agtacatgtg	tgaaaaccag	gcgactatct	ccagcaaact	gcagacttgc	900
tgcgataaac	cactgttgaa	gaaagcccac	tgtcttagtg	aggtggagca	tgacaccatg	960
cctgctgatc	tgcctgccat	tgctgctgat	tttgttgagg	accaggaagt	gtgcaagaac	1020
tatgctgagg	ccaaggatgt	cttcctgggc	acgttcttgt	atgaatattc	aagaagacac	1080
cctgattact	ctgtatccct	gttgctgaga	cttgctaaga	aatatgaagc	cactctggaa	1140
aagtgctgcg	ctgaagccaa	tcctcccgca	tgctacggca	cagtgcttgc	tgaatttcag	1200
cctcttgtag	aagagcctaa	gaacttggtc	aaaaccaact	gtgatcttta	cgagaagctt	1260
ggagaatatg	gattccaaaa	tgccattcta	gttcgctaca	cccagaaagc	acctcaggtg	1320
tcaaccccaa	ctctcgtgga	ggctgcaaga	aacctaggaa	gagtgggcac	caagtgttgt	1380
acacttcctg	aagatcagag	actgccttgt	gtggaagact	atctgtctgc	aatcctgaac	1440
cgtgtgtgtc	tgctgcatga	gaagacccca	gtgagtgagc	atgttaccaa	gtgctgtagt	1500
ggatccctgg	tggaaaggcg	gccatgcttc	tctgctctga	cagttgatga	aacatatgtc	1560
cccaaagagt	ttaaagctga	gaccttcacc	ttccactctg	atatctgcac	acttccagag	1620
aaggagaagc	agattaagaa	acaaacggct	cttgctgagc	tggtgaagca	caagcccaag	1680
gctacagcgg	agcaactgaa	gactgtcatg	gatgactttg	cacagttcct	ggatacatgt	1740
tgcaaggctg	ctgacaagga	cacctgcttc	tcgactgagg	gtccaaacct	tgtcactaga	1800
tgcaaagacg	ccttagccgg	tggaggaggc	tctggtggag	gcggtagcgg	aggcggaggg	1860
tcggctagcg	atatccagat	gacccagtcc	ccgagccccc	tgtccgcctc	tgtgggcgat	1920
agggtcacca	tcacctgccg	tgccagtcag	tacggtggtt	acgtagcctg	gtatcaacag	1980
aaaccaggaa	aagctccgaa	gcttctgatt	tacggtgcat	cccttctcta	ctctggagtc	2040
ccttctcgct	tctctggtgg	ccgttccggg	acggatttca	ctctgaccat	cagcagtctg	2100
cagccggaag	acttcgcaac	ttattactgt	cagcgaggtc	atgctctgat	cacgttcgga	2160
cagggtacca	aggtggagat	cgaaggtact	actgccgcta	gtggtagtag	tggtggcagt	2220
agcagtggtg	ccgaggttca	gctggtggag	tctggcggtg	gcctggtgca	gccaggggggc	2280
tcactccgtt	tatcctgtgc	agcttctggc	ttcaacatct	cttcttacgg	ttctatgcac	2340
tgggtgcgtc	aggccccggg	taagggcctg	gaatgggttg	catctattta	cccttactct	2400
agctctactt	actatgccga	tagcgtcaag	ggccgtttca	ctataagcgc	agacacatcc	2460
aaaaacacag	cctacctaca	aatgaacagc	ttaagagctg	aggacactgc	cgtctattat	2520
tgtgctcgtg	gttacggtcc	gtggtacgct	tactcttact	tcgctttgga	ctactggggt	2580
caaggaaccc	tggtcaccgt	ctcctcggga	gggggcggtt	cccaccatca	ccaccatcac	2640
tgatag	0	000				2646
5 5						

(VL-VH) CK138-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6								
<400> SEQU			.,	(01]1201)				
	gagtgcctgc	tcagctgctg	qqcctqctqc	tqctqtqqct	qcctqqtqct	60		
	cacacaagag					120		
	tagtcctgat					180		
	tagtgcagga					240		
	gtgacaaatc					300		
	aaaactatgg					360		
aacgaatgtt	tcctgcaaca	caaagatgac	aaccccagcc	taccaccatt	tgaaaggcca	420		
gaggctgagg	ccatgtgcac	ctcctttaag	gaaaacccaa	ccacctttat	gggacactat	480		
ttgcatgaag	ttgccagaag	acatccttat	ttctatgccc	cagaacttct	ttactatgct	540		
gagcagtaca	atgagattct	gacccagtgt	tgtgcagagg	ctgacaagga	aagctgcctg	600		
accccgaagc	ttgatggtgt	gaaggagaaa	gcattggtct	catctgtccg	tcagagaatg	660		
aagtgctcca	gtatgcagaa	gtttggagag	agagctttta	aagcatgggc	agtagctcgt	720		
ctgagccaga	cattccccaa	tgctgacttt	gcagaaatca	ccaaattggc	aacagacctg	780		
accaaagtca	acaaggagtg	ctgccatggt	gacctgctgg	aatgcgcaga	tgacagggcg	840		
gaacttgcca	agtacatgtg	tgaaaaccag	gcgactatct	ccagcaaact	gcagacttgc	900		
tgcgataaac	cactgttgaa	gaaagcccac	tgtcttagtg	aggtggagca	tgacaccatg	960		
cctgctgatc	tgcctgccat	tgctgctgat	tttgttgagg	accaggaagt	gtgcaagaac	1020		
tatgctgagg	ccaaggatgt	cttcctgggc	acgttcttgt	atgaatattc	aagaagacac	1080		
cctgattact	ctgtatccct	gttgctgaga	cttgctaaga	aatatgaagc	cactctggaa	1140		
aagtgctgcg	ctgaagccaa	tcctcccgca	tgctacggca	cagtgcttgc	tgaatttcag	1200		
cctcttgtag	aagagcctaa	gaacttggtc	aaaaccaact	gtgatcttta	cgagaagctt	1260		
ggagaatatg	gattccaaaa	tgccattcta	gttcgctaca	cccagaaagc	acctcaggtg	1320		
tcaaccccaa	ctctcgtgga	ggctgcaaga	aacctaggaa	gagtgggcac	caagtgttgt	1380		
acacttcctg	aagatcagag	actgccttgt	gtggaagact	atctgtctgc	aatcctgaac	1440		
cgtgtgtgtc	tgctgcatga	gaagacccca	gtgagtgagc	atgttaccaa	gtgctgtagt	1500		
ggatccctgg	tggaaaggcg	gccatgcttc	tctgctctga	cagttgatga	aacatatgtc	1560		
cccaaagagt	ttaaagctga	gaccttcacc	ttccactctg	atatctgcac	acttccagag	1620		
aaggagaagc	agattaagaa	acaaacggct	cttgctgagc	tggtgaagca	caagcccaag	1680		
gctacagcgg	agcaactgaa	gactgtcatg	gatgactttg	cacagttcct	ggatacatgt	1740		
tgcaaggctg	ctgacaagga	cacctgcttc	tcgactgagg	gtccaaacct	tgtcactaga	1800		
tgcaaagacg	ccttagccgg	tggaggaggc	tctggtggag	gcggtagcgg	aggcggaggg	1860		
tcggctatcc	agatgacccg	gtccccgagc	tccctgtccg	cctctgtggg	cgatagggtc	1920		
accatcacct	gccgtgccag	tcagtaccac	gacggttctg	cagcctggta	tcaacagaaa	1980		
ccaggaaaag	ctccgaagct	tctgatttac	ggtgcatcct	acctctactc	tggagtccct	2040		
tecegettet	ctggtagccg	ttccgggacg	gatttcactc	tgaccatcag	cagtctgcag	2100		
ccggaagact	tcgcaactta	ttactgtcag	caatcttctt	attctctgat	cacgttcgga	2160		

cont	1 1116	PU-

<pre>tgcgstacca aggtggagst canggtact actgccgta gtggtagtag tggtgggagt 2220 agagatggg agggtggagt canggtegg ttogacggg getsggtgac gecaggggg 2280 tcactcotyt tgfoctggg agtftdgg ttogacgtg getsggtg gecagggs 2280 tcactcotyt tgfoctgga agtftdgg ttogacgtg getsggtgac gecaggggg 2400 tsacattet tatgeogstag ggtoctgga tgggttgga aggtgggg gegttcet tacctogg 2400 stacattet tatgeogstag ggtoctgg at ggggtggg aggtggg gegttcet tacctogg 2400 stacattet tatgeogstag ggtoctgg aggtgggg gegttgga gactgocgt otactattg 2520 getcotteg gtaengtt ecceptet tattettggt tottggg ttagatte 2580 tggggtacag ggpoctgg taccgtete taggggggg gegttcea catactaca 2600 catcotgst ag 2652 </pre>		-continued	
tactocgut tylocigtys gettorgg titeactic titatagg intgedeg 2340 gigegteagg ecceggita gigetorggs tigggtegat actigette titacecigs 2400 tacacticit tylocigtys gettorgge citteactic tangegeag eacticeas 2460 acceaged actiesant ganeagett agggtiggg gegttees catatagt 2590 tygggteag gagecorgg cacegitee togggaggg gegttees eactores 2640 tygggteag gagecorgg cacegitee togggaggg gegttees eactores 2660 tygggteag gagecorgg cacegitee togggaggg gegttees eactores actores 2660 tygggteag ag togethes eactores actores actores actores actores 2660 typggteag ag type togggagg cacegitee (1998) tites the type type type togggagg (1998) tease agtores actores ac	tgcggtacca aggtggagat caaaggtact actgccgcta g	gtggtagtag tggtggcagt 2220	
gyogticag occogggia gydoctag gydotggo ogticala aantototo tiacotogo 2400 tacacticit atgeogatag ogtocaggio ogticala taagegeag ekstopeog ekstopeog gytogetedg graaagta etetoopta tattetigt tetotgeog tatgaaeta 280 tygggioaag gageoetggi eksegtete teorgeog gyggi geggieeee eestaaese 260 cateactigat ag 2652 *210> 885 TB N0 87 *211> Eggint 2858 *210> 788 TB N0 87 *211> Eggint 2858 *211> 788 *211> 788 *211> 788 *211> 788 *211> 788 *211> 788 *211 *211 *211 *211 *211 *211 *211 *2	agcagtggtg ccgaggttca gctggtggag tctgacggtg g	gcctggtgca gccagggggc 2280	
teaction account argongstag opticaagge opticata taaggongga cacatecaa 2460 aacacageet acetacaast gaacagetta agagonggag geogticeen ceatactat 2520 geogeteig gitacagita eteorgtote togggagggg geogticeen ceataceen 2640 emicaetgat ag 2652 *210 - BSD ID NO 87 *210 - BSD ID NO 87 *210 - DSD NO 87 *210 -	tcactccgtt tgtcctgtgc agettetgge ttcaacetet c	cttactacgg tatgcactgg 2340	
aacacagot actavaat gacagtta agagtgag actigog tatutig 1920 getogetoig gitacagita eteelesgia tattetigi teteigeg tatgaactao 2580 tagggetoag gagecoigt cacegitet tattetigi teteigeg tatgaactao 2640 catcactgar ag 2652 4210> 680 ID 100 87 4311: INDUM: 7858 4330 OKGNING: Artificial Sequence 4200> FRATURE: 4203 OKGNING: Artificial Sequence 4203 OKGNING: Artificial Sequence 4203 GUENCE: 87 atggacatga gagtgeetge tagetgetg geotgetge tgetggget geotggtget 60 agatgegaag caccacagag tgegatege categgtat atgattigg gagacaacat 120 tecaaaggee tagteetga tagetette cagataget geotggtget geotgagget 240 geogecaat tagtgeagag agtacagae titgeaaga egitggtge cagatggat 240 gagacggaa acacaagag tagetgetge daceeagag geogetate tateggatgag 160 catgeaaat cagtgeaga gatacagae titgeaaga egitggtge caseggat 420 gaggedgag catgegaac ectettag gaaaccea tecaacat gagacetta 480 tigeatgga taggaateg caceaagag gacacage taceeaga geogaaga 360 aacecteegig aaaactaig tgaacagge gaceeage taceacaega geogaaga 420 gaggedgag catgigeac ectettaag gaaaccea caceettat ggagacatig 480 tigeatgaag tigeagaag caceeatgig tigeagage gagaettet tecatagee faceaaga 480 accaaggee tigstegaa agtegetgg geogettet caceaattge taaggateg 420 gageedgaa atgagatet gaceeagig tigeagaage gagaetti aagaaggee faceaagaa 480 accaaggee tigstegaa agteggga geogettet caceacatt ggagacata 480 tigeatgaag tigeagaag agtegtgt geogaage gegaettet tecatagee 720 cigageeaga attegga gageettig eagaagee gagaettig teeaagae 480 gagedgeaa atgagatte gaceeagig tigeagage gegaette caceaattge acaagaegg 780 accaaagte acaagagge gegeette geeggaag tageeggg 480 giacttgeea gatacagga gegeettet gegagaate geegaate faceagaag 160 cetsgetaet teeetgeea tigetgega tigetgga agegettet aagaagae 1000 tigegaaaac acaggagge tigetgega atgetegga agagettga tageagaag 160 cetsgetaet teeetgeea tigetgega tigetgga acaecat gegaaate gaeacatag 160 cetsgetaet teeetgeea tigetgega tigetagga acaecat gegaagae 160 cetsgetaet teeetgeea teetegga attecteaga acaecat gegaagae 160 cetsgetaet cacetgeag agacetae teetegga acaecac gegaage 160 cetsgetaeg cagagatg teteetge tigetagaa aactag	gtgcgtcagg ccccgggtaa gtgcctggaa tgggttgcat a	acattgette ttaceetgge 2400	
getegeteteg gaageeteg eaceaagga gaageete eagaagee eaceaagga gaageeteg eaceaagga baacegae tttgeaaga agtgegaaga gaageeteg eaceaagga gaageeteg eaceaagga gaacegae eaceaagga gaacegae eaceaagga gaacegae eaceaagga gaageeteg eaceaagga gaacegae ttgeaaga agtgega gaacegae ttgeaaga agtgeeteg eaceaagga gaacegae eaceaagga gaageete eaceace eaceetegae eaceaagga gaageeteg eaceaatga gaagaeteg eaceaagga gaageeteg eaceaatga gaagaeteg eaceaagga gaageeteg eaceaatga gaagaeteg eaceaatga gaagaeteg eaceaatga gaageeteg eaceaatga gaageeteg eaceaatga gaageeteg eaceaatga eaceatga gaageeteg eaceaatga eaceatga eaceaatga eaceatgae eaceatgae eaceatgae eaceatgae eaceatgae eaceatgae eaceatgae eaceaace eaceatgae eaceaace eaceatgae eaceaacea eaceacea eaceatgae eaceaacea eaceacea eaceaceace eaceaceace eaceaceace eaceaceace eaceaceace eaceaceace eaceaceace eaceaceace eaceaceace eaceaceacea eaceaceace eaceaceace eaceaceace eaceaceace eaceaceace eaceaceace eaceaceaceace eaceaceacea eaceaceace eaceaceace eaceaceace eaceaceaceaceace eaceaceaceace e	tacacttett atgeegatag egteaaggge egttteaeta t	taagcgcaga cacatccaaa 2460	
2410 A GARCETAGE CARCETAGE CARCENERS A CALCARCE 2440 CALCARLEA Ag 2652 2410 SEQ ID NO 87 2411 ENKTH: 2658 2412 THEN INN 2413 ORCANIEN. ANTIFICIAL Sequence 2420 FEATURE: 2423 OFTER INFORMATION: Synthetic: gWis-L5-mouse SA-(Glydser)3-mCFV (VL-WH) CK138-daz (VL43A-C / VH105Q-C)-(Glydser)-Hick 2400 SEQUENCE: 87 atggacatga gagtgoctge tagetgtg ggectgetge tgetggtget geetggtget 2400 SEQUENCE: 87 atggacatga gagtgoctge tagetgetge cagetgetge tgetggtget 240 googecaaet tagtgogag agtacagae tttgeaaga egitggtge ggagtget 240 googecaaet gigacaaet cettere cagetaget gactgetge tagetggtget geotgagag aaceteegig aaaacetage tgaacegee tageteget gactgetge tagetgaget 240 gaggetgaag ceaseaaga gaaacegee tageteget acacgaaga geocgaaga 240 gaggetgaag ceaseataga gaacegee tageteget teetage aaagetge gaggetgaag ceaseataga gaaacegee tageteget teetage aaagetege gaggetgaag teetagetget ggaategee caececaaga geocgaaaga 240 gaggetgaag teetagetge gaacegee taceceate tgaaagece gaggetgaag tegetagaag actacettat tetatgee caaageage geogaaga 240 gaggetgaag tegetagaag actacettat tetatgee caaageage geogaaga 240 gaggetgaag tegetagaag actacettat tetatgee caaageage geogaaga 240 gageetgae atgagattet gaeceagtg tgtgeagag etgeetgge tageagetge 240 gageetgae atgagatte gaecagetg tgtgeagag etgeetgge agagetge 240 gageetgae atgagattet gaeceagtg tgtgeagag etgeetgge agagetge 250 aaceeegaa etteeegaa gedeetatt tetatgee caaageage goo 250 etgageagata atgagattet gaeageegag geetgetgg aatgeegaa tageageegg 340 gaecagae acateggag tgtgeaggg gaectgetgg aatgeegaa tageageegg 340 gaecagae acateggag tgtgeagge geetgetgg agageagae tageecage 360 acceegaa eateetgtga gaaageecat tgetteggag aatgeegaa tageecage 360 acceegaa eateetgtga gaaageecat tgetteggag aetgeegaa tageecageg 360 cetgetgate teetgeeat teetgeegaa teetegga aetgeegaa tageecage 360 cetgetgate teetgeeat teetegega aettegga aetgeegaa tageecage 360 cetgetgate teetgeeat teetegeaga eetgetget gaagaeetg geo 360 cetgetgate teetgeeat teetegeaga eetgetegga eatgeegaa tageegaage 360 cetgetgate teetgeeat teetegeaga eetgetget gaageegaetate 360	aacacageet acetacaaat gaacagetta agagetgagg a	acactgccgt ctactattgt 2520	
actactgar ag actactgar ag actactact ag actactgar ag actactact ag actactgar ag actactgar ag actactgar ag actactgar ag actactgar ag actactgar ag actactgar ag actactgar ag actactgar actactgar ag actactgar actactgar ag actactgar	gctcgctctg gttacagtta ctctccgtat tattcttggt t	tctctgctgg tatgaactac 2580	
210 - SQ ID N0 87 (211) - EBNTW1: 2589 (212) TTFE: DNA (220) FERTURE: (220) FERTURE: (220) FERTURE: (220) FERTURE: (220) FERTURE: (212) GORGANGTON: Artificial Sequence (200) ESQUENCE: 87 adggacatga gagtgcctg taqutqctg ggctgctgc tgctggtggt gcctggtgct 60 agatggaag caacaagag tgagtcgcc catoggtata atgattggg agaccact 120 ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgct atacgatgg 180 catgccaat tagtgcagga agtaacagc tttgcaagga gtggtggtg gctgtggtgc gctgtggtgc 120 gaggctgga gacaactag tgaatgcgc cattggaag tggatgcgc gatggtgt 240 gaggctgg aaaatc gcttcaact cttttgga gtaagtgtg tgccattca 300 aacctccgt aaaactatg tgaactggc gatgctgct tacaccat tgaaaggca 420 gaggctggag ccatggcac actcottaag gaaaaccaa ccaccttt tgaaggca 420 gaggctggag ccatggcac tcctttaag gaaaaccaa ccaccttt tgaaggca 420 gaggctggag ccatggcac actcottaag gaaaaccaa ccaccttt tactatgc 540 gagcagatca tagagattg tgaccaggt tgtgcagag ctgacaagga agctggct 720 ctgagccaga cattcccca tgtgaag gacgtgtg actggtgg atgccagg 460 aaccccaag ttgatggtg tgacagg gacgcatt ccaccact gcagactg 780 acccaaggca datcccca tgctgcag gacgcag gacgacag tgacaggc 940 gaactgcaa attacgtg tgaaagg gaagccc tgtctagg gagtggcag tgacaagga 100 ctgagcaga cattgccca tgctgcag cgctgtg agctggg agcagaga tgcagaga 100 tgcgataac atgagatg ttcctggca tgctgg gacggaag gcatgggaag tgacaaggc 960 ctgctgtat tgctgccat tgctgcat tgctggg agctgtat ttggagaga gacaggaag 100 ctggtgtat gccaggagt ctgcagga ctgtctgg agctggaa tgcagagac 100 ttgcgtaaac cattgtga gaaggccat tgctgcagg acttgtg agatggaac atcaccag 960 cctgctgat tgctgccat tgctgcat tgctgcaga ctgtctgga actatgag agatgcagaa 100 ctggtatac tgctgccat tgctgcaga ctgtctgga catggcaga cagtgctg tagagaaca 100 cctgtgtat tgctgccat tgctgcaga tcctcccaga tgctagga cagtgaga cactaggagaa 1140 aagtgctgg tgaaggccaa tcctcccga tgctagga cagtggcac cactgggg acctaggg 120 cctcttgtag agagccaa tcctcccaga agactggca aacctagaga acctcaggt 120 cctcttgtag agagccaa tcctcccaga agactggcaga acctaggag acctaggag acctaggag 120 cctcttgtag agagccaa tcctccaga aacctagga agactggcac caagggtg 120 ttaccccaa tctctgga ggctgcaaga aacctagga agatgggcac caa	tggggtcaag gagccctggt caccgtctcc tcgggagggg g	gcggttccca ccatcaccac 2640	
<pre><11> LENOTH: 2658 <11> TVFN: PAN <120 FEARING: <120 F</pre>	catcactgat ag	2652	
atggaatg agagtgerige teagetgerig geerigerige tegetgeger geerigerigeri 60 agatggaag cacacaagag tgagategee categgtata atgattegg agacaacat 120 tecaaaggee tagteetgat tgeerittee cagtateete agaaatgee ataegatgag 180 catgeeaaat tagtgeagg agtaacagae titgeaaag egiggtgee egatgatee 240 geegeeaaa giggaaaa eerittegga ataagtigg tgeeatteea 300 aaceteegig aaaaetatg tgaaetgee gaetgetga caaacaag geeegaaga 360 aaegaatgit teetgeaaa caaagatga aaeceeage taccacatt tgaaaggeea 420 gaggetgag eetiggeag ettegeagg egaagteet teetatg gggaaetat 480 titgeatgaag tigeeagaa aceeetag tgaeaagge eagaagtee taccacatt tgaaggeeag 420 gaggetgag eetiggeag aceeetag tgaeaggee eagaagge egaagteet taetatgee 540 gagegataa atgagatee gaeeetag tgaeaggee eagaaggee gaageteet taetatgee 540 gagegataa atgagatee gaeeetag tgaeaggg etgaeagg etgaeagga ageeegeg 660 aaeceegaa gtatgeaga gettgegag agaeettta aageatggee agagetegt 720 eetgageeaga eatteeeeaa geeggaatg eaceegeg aaegaeege 780 aceeaagte acaeaggagg etgeeaga geetgeeg atgeeege 780 aceeaagtea acaaggagg etgeeatge geetgeegg atgegeaga tgaeaggeeg 840 gaaettgeea agaagteg tgeeeatg gegeetate teeggaaate eagaaeetg 980 eetgetgaa eetegeg etgeeett geeggaaate eetgega atgeeagaa 1020 tageegaaga eateeegg egeegeaga egettetg agagaagg egeeagaa 1020 tageegaga caaeggagg ettgeegga atgeegga agageee caaegaaeet 1020 tatgeegag eeaaggatg etteeegga egettetg agagagga agagagee tgaeacaeeg 1020 eetgetgate etgetgeea teeeegga egeteegga aaeegaaga eaeeteegga 1140 aagtgeetgeg eeaaggatg etteeegga egetgeegga eggaagge eeeeeggaaget 1220 gegaaatat etgetgeag agaaeetag egetgeeaga egetgeegga eeeeegga 1120 eetettgeag agageeea gaaeetgge aaaeecaa geagaeetge tgaaggeeg 1120 eetettgeag agageeea gaaeetgge aaaeecaa geagaeed eeaaggeegg 1120	<pre><211> LENGTH: 2658 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-m</pre>		
agatgegaag cacacaagag tgagategee categgtata atgattegg agaacaacat 120 tteaaaggee tagteetgat tgeetttee cagtateete agaaatgete ataegatgag 180 catgeeaaat tagtgeagga agtaacagae tttgeaaaga egtggtgte egatgagtee 240 geegeeaaet gtgacaaate eetteaeet ettteggag ataagtegt geeatteee 300 aaeeeteegg aaaaetatgg tgaaetggee gaetgetgt eaaaacaaga geeegaaaga 360 aaegaatgtt teetgeaaea caaagatgae aaeeeeage taceaeett ggaaggeea 420 gaggetgagg eeatggee etteettat ttetatgee eagaaetteet taetatget 540 gageagtae ataggagteg gaetgetgt tgeeagag ettegetgee eagaaetteet taetatgee 540 gageagtea atggaggee ettegeaga geattgetet eatetgee gagaagteegte 720 etgageeaga ettegeagaa getteggag agaaeteeg aaegaegge agtagetegt 720 etgageeaga eateeeea tgeeagag geetgeag atggeegga atggeegge 840 gaaeetgeea acaaggagg egaetatee geetgeegge atgeegge agtagetegt 720 etgageeaga eateeeea tgeetgeett geagaaatee eeagaeetge 960 eeegateea acaaggagg etgeeagg gegeeaga tgeeagaeet 960 aeeeeaggee gaeeaggeegge agteegge atgeeagge 840 gaaeetgeea acaaggagg etgeeagg egeetgee geaggeegg 980 eeegateaa eeaggagg etgeeeagg eggeeaga tgeeaggee 960 eeegatea eeestgetgaa gaageeeea tgeetgegg atgegeeaga 1020 tageeagaae caeeggagg etteeegge aeeggaagg egeeagaae 1020 tageeagaae tegeedeat tgeetgega etgetegg agtgeegge aceaggaaga 1020 tageetgage eeaaggaeg etteeegge aegteetge agaggeea eeeteeggaa 1140 aagtgeetgeg eeaaggaega teeeeega eggeeegga eggageee eeeteeggaa 1140 aagtgeetgeg egaageeeaa gaaeetgge agaeeeae geegaagee 1220 eeeteetgeg agageeeaa agaeetgge agaeeeae geegaagee 1220 eeeteetgeg agageeeaa agaeetgge aaaeeeae geegaagee 1220 eeeteetgag agageeeaa agaeetgge aaaeeeae geegaagee 1220 eeeteetgag agageeeaa gaaeetgge agaeeeae geegaagee 1220 eeeteetgag agageeeaa gaaeetgge agaeeeae geegaagee 1220 eeeteetgag agageeeaa gaaeetgge agaeeeae geegaagee 1220 eeeteetgag agageeeaa gaaeetgge aaaeeeae geegaagee eeeteegge 1320		tatataat aastataat 60	
ttcaaaggee tagteetgat tgeettttee eagaaatgete ataegatgag 180 eatgeeaaat tagtgeagga agtaacagae tttgeaaaga egtgtgtge egatgagtet 240 geegeeaaet tagtgeagga agtaacagae tttgeaaaga egtgtgtge egatgagtet 240 geegeeaaet gtgacaaete eetteaaet ettttggag ataagttgtg tgeeatteea 300 aaceteegtg aaaaetatgg tgaaetgget gaetgetgt eaaaacaaga geeegaaaga 360 aaegaatgtt teetgeaaea eaaagatgae aaceeagee taeeaeett tgaaaggeea 420 gaggetgagg eeatgtgeae etteettaag gaaaaeeeaa ecaeettta ggagaeaett 480 ttgeatgaag ttgeeagaa acaeettat tteetatgeee eagaaette ttaetatgeet 540 gageagtaea atgagattet gaeeeagtg tggeagagg etgacaagga aagetgeetg 600 aeeeegaage ttgatggtgt gaaggagaaa geattggte eatetgee taagaagaa getageeg 720 etgageeaga eatteeeaa geaggagaa ageattggte eatetgee taagagaetg 720 etgageeaga eatteeeaa tgeegatgt gaeegagaatea ecaaattgge aaeagaeetg 780 aeeeaaggee agtaeeaag gegeetagg gegeetage agegegaa tgaeeggge 840 gaaettgeea agtaeetggt gtgaaaaceag gegaetate ceageaaet geagaettg 960 eeegataaae eaedgtaga gaageeea tgeettggt agegagaag tggeagaa 1020 tagegataea eeegtgaa gaaggeea tgeeagaag tggeagaae 1020 tatgetgagg eeaaggatg etteetggg aettgeea agaaggee tgaeagaae 1080 eeetgateet etgeteee gtgeegga eetgeea eagteetg tgaattee agaagaeea 1080 eeetgateet etgetaeee gtgeegga eetgeeaea aatagaage eacetgaga 1140 aagtgeetgeg eeaaggaea teeeeegaa gaeettgee tgaattee gaagaeet 1260 eetgateae eetgatgeea gaeettgee aegteegga eagteetge tgaatteeg 1200 eetettgtag agageetaa gaaeettgee aaaeeeaeet gtgatetta egaagaeet 1260 ggagaatatg gatteeaaaa tgeeatteeta gttegetaea eeeagaag aceeaggaag 1320			
catgocaaat tagtgoagaa agtaacagac tttgoaagaa ogtggtgtgo ogatgagtot 240 googocaact gtgacaatc oottoacact ottttggag atagttgt gooatooa 300 aacotoogg aaaactagg tgaactgoot gactgotgt caaaacaaga gooogaaga 360 aacgaatgtt tootgoaac caaagatgac aacocagoo taccacatt tgaaaggoca 420 gaggotgagg ocatgtgoac otoottaa ggaaaacoca ooacottat ggagacatta 480 ttgoatgaag ttgocagaag acatoottat ttotatgoo cagaacttot ttactatgoo 540 gaggoagtaca atgagattot gaccagatg tgtgoagagg otgacaagga aagotgootg 600 accocagage ttgatggtg gaaggagaaa goattggtot catotgoog tagagotgg agtagotog 720 otgagocaga cattococaa tgotgactt goagaaata cocaactgga atgootgo 780 accaaagtoa acaaggagg otgocatgg gaccactat ttgataggo agtagotog 900 tgogataaa cactgttga gaaagcoca googacatat cocagaaat goagaatg 960 ootgotgate tgotegaag ttootgoga ootgotagg aggggaca tgacacagg 960 cotgotgat tgotegaag ottoogga acttotgaga atgogaaga googaaga 1020 tatgotgag caaggagt ottootggg actgotaga aatgagaa 1020 tatgotgag caaggagt totootggg actgotaga aatgagaat 1020 tatgotgag caaggagt totootggg actgotaga aatgaga cactgagaa aatgagotgo ctgaagcoaa tootcocga tgotagag atgatgota 1200 cotgattact ctgtatcoot gtugcgaga ctgotagga cagtgottg tgaagaagac 1200 cotgattact ctgtatcoo gaacttggt aaaccaag actgocaga cagtgottg tgaattocag aatgagotgg ctgaagocaa tootcocga tgotacaga cagtgottg tagaagago 1200 cottgttag agagocta gaactgoga ctgotagga cagtgottg tagaagago 1200 cottgttag agagocaa tootcocga tgotacaga agtgogaa cactotggaa 1140 aagtgotgog ctgaagocaa tootcocga tgotacagaa cagtgottg tgaattocag gagaaatatg gattocaaa tgocatta gttegotaga cacagaaga acctaggag cacacagga 1200 cottotgtag agagoctaa gaacttggt aaaaccaac goagaaga acctaggaagot 1200			
geegeeaact gtgacaate ettettggag ataagttgtg tgeeatteea 300 aaceteegtg aaaactatgg tgaactgget gaetgetgta caaaacaaga geeegaaga 360 aacgaatgtt teetgeaaca caaagatgae aaceeeagee taecaecatt tgaaaggeea 420 gaggeetgagg eeatgtgeae ettettaag gaaaaceeaa eeaeettat gggacaetat 480 ttgeatgaag ttgeeagaag acateetta ttetatgeee cagaactet ttaetatgee 540 gaggeagtaea atgagattet gaeeeagtgt tgtgeagagg etgacaagga aagetgeetg 600 aceeegaage ttgatggtg gaaggagaaa geattggtet eatetgeeg teagaagaatg 660 aceeegaage ttgatggtg gaaggagaaa geattggtet eatetgeeg teagaagaatg 720 etgageeaga eatteeeaa tgeegaett geagaatae eeaaatgge aagageegg 840 gaaeettgeea agtaeatgg tgaaaceeag gegeetaet eeagaagat geagaeetg 960 eetgetgate tgeetgeea tgetgegg ageggeataet eeagaaga tgaeaggeg 900 tgeegataaa eeacggegt etgeetgg agaageeea tgeetgga agtgegagaa 1020 tatgeegag eeaaggatg etteeegge aegteetga atgeagaaga 1020 tatgeetgag eeaaggatg etteeegge aegteetge gaatgage atgeagaga 1140 aagtgeetge tgeageea teeteeega eeedeegga eeeeteeggaa gaggeetgg etgaageeaa geaettege ageetgeeg eeeeteeggaa gaggaettae tegtateeet gteetgeaa tgeetgeaga eeeeeteeggaa 1140 aagtgeetge etgaagaeeaa gaaettege agaaceae eeeeteeggaa 1140 aagtgeetge etgaageeaa teeteeega eeeeteega eeeeeteegga 1120 eeetettgtag agageeeaa tgeeetgeea eeeeeee gegaagee aeeeeegg 1220 eeetettgtag agageeeaa tgeeetgeea eeeeeeeeee			
aacctcogtg aaaactatgg tgaactggct gactgctga caaaacaaga goccgaaaga 360 aacgaatgt tootgcaac caaagatga aaccocago taccaccat tgaaaggoca 420 gaggotgagg ocatgtgcac otootttaa gaaaaccaag caccottat ggggacatta 480 ttgcatgaag ttgocagaag acatoottat ttotatgoo cagaacttot ttactatgot 540 gaggagataca atgagattot gaccoagtgt tgtgcagagg otgacaagga aagotgootg 600 accocgaago ttgatgggtg gaaggagaaa goattggtc catotgtcog tcagagaatg 660 aagtgotcaa gtatgoagaa gtttggagag aggotttta aagoatgggo agtagotogt 720 otgagocaga cattooccaa tgotgactt goagaaata cacaattggo aataggacg 780 accaaagtoa acaaggagtg otgocatgg gagotttta cacgacaagg agagotgg 840 gaacttgoca agtacatggt gaaagccaa gocgactatot ccagaaact goagacttg 960 octgogtaca doctgttgaa gaaagcocca tgottgaga agtggggac tgacacagg 960 octgotgato tgocgocat tgotgotga ttigtgagg accaggaag gtggagaa 1020 tatgotgag ocaaggatg ottootgggo acgtottgt atgaatatto aagaagaca 1080 octgattact otgtatcoc gttgotgag ottgocaga cagtgottgo tgaattgaga 1200 octgattat otgtatocc gtgotgaga ctgotagga cagtgogca tgaagaca 1140 aagtgotge ofgaagcaa tootcocga tgotacgaa aatatgaag cacttggaagt 1200 octotgtaga agagoctaa gaacttggt aaaaccaac gtgatotta cocagaaagt accatggag 1200 octotgtaga gaaggoctaa gaacttggt aaaaccaac gtgatotta cgagaagt 1200 octotgtaga gaaggoctaa tgocagaa tgotgoga accegaaag acctcaggtg 1320			
gaggetgagg ecatgtgeae eteettaag gaaaaceeaa ecacettaa gggaeactaa 480 ttgeatgaag tigeeagaag acateetta titetatgeee eagaacttee tiaetatgee 540 gageagtaca atgagattee gaeeeagag tiggeagagg etgeeagagg aageegeeeg 660 acceegaage tigatgeag gittggagag agagettita aageatggge agtagetege 720 etgageeaga eateeeeag geetgeeagg eggeegga gagaeettee eaeageegge agaageegge 720 etgageeaga eateeeeag geetgeeagg geetgeeagg agageettee eaeageegge 840 gaaeettgeea gataetgt tigaaaaceeag gegeettee eeageaact geeagaeett geeagaaee 900 tigegataaa eaeaggagt etgeetgeeag eggeetaete eeageagag tigeeagaae 1020 tageegataea tigeetgeeat tigetgeega etgetegg agetggagea tigaeagage 960 ectigetgage eeaggatgt etteetgge acgttettig atgaatatee aagaagaee 1020 tageegataee tigeetgeeat tigetgeega etgetegga aatatgaage eaeeteggaa 1140 aagtgetgeg etgaageeaa teeteeega tigetaegga eagtgettee tigaatteega 1200 ectettigtag agageettaa gaaettgge eaaaceaeet gtgatetta eggaaggeett 1220 ecettigtag agageetaa gaeettgge eaaaceaeet gtgatetta eggaaggeet 1220 ecettigtag agageetaa gaeettgge aaaaceae tigetgeega eagteetge tigaatteega 1220 ecettigtag agageetaa gaeettgge aaaaceae tigeteetae eecagaage aceteeggtg 1320 ecettigtag agageetaa tigeeattee gteegetaea eecagaage aceteeggtg 1320			
ttgcatgaag ttgccagaag acatcetta ttetatgeee cagaacttet ttactatget 540 gageagtaca atgagattet gaeeeagt tgtgcagagg etgaeaagga aagetgeetg 600 aceeegaage ttgatggtgt gaaggagaaa geattggtet eatetgeeg teagagaatg 660 aagtgeteea gtatgeagaa gtttggagga agagettta aageatggge agtagetegt 720 etgageeaga catteeeaa tgetgaett geagaaatea eeaaattgge aacagaeetg 780 aceaaagtea acaaggagtg etgeeatgg gaeetgeega atgeegaga tgaeagggeg 840 gaaettgeea agtaeatgtg tgaaaaeeag gegaetatet eeageaaaet geagaettge 900 tgegataaae eaetgttgaa gaaageeeae tgeetgeega tgeeagaae 1020 tagegtaaae eaetgttgaa gaaageeeae tgettgatg aggtggagea tgaeaggae 1020 tatgetgagg eeaaggatg etteeegge acgteetg atgeaagae 1080 eeetgattaet etgetgeeaa teeteegge acgteetge tgaaatee aagaagaeee 1080 eeetgattaet etgetaeeeg tgeetaegge eagteette gagaaatee 1080 eeetgattaet etgetaeeeg tgeetaegge eagteette tagaagaeee 1140 aagtgetgeg etgaageeaa teeteegga eegteetge tgaattee gagaagget 1220 eeetgetgat gateeeaa tgeetgeea tgeetaeggea eagtgettge tgaatteeg 1200 eeetgetga gaaggeetaa gaaettggte aaaaeeeae gtgatetta egagaaget 1220 eeetgetga gaeggeetaa tgeetaeggea eagtgettet ta egagaagee 1140 aagtgetgeg etgaageetaa gaaettggte aaaaeeeaet gtgatetta egagaaget 1220 eeetgetga gatteeeaaa tgeeattee gtegetaeg eeeeae gtgatetta egagaaget 1220 eeetgetga gaegeetaa gaaettggte aaaaeeeaet gtgatetta egagaagee 1120 teaaeeeeaa teeeaaa tgeeattee gtegetaega gagtgggeee eeeggeggeggeggees 1320	aacgaatgtt teetgeaaca caaagatgae aaceecagee t	taccaccatt tgaaaggcca 420	
gagcagtaca atgagattet gaeceagtgt tgtgeagagg etgaeaagga aagetgeetg 600 aeceeggaage ttgatggtgt gaaggagaaa geattggtet eatetgteeg teagagaatg 660 aagtgeteea gtatgeagaa gtttggagag agagettta aageatggge agtagetegt 720 etgageeaga catteeceaa tgetgaettt geagaaatea eeaaattgge aacagaeetg 780 aeceaaagtea acaaggagtg etgeeatggt gaeetgeegg aatgegeaga tgaeaggeeg 840 gaaettgeea agtaeatggt tgaaaaeceag gegaetatet eeageaaate geagaettge 900 tgegataaae eaetgttga gaaggeeea tgettgettag aggtggagea tgaeagege 900 etgegataaae eaetgttgaa gaaageeeae tgettgtatgg aggtggagea tgaeaceatg 960 eetgetgate tgeetgeeat tgetgetgat tttgttgagg accaggaagt gtgeaagaae 1020 tatgetgagg eeaaggatgt etteetggge aegttettgt atgaatatte aagaagaeae 1020 eetgattaet etgeteeet gtgetgaga ettgetaaga aatatgaage eaetetggaa 1140 aagtgetgeg etgaageeaa teeteeegaa eggteggea eagtetteg tgaatteag 1200 eetetgtag aagageetaa gaaettggte aaaaceaaet gtgatetta egagaaget 1260 ggagaaatatg gatteeaaaa tgeeatteta gtegetaea eecaagage aceeteaggt 1320 teaaeeeeaa teetegtgga ggetgeaaga aacetaggaa gagtgggeae caagtgttgt 1380	gaggetgagg ceatgtgeae eteetttaag gaaaaeeeaa e	ccacctttat gggacactat 480	
accccgaage ttgatggtgt gaaggagaaa gcattggtct catctgtccg tcagagaatg 660 aagtgctcca gtatgcagaa gtttggagag agagcttta aagcatggge agtagctcgt 720 ctgagecaga catteeccaa tgetgaettt geagaaatea ecaaattgge aacagaeetg 780 accaaagtea acaaggagtg etgeeatgg gaeetgetgg aatgegeaga tgaeagggeg 840 gaaettgeea agtaeatggt tgaaaaceag gegaetatet ecageaaaet geagaettge 900 tgegataaae eaetgttgaa gaaageeeae tgeettagtg aggtggagea tgaeaceag 960 eetgeetgate tgeetgeeat tgeetgetgat tttgttgagg accaggaagt gtgeaagaae 1020 tatgeetgagg ecaaggatgt etteetggge aegteettgt atgaatatte aagaagaeae 1080 eetgattaet etgetaeee gttgeetgaa eetgeetaga aatatgaage eaeteggaa 1140 aaggtgeetge etgaageeaa teeteeega tgeetaeggea eagteettge tgaattteag 1200 eetettgtag aagageeeaa tgeetgeeta geetaeggea eagteettge tgaattteag 1200 eetettgtag aagageeeaa tgeetgee aaaaceaaet gegatette egaageet 1260 gagagaatatg gatteeeaaa tgeeattee gttgeetaaga aaceaggaag aceeteaggeg 1320 teaaeeeeaa eeteegga ggeetgeeaga aacetaggaa gagtgggeee eaagtgetge 1380	ttgcatgaag ttgccagaag acatccttat ttctatgccc c	cagaacttct ttactatgct 540	
aagtgctcca gtatgcagaa gtttggagag agagctttta aagcatgggc agtagctcgt 720 ctgagccaga catteeccaa tgetgaett geagaaatea eeaaattgge aacagaeetg 780 accaaagtea acaaggagtg etgeeatgg gaeetgeegg aatgegeaga tgaeagggeg 840 gaaettgeea agtaeatgtg tgaaaaeeag gegaetatet eeageaaaet geagaettge 900 tgegataaae eaetgttgaa gaaageeeae tgeettagtg aggtggagea tgaeaeeag 960 eetgeetgate tgeetgeeat tgeetgeet tegetgetgat ttegttgagg accaggaagt gtgeaagaae 1020 tatgegtagg eeaaggatgt etteetggge aegtteettg atgaatatte aagaagaeae 1020 tatgegtagg eeaaggatgt etteetggge aegtteettg atgaatatte aagaagaeae 1080 eetgattaet etgetaeeet gttgeetgaga eetgeetaaga aatatgaage eaeteeggaa 1140 aagtgeetgeg etgaageeaa teeteeegea tgeetaeggea eagtgettge tgaatteeag 1200 eetettgtag aagageetaa gaaettggte aaaaceaaet gtgatettta egagaagett 1260 ggagaaatatg gatteeaaaa tgeeatteta gttegetaea eecaagga aeeteaggea 1320 teaaeeeeeaa etetegtgga ggeetgeaaga aacetaggaa gagtgggeee eaagtgettgt 1380	gagcagtaca atgagattct gacccagtgt tgtgcagagg c	ctgacaagga aagctgcctg 600	
ctgagccaga cattececaa tgetgaettt geagaaatea eeaaattgge aacagaeetg 780 accaaagtea acaaggagtg etgeeatggt gaeetgetgg aatgegeaga tgaeagggeg 840 gaaettgeea agtaeatgtg tgaaaaeeag gegaetatet eeageaaaet geagaettge 900 tgegataaae eaetgttgaa gaaageeeae tgtettagtg aggtggagea tgaeaeeag 960 eetgeetgate tgeetgeeat tgeetgetgat tttgttgagg aceaggaagt gtgeaagaae 1020 tatgeetgagg eeaaggatgt etteetggge aegteettgt atgaatatte aagaagaeae 1080 eetgattaet etgetaeeet geetgeega eetgeetaaga aatatgaage eaeteggaa 1140 aagtgeetgeg eegaageeaa teeteeega egeteetge egaatteeg 1200 eeteettgtag aagageeeaa teeteeega egeteetge egaatteeg 1200 eeteettgtag aagageeetaa gaaeetggee aaaaeeeaeet geagaageet 1260 ggagaatatg gatteeaaaa tgeeatteta gttegeetaea eeeagaage aceteaggeg 1220 teaaeeeeaaa tgeeatteta gttegeetaea eeeagaage aeeteaggea 1220	accccgaagc ttgatggtgt gaaggagaaa gcattggtct c	catctgtccg tcagagaatg 660	
accaaagtca acaaggagtg ctgccatggt gacctgctgg aatgcgcaga tgacagggcg 840 gaacttgcca agtacatgtg tgaaaaccag gcgactatct ccagcaaact gcagacttgc 900 tgcgataaac cactgttgaa gaaagcccac tgtcttagtg aggtggagca tgacaccatg 960 cctgctgatc tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgcaagaac 1020 tatgctgagg ccaaggatgt cttcctgggc acgttcttgt atgaatattc aagaagacac 1080 cctgattact ctgtatccct gttgctgaga cttgctaaga aatatgaagc cactctggaa 1140 aagtgctgcg ctgaagccaa tcctcccgca tgctacggca cagtgcttgc tgaattcag 1200 cctcttgtag aagagcctaa gaacttggt aaaaccaact gtgatcttta cgagaagctt 1260 ggagaatatg gattccaaaa tgccattcta gttcgctaca cccagaaagc acctcaggtg 1320 tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa gagtgggcac caagtgttgt 1380	aagtgeteea gtatgeagaa gtttggagag agagetttta a	aagcatgggc agtagctcgt 720	
gaacttgeea agtacatgtg tgaaaaccag gegactatet eeageaaact geagaettge 900 tgegataaae eaetgttgaa gaaageeeae tgtettagtg aggtggagea tgacaccatg 960 eetgetgate tgeetgeeat tgetgetgat tttgttgagg accaggaagt gtgeaagaae 1020 tatgetgagg eeaaggatgt etteetggge aegttettgt atgaatatte aagaagaeae 1080 eetgattaet etgtateeet gttgetgaga ettgetaaga aatatgaage eaetetggaa 1140 aagtgetgeg etgaageeaa teeteeegaa tgetaeggea eagtgettge tgaatteega 1200 eetettgtag aagageetaa gaacttggte aaaaceaaet gtgatettta egagaaget 1260 ggagaatatg gatteeaaaa tgeeatteta gttegetaea eeceagaage aeeteeggtg 1320 teaaeeeeaa eeteegga ggetgeeaga aacetaggaa gagtgggeee eaagtgttgt 1380	ctgagccaga cattecccaa tgctgacttt gcagaaatca c	ccaaattggc aacagacctg 780	
tgcgataaac cactgttgaa gaaagcccac tgtcttagtg aggtggagca tgacaccatg 960 cctgctgate tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgcaagaac 1020 tatgctgagg ccaaggatgt etteetggge acgttettgt atgaatatte aagaagacac 1080 cctgattaet etgtateeet gttgetgaga ettgetaaga aatatgaage eaetetggaa 1140 aagtgetgeg etgaageeaa teeteeega tgetaeggea eagtgettge tgaattteag 1200 cetettgtag aagageetaa gaaettggte aaaaceaaet gtgatettta egagaagett 1260 ggagaaatatg gatteeaaaa tgeeatteta gttegetaea eeceagaage aeeteeggtg 1320 teaaeeeeaa eteetegtgga ggetgeaaga aacetaggaa gagtgggeae eaagtgttgt 1380	accaaagtca acaaggagtg ctgccatggt gacctgctgg a	aatgegeaga tgacagggeg 840	
cctgctgatc tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgcaagaac 1020 tatgctgagg ccaaggatgt cttcctgggc acgttcttgt atgaatattc aagaagacac 1080 cctgattact ctgtatccct gttgctgaga cttgctaaga aatatgaagc cactctggaa 1140 aagtgctgcg ctgaagccaa tcctcccgca tgctacggca cagtgcttgc tgaatttcag 1200 cctcttgtag aagagcctaa gaacttggtc aaaaccaact gtgatcttta cgagaagctt 1260 ggagaatatg gattccaaaa tgccattcta gttcgctaca cccagaaagc acctcaggtg 1320 tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa gagtgggcac caagtgttgt 1380	gaacttgcca agtacatgtg tgaaaaccag gcgactatct c	ccagcaaact gcagacttgc 900	
tatgetgagg ccaaggatgt etteetggge acgttettgt atgaatatte aagaagaeae 1080 eetgattaet etgtateeet gttgetgaga ettgetaaga aatatgaage eaetetggaa 1140 aagtgetgeg etgaageeaa teeteeegea tgetaeggea eagtgettge tgaatteeag 1200 eetettgtag aagageetaa gaaettggte aaaaceaaet gtgatettta egagaagett 1260 ggagaatatg gatteeaaaa tgeeatteta gttegetaea eeeagaage aceteaggtg 1320 teaaeeeeaa etetegtgga ggetgeaaga aacetaggaa gagtgggeae eaagtgttgt 1380	tgcgataaac cactgttgaa gaaagcccac tgtcttagtg a	aggtggagca tgacaccatg 960	
cctgattact ctgtatccct gttgctgaga cttgctacgga aatatgaagc cactctggaa 1140 aagtgctgcg ctgaagccaa tcctcccgca tgctacggca cagtgcttgc tgaatttcag 1200 cctcttgtag aagagcctaa gaacttggtc aaaaccaact gtgatcttta cgagaagctt 1260 ggagaatatg gattccaaaa tgccattcta gttcgctaca cccagaaagc acctcaggtg 1320 tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa gagtgggcac caagtgttgt 1380	cctgctgatc tgcctgccat tgctgctgat tttgttgagg a	accaggaagt gtgcaagaac 1020	
aagtgetgeg etgaageeaa teeteeggea tgetaeggea eagtgettge tgaattteag 1200 eetettgtag aagageetaa gaaettggte aaaaceaaet gtgatettta egagaagett 1260 ggagaatatg gatteeaaaa tgeeatteta gttegetaea eecagaaage aceteaggtg 1320 teaaeeeeaa etetegtgga ggetgeaaga aaeetaggaa gagtgggeae eaagtgttgt 1380	tatgetgagg ccaaggatgt etteetggge aegttettgt a	atgaatattc aagaagacac 1080	
cctcttgtag aagageetaa gaaettggte aaaaeeaaet gtgatettta egagaagett 1260 ggagaatatg gatteeaaaa tgeeatteta gttegetaea eeeagaaage aeeteaggtg 1320 teaaeeeeaa etetegtgga ggetgeaaga aaeetaggaa gagtgggeae eaagtgttgt 1380	cctgattact ctgtatccct gttgctgaga cttgctaaga a	aatatgaagc cactctggaa 1140	
ggagaatatg gatteeaaaa tgeeatteta gttegetaca eecagaaage aceteaggtg 1320 teaaceecaa etetegtgga ggetgeaaga aacetaggaa gagtgggeae caagtgttgt 1380	aagtgetgeg etgaageeaa teeteeegea tgetaeggea e	cagtgcttgc tgaatttcag 1200	
tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa gagtggggcac caagtgttgt 1380	cctcttgtag aagagcctaa gaacttggtc aaaaccaact g	gtgatettta egagaagett 1260	
	ggagaatatg gattccaaaa tgccattcta gttcgctaca c	cccagaaagc acctcaggtg 1320	
acactteetg aagateagag actgeettgt gtggaagaet atetgtetge aateetgaae 1440	tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa g	gagtgggcac caagtgttgt 1380	
	acactteetg aagateagag actgeettgt gtggaagaet a	atctgtctgc aatcctgaac 1440	

-continued

cgtgtgtgtc tgctgcatga gaagacccca gtgagtgagc atgttaccaa gtgctgtagt 1500 ggatccctgg tggaaaggcg gccatgcttc tctgctctga cagttgatga aacatatgtc 1560 cccaaagagt ttaaagctga gaccttcacc ttccactctg atatctgcac acttccagag 1620 aaggagaagc agattaagaa acaaacggct cttgctgagc tggtgaagca caagcccaag 1680 gctacagcgg agcaactgaa gactgtcatg gatgactttg cacagttcct ggatacatgt 1740 tgcaaggetg etgacaagga cacetgette tegaetgagg gtecaaaeet tgteaetaga 1800 tgcaaagacg ccttagccgg tggaggaggc tctggtggag gcggtagcgg aggcggaggg 1860 teggetageg etatecagat gacceggtee eegageteee tgteegeete tgtgggegat 1920 agggtcacca tcacctgccg tgccagtcag taccacgacg gttctgcagc ctggtatcaa 1980 caqaaaccaq qaaaatqccc qaaqcttctg atttacqqtg catcctacct ctactctgga 2040 qtcccttccc qcttctctqq taqccqttcc qqqacqqatt tcactctqac catcaqcaqt 2100 ctgcagccgg aagacttcgc aacttattac tgtcagcaat cttcttattc tctgatcacg 2160 2220 ttcqqacaqq gtaccaaqqt qqaqatcaaa qqtactactq ccqctaqtqq tagtaqtqqt ggcagtagca gtggtgccga ggttcagctg gtggagtctg acggtggcct ggtgcagcca 2280 ggggggctcac tccqtttqtc ctqtqcaqct tctqqcttca acctctctta ctacqqtatq 2340 2400 cactgggtgc gtcaggcccc gggtaagggc ctggaatggg ttgcatacat tgcttcttac $% \mathcal{G} = \mathcal{G}$ cctggctaca cttcttatgc cgatagcgtc aagggccgtt tcactataag cgcagacaca 2460 tccaaaaaca cagcctacct acaaatgaac agcttaagag ctgaggacac tgccgtctac 2520 tattgtgctc gctctggtta cagttactct ccgtattatt cttggttctc tgctggtatg 2580 aactactggg gttgcggagc cctggtcacc gtctcctcgg gagggggggg ttcccaccat 2640 caccaccatc actgatag 2658 <210> SEQ ID NO 88 <211> LENGTH: 2625 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scFv (VL-VH) CK157-ds1 (VL100Q>C / VH44E>C)-(Gly4Ser)-His6 <400> SEQUENCE: 88 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct 60 agatgegaag cacacaagag tgagategee categgtata atgatttggg agaacaacat 120 ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag 180 catqccaaat taqtqcaqqa aqtaacaqac tttqcaaaqa cqtqtqttqc cqatqaqtct 240 gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca 300 aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga 360 aacqaatqtt tcctqcaaca caaaqatqac aaccccaqcc taccaccatt tqaaaqqcca 420 gaggetgagg ceatgtgeae etectttaag gaaaaeeeaa eeaeetttat gggaeaetat 480 ttgcatgaag ttgccagaag acateettat ttetatgeee cagaaettet ttaetatget 540 gagcagtaca atgagattet gacccagtgt tgtgcagagg etgacaagga aagetgeetg 600 accccgaagc ttgatggtgt gaaggagaaa gcattggtct catctgtccg tcagagaatg 660

-continued

			-001011	Iueu		
aagtgctcca gtat	gcagaa gtttggagag	agagctttta	aagcatgggc	agtagctcgt	720	
ctgagccaga catt	ccccaa tgctgacttt	gcagaaatca	ccaaattggc	aacagacctg	780	
accaaagtca acaa	ggagtg ctgccatggt	gacctgctgg	aatgcgcaga	tgacagggcg	840	
gaacttgcca agta	catgtg tgaaaaccag	gcgactatct	ccagcaaact	gcagacttgc	900	
tgcgataaac cact	gttgaa gaaagcccac	tgtcttagtg	aggtggagca	tgacaccatg	960	
cctgctgatc tgcc	tgccat tgctgctgat	tttgttgagg	accaggaagt	gtgcaagaac	1020	
tatgctgagg ccaa	ggatgt cttcctgggc	acgttcttgt	atgaatattc	aagaagacac	1080	
cctgattact ctgt	atccct gttgctgaga	cttgctaaga	aatatgaagc	cactctggaa	1140	
aagtgctgcg ctga	agecaa teeteeegea	tgctacggca	cagtgcttgc	tgaatttcag	1200	
cctcttgtag aaga	gcctaa gaacttggtc	aaaaccaact	gtgatcttta	cgagaagctt	1260	
ggagaatatg gatt	ccaaaa tgccattcta	gttcgctaca	cccagaaagc	acctcaggtg	1320	
tcaaccccaa ctct	cgtgga ggctgcaaga	aacctaggaa	gagtgggcac	caagtgttgt	1380	
acacttcctg aaga	tcagag actgccttgt	gtggaagact	atctgtctgc	aatcctgaac	1440	
cgtgtgtgtc tgct	gcatga gaagacccca	gtgagtgagc	atgttaccaa	gtgctgtagt	1500	
ggatccctgg tgga	aaggcg gccatgcttc	tctgctctga	cagttgatga	aacatatgtc	1560	
cccaaagagt ttaa	agctga gaccttcacc	ttccactctg	atatctgcac	acttccagag	1620	
aaggagaagc agat	taagaa acaaacggct	cttgctgagc	tggtgaagca	caagcccaag	1680	
gctacagcgg agca	actgaa gactgtcatg	gatgactttg	cacagttcct	ggatacatgt	1740	
tgcaaggctg ctga	caagga cacctgcttc	tcgactgagg	gtccaaacct	tgtcactaga	1800	
tgcaaagacg cctt	agccgg tggaggaggc	tctggtggag	gcggtagcgg	aggcggaggg	1860	
tcggatatcc agat	gaccca gtccccgagc	tccctgtccg	cctctgtggg	cgatagggtc	1920	
accatcacct gccg	tgccag tcagtcttac	ggtggtgtag	cctggtatca	acagaaacca	1980	
ggaaaagccc cgaa	gettet gatttaetet	gcatcctacc	tctactctgg	agtcccttct	2040	
cgcttctctg gtag	ccgttc cgggacggat	ttcactctga	ccatcagcag	tctgcagccg	2100	
gaagacttcg caac	ttatta ctgtcagcaa	ccatctcatc	tgatcacgtt	cggatgcggt	2160	
accgaggtgg agat	caaagg tactactgcc	gctagtggta	gtagtggtgg	cagtagcagt	2220	
ggtgccgagg ttca	getggt ggagtetgge	ggtggcctgg	tgcagccagg	gggctcactc	2280	
cgtttgtcct gtgc	agette tggeteeaac	ccctactact	acggtggtac	gcactgggtg	2340	
cgtcaggccc cggg	tgagtg cctggaatgg	gttgcatcta	ttggttctta	ccctggctac	2400	
actgactatg ccga	tagcgt caagggccgt	ttcactataa	gcgcagacac	atccaaaaac	2460	
acageetace taca	aatgaa cagcttaaga	gctgaggaca	ctgccgtcta	ttattgtgct	2520	
cgccattact actg	gtacga tgctactgac	tactggggtc	aaggaaccct	ggtcaccgtc	2580	
tcctcgggag gggg	cggttc ccaccatcac	caccatcact	gatag		2625	

<210> SEQ ID NO 89 <211> LENGTH: 2625 <212> TYPE: DNA

- <213> ORGANISM: Artificial Sequence
- <220> FEATURE:
- <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scFv (VL-VH) CK157-ds2 (VL43A>C / VH105Q>C)-(Gly4Ser)-His6

-continued

atggacatga	gagtgcctgc	tcagctgctg	ggcctgctgc	tgctgtggct	gcctggtgct	60
agatgcgaag	cacacaagag	tgagatcgcc	catcggtata	atgatttggg	agaacaacat	120
ttcaaaggcc	tagtcctgat	tgccttttcc	cagtatctcc	agaaatgctc	atacgatgag	180
catgccaaat	tagtgcagga	agtaacagac	tttgcaaaga	cgtgtgttgc	cgatgagtct	240
gccgccaact	gtgacaaatc	ccttcacact	ctttttggag	ataagttgtg	tgccattcca	300
aacctccgtg	aaaactatgg	tgaactggct	gactgctgta	caaaacaaga	gcccgaaaga	360
aacgaatgtt	tcctgcaaca	caaagatgac	aaccccagcc	taccaccatt	tgaaaggcca	420
gaggctgagg	ccatgtgcac	ctcctttaag	gaaaacccaa	ccacctttat	gggacactat	480
ttgcatgaag	ttgccagaag	acatccttat	ttctatgccc	cagaacttct	ttactatgct	540
gagcagtaca	atgagattct	gacccagtgt	tgtgcagagg	ctgacaagga	aagctgcctg	600
accccgaagc	ttgatggtgt	gaaggagaaa	gcattggtct	catctgtccg	tcagagaatg	660
aagtgctcca	gtatgcagaa	gtttggagag	agagctttta	aagcatgggc	agtagctcgt	720
ctgagccaga	cattccccaa	tgctgacttt	gcagaaatca	ccaaattggc	aacagacctg	780
accaaagtca	acaaggagtg	ctgccatggt	gacctgctgg	aatgcgcaga	tgacagggcg	840
gaacttgcca	agtacatgtg	tgaaaaccag	gcgactatct	ccagcaaact	gcagacttgc	900
tgcgataaac	cactgttgaa	gaaagcccac	tgtcttagtg	aggtggagca	tgacaccatg	960
cctgctgatc	tgcctgccat	tgctgctgat	tttgttgagg	accaggaagt	gtgcaagaac	1020
tatgctgagg	ccaaggatgt	cttcctgggc	acgttcttgt	atgaatattc	aagaagacac	1080
cctgattact	ctgtatccct	gttgctgaga	cttgctaaga	aatatgaagc	cactctggaa	1140
aagtgctgcg	ctgaagccaa	tcctcccgca	tgctacggca	cagtgcttgc	tgaatttcag	1200
cctcttgtag	aagagcctaa	gaacttggtc	aaaaccaact	gtgatcttta	cgagaagctt	1260
ggagaatatg	gattccaaaa	tgccattcta	gttcgctaca	cccagaaagc	acctcaggtg	1320
tcaaccccaa	ctctcgtgga	ggctgcaaga	aacctaggaa	gagtgggcac	caagtgttgt	1380
acacttcctg	aagatcagag	actgccttgt	gtggaagact	atctgtctgc	aatcctgaac	1440
cgtgtgtgtc	tgctgcatga	gaagacccca	gtgagtgagc	atgttaccaa	gtgctgtagt	1500
	tggaaaggcg					1560
	ttaaagctga					1620
	agattaagaa					1680
	agcaactgaa					1740
	ctgacaagga	_		-		1800
	ccttagccgg					1860
tcggatatcc	agatgaccca	gtccccgagc	tccctgtccg	cctctgtggg	cgatagggtc	1920
accatcacct	gccgtgccag	tcagtcttac	ggtggtgtag	cctggtatca	acagaaacca	1980
ggaaaatgcc	cgaagcttct	gatttactct	gcatcctacc	tctactctgg	agtcccttct	2040
cgcttctctg	gtagccgttc	cgggacggat	ttcactctga	ccatcagcag	tctgcagccg	2100
gaagacttcg	caacttatta	ctgtcagcaa	ccatctcatc	tgatcacgtt	cggacagggt	2160
accgaggtgg	agatcaaagg	tactactgcc	gctagtggta	gtagtggtgg	cagtagcagt	2220
ggtgccgagg	ttcagctggt	ggagtctggc	ggtggcctgg	tgcagccagg	gggctcactc	2280

-continued

cgtttgtcct gtgcagette tggeteeaae eestactaet aeggtggtae geaetgggtg	2340
cgtcaggccc cgggtgagga gctggaatgg gttgcatcta ttggttctta ccctggctac	2400
actgactatg ccgatagcgt caagggccgt ttcactataa gcgcagacac atccaaaaac	2460
acagootaco tacaaatgaa cagottaaga gotgaggaca otgoogtota ttattgtgot	2520
cgccattact actggtacga tgctactgac tactggggtt gcggaaccct ggtcaccgtc	2580
teetegggag ggggeggtte ceaceateae caceateaet gatag	2625
<210> SEQ ID NO 90 <211> LENGTH: 2217 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)-VL CK157-His6	
<400> SEQUENCE: 90	
atggacatga gagtgeetge teagetgetg ggeetgetge tgetgtgget geetggtget	60
agatgcgaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat	120
ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag	180
catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct	240
gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca	300
aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga	360
aacgaatgtt tootgcaaca caaagatgac aaccocagoo taccaccatt tgaaaggoca	420
gaggetgagg ceatgtgeae eteettaag gaaaaeeeaa eeaeettat gggaeaetat	480
ttgcatgaag ttgccagaag acateettat ttetatgeee cagaaettet ttaetatget	540
gagcagtaca atgagattct gacccagtgt tgtgcagagg ctgacaagga aagctgcctg	600
accccgaagc ttgatggtgt gaaggagaaa gcattggtct catctgtccg tcagagaatg	660
aagtgeteea gtatgeagaa gtttggagag agagetttta aageatggge agtagetegt	720
ctgagccaga cattecccaa tgctgacttt gcagaaatca ccaaattggc aacagacetg	780
accaaagtca acaaggagtg ctgccatggt gacctgctgg aatgcgcaga tgacaggggg	840
gaacttgcca agtacatgtg tgaaaaccag gcgactatct ccagcaaact gcagacttgc	900
tgcgataaac cactgttgaa gaaagcccac tgtcttagtg aggtggagca tgacaccatg	960
cctgctgatc tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgcaagaac	1020
tatgctgagg ccaaggatgt cttcctgggc acgttcttgt atgaatattc aagaagacac	1080
cctgattact ctgtatccct gttgctgaga cttgctaaga aatatgaagc cactctggaa	1140
aagtgetgeg etgaageeaa teeteeegea tgetaeggea eagtgettge tgaattteag	1200
cctcttgtag aagagcctaa gaacttggtc aaaaccaact gtgatcttta cgagaagctt	1260
ggagaatatg gattccaaaa tgccattcta gttcgctaca cccagaaagc acctcaggtg	1320
tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa gagtgggcac caagtgttgt	1380
acactteetg aagateagag actgeettgt gtggaagaet atetgtetge aateetgaae	1440
cgtgtgtgtc tgctgcatga gaagacccca gtgagtgagc atgttaccaa gtgctgtagt	1500
ggatccctgg tggaaaggcg gccatgcttc tctgctctga cagttgatga aacatatgtc	1560

ontinued

-continued	
cccaaagagt ttaaagctga gaccttcacc ttccactctg atatctgcac acttccagag	1620
aaggagaagc agattaagaa acaaacggct cttgctgagc tggtgaagca caagcccaag	1680
gctacagcgg agcaactgaa gactgtcatg gatgactttg cacagttcct ggatacatgt	1740
tgcaaggctg ctgacaagga cacctgcttc tcgactgagg gtccaaacct tgtcactaga	1800
tgcaaagacg ccttagccgg tggaggaggc tctggtggag gcggtagcgg aggcggaggg	1860
toggatatoc agatgacoca gtococgago tocotgtoog oototgtggg ogatagggto	1920
accatcacct gccgtgccag tcagtcttac ggtggtgtag cctggtatca acagaaacca	1980
ggaaaageee egaagettet gatttaetet geateetaee tetaetetgg agteeettet	2040
cgettetetg gtageegtte egggaeggat tteaetetga ceateageag tetgeageeg	2100
gaagacttcg caacttatta ctgtcagcaa ccatctcatc tgatcacgtt cggacagggt	2160
accgaggtgg agatcaaagg aggggggggt teccaccate accaccatea etgatag	2217
<210> SEQ ID NO 91 <211> LENGTH: 2265 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)-VH CK157-His6	
<400> SEQUENCE: 91	
atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct	60
agatgcgaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat	120
ttcaaaggcc tagteetgat tgeettttee cagtatetee agaaatgete ataegatgag	180
catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct	240
gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca	300
aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga	360
aacgaatgtt tootgoaaca caaagatgac aaccocagoo taccaccatt tgaaaggooa	420
gaggctgagg ccatgtgcac ctcctttaag gaaaacccaa ccacctttat gggacactat	480
ttgcatgaag ttgccagaag acatecttat ttetatgeee cagaaettet ttaetatget	540
gagcagtaca atgagattct gacccagtgt tgtgcagagg ctgacaagga aagctgcctg	600
accccgaagc ttgatggtgt gaaggagaaa gcattggtct catctgtccg tcagagaatg	660
aagtgeteea gtatgeagaa gtttggagag agagetttta aageatggge agtagetegt	720
ctgagccaga cattccccaa tgctgacttt gcagaaatca ccaaattggc aacagacctg	780
accaaagtca acaaggagtg ctgccatggt gacctgctgg aatgcgcaga tgacaggggg	840
gaacttgcca agtacatgtg tgaaaaccag gcgactatct ccagcaaact gcagacttgc	900
tgcgataaac cactgttgaa gaaagcccac tgtcttagtg aggtggagca tgacaccatg	960
cctgctgatc tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgcaagaac	1020
tatgctgagg ccaaggatgt cttcctgggc acgttcttgt atgaatattc aagaagacac	1080
cctgattact ctgtatccct gttgctgaga cttgctaaga aatatgaagc cactctggaa	1140
aagtgetgeg etgaageeaa teeteeegea tgetaeggea eagtgettge tgaattteag	1200
cctcttgtag aagageetaa gaaettggte aaaaeeaaet gtgatettta egagaagett	1260
ggagaatatg gattccaaaa tgccattcta gttcgctaca cccagaaagc acctcaggtg	1320

-continued

tcaaccccaa ctctcgtgga ggctgcaaga aacctaggaa gagtgggcac caagtgttgt 1380

acactteetg aagateagag actgeettgt gtggaagaet atetgtetge aateetgaae	1440
cgtgtgtgtc tgctgcatga gaagacccca gtgagtgagc atgttaccaa gtgctgtagt	1500
ggatccctgg tggaaaggcg gccatgcttc tctgctctga cagttgatga aacatatgtc	1560
cccaaagagt ttaaagctga gaccttcacc ttccactctg atatctgcac acttccagag	1620
aaggagaagc agattaagaa acaaacggct cttgctgagc tggtgaagca caagcccaag	1680
gctacagegg ageaactgaa gactgteatg gatgaetttg eacagtteet ggataeatgt	1740
tgcaaggctg ctgacaagga cacctgcttc tcgactgagg gtccaaacct tgtcactaga	1800
tgcaaagacg cettageegg tggaggagge tetggtggag geggtagegg aggeggaggg	1860
teggeegagg tteagetggt ggagtetgge ggtggeetgg tgeageeagg gggeteacte	1920
cgtttgtcct gtgcagcttc tggctccaac ccctactact acggtggtac gcactgggtg	1980
cgtcaggccc cgggtgagga gctggaatgg gttgcatcta ttggttctta ccctggctac	2040
actgactatg ccgatagcgt caagggccgt ttcactataa gcgcagacac atccaaaaac	2100
acagcctacc tacaaatgaa cagcttaaga gctgaggaca ctgccgtcta ttattgtgct	2160
cgccattact actggtacga tgctactgac tactggggtc aaggaaccct ggtcaccgtc	2220
teetegggag gggggggtte ceaceateae caceateaet gatag	2265
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92</pre>	₹v
<220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6	60
<220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92	
<220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct	60
<220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgattggg agaacaacat	60 120
<220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgattggg agaacaacat ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag	60 120 180
<220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgctc atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct	60 120 180 240
<220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgattggg agaacaacat ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca	60 120 180 240 300
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgctc atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga</pre>	60 120 180 240 300 360
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgattggg agaacaacat ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga aacgaatgtt tcctgcaaca caaagatgac aaccccagcc taccacatt tgaaaggcca</pre>	60 120 180 240 300 360 420
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga aacgaatgtt tcctgcaaca caaagatgac aaccccagcc taccacatt tgaaaggcca gaggctgagg ccatgtgcac ctcctttaag gaaaacccaa ccacctttat gggacactat</pre>	60 120 180 240 300 360 420 480
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgattggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgctc atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgg tgccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga aacgaatgtt tcctgcaaca caaagatgac aaccccagcc taccacatt tgaaaggcca gaggctgagg ccatgtgcac ctcctttaag gaaaacccaa ccacctttat gggacactat ttgcatgaag ttgccagaag acatccttat ttctatgccc cagaacttct ttactatgct</pre>	60 120 180 240 300 360 420 480 540
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgattggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgctc atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga aacgaatgtt tcctgcaaca caaagatgac aaccccagcc taccacatt tgaaaggcca gaggctgagg ccatgtgcac ctcctttaag gaaaacccaa ccacctttat gggacactat ttgcatgaag ttgccagaag acatccttat ttctatgccc cagaacttct ttactatgct gagcagtaca atgagattct gacccagtgt tgtgcagagg ctgacaagga aagctgcctg</pre>	60 120 180 240 300 360 420 480 540 600
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgctc atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgtg tgccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga aacgaatgtt tcctgcaaca caaagatgac aaccccagcc taccacatt tgaaaggcca gaggctgagg ccatgtgcac ctcctttaag gaaaacccaa ccacctttat gggacactat ttgcatgaag ttgccagaag acatccttat ttctatgccc cagaacttct ttactatgct gagcagtaca atgagattct gacccagtgt tgtgcaggg ctgacaagga aagctgcctg accccgaagc ttgatggtg gaaggagaaa gcattggtct catcgtccg tcagagaatg</pre>	60 120 180 240 300 360 420 480 540 600
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgattggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgctc atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgt tgccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga aacgaatgtt tcctgcaaca caaagatgac aaccccagcc taccacatt tgaaaggcca gaggctgagg ccatgtgcac ctcctttaag gaaaacccaa ccaccttta gggacactat ttgcatgaag ttgccagaag acatccttat ttctatgccc cagaacttct ttactatgct gagcagtaca atgagattct gacccagtgt tgtgcagagg ctgacaagga aagctgcctg accccgaagc ttgatggtgt gaaggagaaa gcattggtct catctgtccg tcagagaatg aagtgctcca gtatgcaga gttggaga agagcttta aagcatggc agtagctcgt</pre>	60 120 180 240 300 360 420 480 540 600 660
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scF (VL-VH) CK129-ds1 (VL100Q>C / VH4G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct agatgcgaag cacacaagag tgagatcgcc catcggtata atgatttggg agaacaacat ttcaaaggcc tagtcctgat tgcctttcc cagtatctcc agaaatgctc atacgatgag catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct gccgccaact gtgacaaatc ccttcacact ctttttggag ataagttgt tgccattcca aacctccgtg aaaactatgg tgaactggct gactgctgta caaaacaaga gcccgaaaga aacgaatgtt tcctgcaaca caaagatgac aaccccagce taccactt tgaaaggcca gaggctgagg ccatgtgcac ctcctttaag gaaaacccaa ccacctttat gggacactat ttgcatgaag ttgccagaag acatccttat ttctatgccc cagaacttct ttactatgct gagcagtaca atgagattct gacccagtgt tgtgcagagg ctgacaagga aagctgctg aaccccgaagc ttgatggtgt gaaggagaaa gcattggtct catctgtccg tcagagaatg aagtgctcca gtatgcagaa gtttggagag agagcttta aagcatggc agtagctcgt ctgagccaga cattccccaa tgctgactt gcagaaatca ccaaattggc aacagacctg</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-setF (VL-VH) CK129-ds1 (VL100Q>C / VH4G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 92 atggacatga gagtgeetge teagetgetg ggeetgetge tgeetgggget geetggtget agatgegaag cacacaagag tgagategee categgtata atgatttggg agaacaacat tteaaaggee tagteetgat tgeetttee cagtatetee agaaatgete ataegatgag catgeeaaat tagtgeagga agtaacagae tttgeaaaga egtgtgttge egatgagtet geegeeaaet gtgacaaate eetteaaet ettttggag ataagttgt tgeeatteea aaceteegtg aaaaetatgg tgaaetgget gaetgetgta caaaacaaga geeegaaaga aacgaatgtt teetgeaaea caaagatgae aaceeeagee taceaeett tgaaaggeea gaggetgagg ceatgtgeae etcetttaag gaaaaeceaa ceaeett tgaaaggeea tttgeatgaag ttgeeagaag acateettat tteetatgeee cagaaettet ttaetatget gageagtaea atgagatet gaeeeagtgt tgtgeagagg etgaeaagga aagetgeetg aceeegaage ttgatggtgt gaaggagaaa geattggte catetgteeg teagagaatg aagtgeteea gtatgeeagaa gttggagag agagettta aageatgge agagetegt aagtgeeaga catteeeaa tgetgaett geegaaatea ceaaattgge aacagaeeg aagtgeteea gtatgeeagaa gttggagag agagettta aageatgge agtagetegt etgageeaga catteeeaa tgetgaett geegaaatea ceaaattgge aacagaeetg aceaaagtea acaaggagtg etgeeatggt gaeetgetgg aatgeegaa tgaeaggeeg aceaaagtea acaaggagtg etgeeatggt gaeetgetgg aatgeegaa tgaeaggeeg aceaaagtea acaaggagtg etgeeatggt gaeetgetgg aatgeegaa tgaeaggeeg aceaaagtea acaaggagtg etgeeatggt gaeetgetgg aatgeegaa tgaeaggeegaa aceaaagtea acaaggagtg etgeeatggt gaeetgetgg aatgeegaa tgaeaggeegaa aceaaagtea acaaggagtg etgeeatggt gaeetgetgg aatgeegaa tgaeaggeegaa aceaaagtea acaaggagtg etgeeatggt gaeetgetgg aatgeegaa tgaeaggeega aceaaagtea acaaggaggagaa gaeetgeegaa agaeetgeegaa tgaeaggeega aceaaagtea acaaggaggagaa gaeetgeegaa gaeetgeegaa tgaeaggeegaa tgaeaggeegaa aceaaagtea acaaggaggagaa gaeetgeegaa gaeetgeegaa tgaeaggeegaa aceaaagtea acaagaagaetgeegaa gaeetgeegaa gaeetgeegaaa</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780 840

d

	-continued	
cctgctgatc tgcctgccat tgctgc	tgat tttgttgagg accaggaagt gtgc	aagaac 1020
tatgctgagg ccaaggatgt cttcct	gggc acgttcttgt atgaatattc aaga	agacac 1080
cctgattact ctgtatccct gttgct	gaga cttgctaaga aatatgaagc cact	ctggaa 1140
aagtgctgcg ctgaagccaa tcctcc	cgca tgctacggca cagtgcttgc tgaa	tttcag 1200
cctcttgtag aagagcctaa gaactt	ggtc aaaaccaact gtgatcttta cgag	aagctt 1260
ggagaatatg gattccaaaa tgccat	tcta gttcgctaca cccagaaagc acct	caggtg 1320
tcaaccccaa ctctcgtgga ggctgc	aaga aacctaggaa gagtgggcac caac	tgttgt 1380
acacttcctg aagatcagag actgcc	ttgt gtggaagact atctgtctgc aatc	ctgaac 1440
cgtgtgtgtc tgctgcatga gaagac	ccca gtgagtgagc atgttaccaa gtgc	tgtagt 1500
ggatccctgg tggaaaggcg gccatg	cttc tctgctctga cagttgatga aaca	tatgtc 1560
cccaaagagt ttaaagctga gacctt	cacc ttccactctg atatctgcac actt	ccagag 1620
aaggagaagc agattaagaa acaaac	ggct cttgctgagc tggtgaagca caac	cccaag 1680
gctacagcgg agcaactgaa gactgt	catg gatgactttg cacagtteet ggat	acatgt 1740
tgcaaggctg ctgacaagga cacctg	cttc tcgactgagg gtccaaacct tgtc	actaga 1800
tgcaaagacg ccttagccgg tggagg	aggc tctggtggag gcggtagcgg aggc	ggaggg 1860
toggatatoo agatgaccoa gtocoo	gage ceeetgteeg eetetgtggg egat	agggtc 1920
accatcacct gccgtgccag tcagta	cggt ggttacgtag cctggtatca acag	aaacca 1980
ggaaaagctc cgaagcttct gattta	cggt gcatcccttc tctactctgg agtc	ccttct 2040
cgcttctctg gtggccgttc cgggac	ggat ttcactctga ccatcagcag tctg	cagccg 2100
gaagacttcg caacttatta ctgtca	gcga ggtcatgctc tgatcacgtt cgga	tgcggt 2160
accaaggtgg agatcgaagg tactac	tgcc gctagtggta gtagtggtgg cagt	agcagt 2220
ggtgccgagg ttcagctggt ggagtc	tggc ggtggcctgg tgcagccagg gggc	tcactc 2280
cgtttatcct gtgcagcttc tggctt	caac atctcttctt acggttctat gcac	tgggtg 2340
cgtcaggccc cgggtaagtg cctgga	atgg gttgcatcta tttaccctta ctct	agctct 2400
acttactatg ccgatagcgt caaggg	ccgt ttcactataa gcgcagacac atcc	aaaaac 2460
acageetace tacaaatgaa cagett	aaga gctgaggaca ctgccgtcta ttat	tgtgct 2520
cgtggttacg gtccgtggta cgctta	ctct tacttcgctt tggactactg gggt	caagga 2580
accctggtca ccgtctcctc gggagg	gggc ggttcccacc atcaccacca tcac	tgatag 2640
	equence thetic: gWiz-LS-mouse SA-(Gly4S 3A>C / VH105Q>C)-(Gly4Ser)-His6	
<400> SEQUENCE: 93		
atggacatga gagtgcctgc tcagct	getg ggeetgetge tgetgtgget geet	ggtgct 60
agatgcgaag cacacaagag tgagat	cgcc catcggtata atgatttggg agaa	caacat 120
ttcaaaggcc tagtcctgat tgcctt	ttee cagtatetee agaaatgete atae	gatgag 180
	agac tttgcaaaga cgtgtgttgc cgat	
	cact ctttttggag ataagttgtg tgcc	
		······································

-continued

aacctccgtg aaaactatgg	tgaactggct	gactgctgta	caaaacaaga	gcccgaaaga	360	
aacgaatgtt tcctgcaaca	caaagatgac	aaccccagcc	taccaccatt	tgaaaggcca	420	
gaggctgagg ccatgtgcac	ctcctttaag	gaaaacccaa	ccacctttat	gggacactat	480	
ttgcatgaag ttgccagaag	acatccttat	ttctatgccc	cagaacttct	ttactatgct	540	
gagcagtaca atgagattct	gacccagtgt	tgtgcagagg	ctgacaagga	aagctgcctg	600	
accccgaagc ttgatggtgt	gaaggagaaa	gcattggtct	catctgtccg	tcagagaatg	660	
aagtgctcca gtatgcagaa	gtttggagag	agagctttta	aagcatgggc	agtagctcgt	720	
ctgagccaga cattccccaa	tgctgacttt	gcagaaatca	ccaaattggc	aacagacctg	780	
accaaagtca acaaggagtg	ctgccatggt	gacctgctgg	aatgcgcaga	tgacagggcg	840	
gaacttgcca agtacatgtg	tgaaaaccag	gcgactatct	ccagcaaact	gcagacttgc	900	
tgcgataaac cactgttgaa	gaaagcccac	tgtcttagtg	aggtggagca	tgacaccatg	960	
cctgctgatc tgcctgccat	tgctgctgat	tttgttgagg	accaggaagt	gtgcaagaac	1020	
tatgctgagg ccaaggatgt	cttcctgggc	acgttcttgt	atgaatattc	aagaagacac	1080	
cctgattact ctgtatccct	gttgctgaga	cttgctaaga	aatatgaagc	cactctggaa	1140	
aagtgctgcg ctgaagccaa	tcctcccgca	tgctacggca	cagtgcttgc	tgaatttcag	1200	
cctcttgtag aagagcctaa	gaacttggtc	aaaaccaact	gtgatcttta	cgagaagctt	1260	
ggagaatatg gattccaaaa	tgccattcta	gttcgctaca	cccagaaagc	acctcaggtg	1320	
tcaaccccaa ctctcgtgga	ggctgcaaga	aacctaggaa	gagtgggcac	caagtgttgt	1380	
acacttcctg aagatcagag	actgccttgt	gtggaagact	atctgtctgc	aatcctgaac	1440	
cgtgtgtgtc tgctgcatga	gaagacccca	gtgagtgagc	atgttaccaa	gtgctgtagt	1500	
ggatccctgg tggaaaggcg	gccatgcttc	tctgctctga	cagttgatga	aacatatgtc	1560	
cccaaagagt ttaaagctga	gaccttcacc	ttccactctg	atatctgcac	acttccagag	1620	
aaggagaagc agattaagaa	acaaacggct	cttgctgagc	tggtgaagca	caagcccaag	1680	
gctacagcgg agcaactgaa	gactgtcatg	gatgactttg	cacagttcct	ggatacatgt	1740	
tgcaaggctg ctgacaagga	cacctgcttc	tcgactgagg	gtccaaacct	tgtcactaga	1800	
tgcaaagacg ccttagccgg	tggaggaggc	tctggtggag	gcggtagcgg	aggcggaggg	1860	
tcggatatcc agatgaccca	gtccccgagc	cccctgtccg	cctctgtggg	cgatagggtc	1920	
accatcacct gccgtgccag	tcagtacggt	ggttacgtag	cctggtatca	acagaaacca	1980	
ggaaaatgcc cgaagcttct	gatttacggt	gcatcccttc	tctactctgg	agtcccttct	2040	
cgcttctctg gtggccgttc	cgggacggat	ttcactctga	ccatcagcag	tctgcagccg	2100	
gaagacttcg caacttatta	ctgtcagcga	ggtcatgctc	tgatcacgtt	cggacagggt	2160	
accaaggtgg agatcgaagg	tactactgcc	gctagtggta	gtagtggtgg	cagtagcagt	2220	
ggtgccgagg ttcagctggt	ggagtetgge	ggtggcctgg	tgcagccagg	gggctcactc	2280	
cgtttatcct gtgcagettc	tggcttcaac	atctcttctt	acggttctat	gcactgggtg	2340	
cgtcaggccc cgggtaaggg	cctggaatgg	gttgcatcta	tttaccctta	ctctagctct	2400	
acttactatg ccgatagcgt	caagggccgt	ttcactataa	gcgcagacac	atccaaaaac	2460	
acagcctacc tacaaatgaa	cagcttaaga	gctgaggaca	ctgccgtcta	ttattgtgct	2520	
cgtggttacg gtccgtggta	cgcttactct	tacttcgctt	tggactactg	gggttgcgga	2580	
		-	-			

-cont	inued

accetggtea cegteteete gggaggggge ggtteeeace ateaceacea teactgatag 2640 <210> SEQ ID NO 94 <211> LENGTH: 2625 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: gWiz-LS-mouse SA-(Gly4Ser)3-scFv (VH-VL) sm3E-ds (VH44R>G / VL100G>C)-(Gly4Ser)-His6 <400> SEQUENCE: 94 atggacatga gagtgcctgc tcagctgctg ggcctgctgc tgctgtggct gcctggtgct 60 120 aqatqcqaaq cacacaaqaq tqaqatcqcc catcqqtata atqatttqqq aqaacaacat ttcaaaggcc tagtcctgat tgccttttcc cagtatctcc agaaatgctc atacgatgag 180 catgccaaat tagtgcagga agtaacagac tttgcaaaga cgtgtgttgc cgatgagtct 240 geogecaact gigacaaate cetteacact ettitiggag ataagtigig igecatteea 300 aacctccqtq aaaactatqq tqaactqqct qactqctqta caaaacaaqa qcccqaaaqa 360 aacgaatgtt tcctgcaaca caaagatgac aaccccagcc taccaccatt tgaaaggcca 420 gaggetgagg ceatgtgeae etectttaag gaaaaeceeaa ceaeetttat gggaeaetat 480 ttqcatqaaq ttqccaqaaq acateettat ttetatqeee caqaaettet ttaetatqet 540 gagcagtaca atgagattet gacccagtgt tgtgcagagg etgacaagga aagetgeetg 600 accccgaage ttgatggtgt gaaggagaaa geattggtet catetgteeg teagagaatg 660 aagtgeteea gtatgeagaa gtttggagag agagetttta aageatggge agtagetegt 720 ctgagccaga cattccccaa tgctgacttt gcagaaatca ccaaattggc aacagacctg 780 accaaagtca acaaggagtg ctgccatggt gacctgctgg aatgcgcaga tgacagggcg 840 gaacttgcca agtacatgtg tgaaaaccag gcgactatct ccagcaaact gcagacttgc 900 tgcgataaac cactgttgaa gaaagcccac tgtcttagtg aggtggagca tgacaccatg 960 cctgctgatc tgcctgccat tgctgctgat tttgttgagg accaggaagt gtgcaagaac 1020 tatgctgagg ccaaggatgt cttcctgggc acgttcttgt atgaatattc aagaagacac 1080 cctgattact ctgtatccct gttgctgaga cttgctaaga aatatgaagc cactctggaa 1140 aagtgetgeg etgaageeaa teeteeegea tgetaeggea eagtgettge tgaattteag 1200 cctcttgtag aagagcctaa gaacttggtc aaaaccaact gtgatcttta cgagaagctt 1260 ggagaatatg gattccaaaa tgccattcta gttcgctaca cccagaaagc acctcaggtg 1320 1380 tcaaccccaa ctctcqtqqa qqctqcaaqa aacctaqqaa qaqtqqqcac caaqtqttqt acactteetg aagateagag actgeettgt gtggaagaet atetgtetge aateetgaae 1440 1500 cgtgtgtgtc tgctgcatga gaagacccca gtgagtgagc atgttaccaa gtgctgtagt ggatccctgg tggaaaggcg gccatgcttc tctgctctga cagttgatga aacatatgtc 1560 cccaaagagt ttaaagctga gaccttcacc ttccactctg atatctgcac acttccagag 1620 aaggagaagc agattaagaa acaaacggct cttgctgagc tggtgaagca caagcccaag 1680 gctacagcgg agcaactgaa gactgtcatg gatgactttg cacagttcct ggatacatgt 1740 tgcaaggetg etgacaagga cacetgette tegaetgagg gtecaaaeet tgteaetaga 1800 tgcaaagacg ccttagccgg tggaggaggc tctggtggag gcggtagcgg aggcggaggg 1860

continued

euProGlyAlaArgCysGluAlaHisLysSerGluIleAlaHisArgyrAsnAspLeuGlyGluGlnHisPheLysGlyLeuValLeuIleAla 35 GluTyrLeuGlnHisPheLysGlyLeuValLeuIleAla 35 GlnTyrLeuGlnLysCysSerTyrAspGluHisAlaLysLeu 50 GlnTyrLeuGlnLysCysSerTyrAspGluHisAlaAspGluSer 50 GlnGluValThrAspPheAlaLysThrCysValAlaAspGluSer 50 GluValThrAspPheAlaLysThrCysValAlaAspGluSer 50 GluValThrAspPheAlaLysThrCysValAlaAspGluSer 50 GluValThrAspPheAlaLysThrCysValAlaAspGluSer 50 GluValThrAspSerLeuHisThrAspLysSerSo 10 AspSerSerSerSerGluAspCysPheL											_	con	CIII	ueu					
active ac	ttgtcct	gtta .	aact	ggaa	ca gt	ccgg	gtgct	: gaa	gtto	gtca	aaco	cagg	tgc t	ttcc	gtgaa	g 1	920		
actiggget tatetteggg aaggetett tittetteereg eesttereg taatacege 2100 actiggget tatetteett gagaceagg geeetgeeg tatactate eaegaagg 2160 ceaceasetg gteettast tittegeetae tggggacag gteettagt taetgtett 2220 geggtggeg gaggteagg eggtggaggg tegggacag geegtagtga aaatgtgeeg 2340 ceaceatet eaagteett atgeette gtiggegata gagtaecet egettgtage 2340 ceaceatet eaagteett atgeette gtiggegata gagtaecet egettgtage 2340 ceaceatet eaagteett atgeette gtiggegata gagtaecet egettgtage 2460 geteaggaa eegattatag titgaetat ageteagetteg geggtagtga aagteegaa ceatette aggegeeggte eecateae eaectaece gatage geaggtggaa 2580 teagagaa ggggeeggte eecateae eaectaet gatag 2625 210 - S80 ID NO 95 211 - UBWCM: 844 212 - VDE: PFT 213 - VDE: PFT 214 - Aap Me PrO AB LVE GBU AB HE PFD TY AB OL U HE AB AB CYB BU AB 210 - PFT PFT PFT AB PFO GBU AB PFT O THE PFT AB PFT GBU AB 210 - PFT PFT PFT PFT AB PFT GBU AB PFT O THE PFT PFT PFT AB PFT GBU AB 210 - PFT PFT PFT PFT PFT AB PFT GBU AB 210 - PFT		gta (aagco	ctctç	gg tt	ttaa	acato	c aag	ıgatt	cgt	ata	tgca	ttg 🤉	gttga	agaca	a 1	980		
actrugget tatetteet turgastaa gacastgeeg tatastastg caaqaaggg 2160 caccaastg gteettasta turgastas tuggggacaag gtaeettagt tatetgtett 2220 geggtggeg gaggteagg eggtggaggg tetggaggg geggtagga aaatgteet 2280 cacaastee caagsteeta gteetteet gttggegata gagtaaceat egettgtage 2340 cateetet a gtgteecaa tatgeaetgg etteagaga gegeaggaa aageeeagga 2400 tgttgattt attgacate caaettgget tetggagtg etteagagt teteggtee 2460 getaggaa eegatatag titgatat ageteagte gegeaggag gaggtggaa 2280 catastee caaegee ettaatee etgaetteeg ggtgggaad gaggtggaa 2280 catastee ageaaggee etcatatee etgaetteeg ggtgggaad gaggtggaa 2280 teaagggag ggggegtte ceaecaate ac eacateat gatag 2625 210 SEO ID NO 95 210 SEO ID NO 95 223 OTHER INFORMATION: Synthetic: LS-mouse SA-(Gly4Ser)3-seFV (VL-VH) CH13+-CH14Ser)-His 400 SEQUENCE: 95 et Agp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 5 10 en Pro Gly Ala Arg Cys Glu Ala His Lys Ser Clu I Le Ala His Arg 30 yr Asn App Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu I Leu Trp 5 5 70 10 al Gln Glu Val Thr App Phe Ala Lys Thr Cys Val Ala App Glu Ser 75 5 70 10 al Ala Aon Cys App Lys Ser Leu His Thr Leu Phe Gly App Lys Leu 85 70 70 70 71 72 72 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	gggccag	gac .	aatgi	tttgg	ga at	ggat	tggo	tgg	gatto	gatc	caga	agaat	tgg t	tgata	accga	g 2	040		
accaactg gtoottacta ttrogactac tggggacaag gtacottagt tactgtott 2220 goggtagog gaggtteag oggtggaggg totggaggg totggaggt goggtagta aaagocaaag 2400 tgttgatt attrgactc agtotgttot gttggogta gagtacota ogottgtago 2340 catootta gtgtoocat tatgcactgg ottcaacaga agocaggta aagocaagg 2400 tgttgatt attrgacatc caactggot ttoggagtg cottcaaggt ttotggtco 2460 gottaggaa cogatatag ttrgatat agotcagtgo agocagagg tgotgcaacc 2520 actatgoc agoaaaggto cocactace cigacttog ggtgtggaac gaagttggaa 2580 tcaaggag gggggggtt cocacoata caccatcact gatag 2625 210- SEO ID NO 95 210- SEO ID NO 95 223- OTHER INFORMATION: Synthetic: LS-mouse SA- (Gly4Ser) 3-soFV (VL-VH) CK13- (Gly4Ser)-His6 220- FRATURE: 223- OTHER INFORMATION: Synthetic: LS-mouse SA- (Gly4Ser) 3-soFV (VL-VH) CK13- (Gly4Ser)-His6 205 SEQUENCE: 95 et Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 5 207 An App Leu Gly Glu Ala His Lys Ser Glu Ile Ala His Arg 207 33 207 Asn App Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala 35 40 Arg Val Pro Ser Ser Tyr App Glu His Ala Lys Leu 50 20 Jal Gln Glu Val Thr App Phe Ala Lys Thr Cys Val Ala App Glu Ser 5 210 Ana Nery Ser Leu His Fhr Leu Phe Gly App Lys Leu 55 211 Ala Aan Cys App Lys Ser Leu His Fhr Leu Phe Gly App Lys Leu 50 212 Jas Andrei Ser Ser Tyr App Glu His Ala Cys Leu 51 213 214 Ala Aan Cys App Lys Ser Leu His Fhr Leu Phe Gly App Lys Leu 55 5 5 5 5 5 5 5 5 5 5 5 5	tacgctc	cta (aatti	tcago	gg aa	aaggo	ctact	ttt	acta	accg	aca	cttc	cgc t	taata	accgc	a 2	100		
geggtggg gaggttagg eggtgggg ettiggaggt geggtagt a aatgtget 2280 cccaatet c aageteag gtetgatet tetggaggg geggtagt aatgeeagg 2280 cateetea gtgteest atgeetgg ettegacaga ageeaggta aageeagg 2400 tgttgatt attgaeate caaettgget tetggagtg etteaaegg ageeaggag 2400 geteaggaa eegataag ttegeetge tetggagtg etteaaggt teteggeae 2520 actatigee ageaaeggte cteatacea etgeetgg ggtgggaee gaagtggaa 2580 teaaggag ggggeggte ceaaeca eecetae gatag 2625 2105 SEQ ID NO 95 2115 LENCTH: 804 2125 FTFE FT 2135 OKENITSK: Artifeial Sequence 2235 FTAUER 2235 FTAUER 22	tacttgg	gct ·	tatci	ttcct	t ga	agaco	cagag	g gac	acto	geeg	tata	acta	ctg d	caaco	gaagg	g 2	160		
catacter caageteen term is the first the set of the se	acaccaa	actg g	gtcci	ttact	ta tt	tcga	actac	tgg	Iggad	caag	gta	cctt	agt t	tacto	gtctc	t 2	220		
catcretta gtgteccata tatgeactigget titeacaga accesgia a aageecaaag 2400 tgttgatt attgacate caactigget titggagtge etteaaggt titetggtee 2460 geteaggaa eegatatag titgacate taggeegge ageeagagg tgetgeace 2520 actattgee ageaaaggte eteatateea etgacteg ggggtgggae gaagtiggaa 2580 teaagggag gggggggte eecaecateae eaceateat gatag 2625 210> SEQ ID NO 95 211> LENETT: 84 212> TIFE: PET 213> COMAN INFORMATION: Synthetic: LS-mouse SA-(Gly4Ser)3-seFV (VL-VH) coll38-(Gly4Ser)-His6 400> SEQUENCE: 95 et Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 5 To Ala Gln Leu Leu Gly Leu Leu Leu Trp 5 To Ala Gln Leu Leu Gly Leu Leu Leu Trp 5 To Ala Gln Leu Leu Gly Leu Leu Leu Trp 5 To Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 5 To Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 5 To Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 5 To Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 5 To Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 5 To Ala Gln Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala 40 40 40 40 40 40 40 40 40 40	agcggtg	laca (gaggi	ttcaç	gg cé	ggtgg	gaggo	g tct	ggag	ggtg	gcg	gtagi	tga a	aaato	gtgct	g 2	280		
tatt gacate caactegget tetgagatge etteragget tetegggte 2460 geteaggaa cogattatag tetegatatt ageteagtge ageceggagga tgetgeace 2520 actattge: agecaaaggte etcatatea etgacteteg ggtgtggaae gaagteggaa 2590 teagggag ggggeggte ceateatea etgacteteg ggtgtggaae gaagteggaa 2625 210, SEQ ID NO 95 211, LENGTH: 884 212, TYPE: PRT 213, ORGANIEN: Artificial Sequence 220, FRATURE: 223, OTHER INFORMATION: Synthetic: L5-mouse SA-(Gly4Ser)3-seFv (VL-VH) CK138-(Gly4Ser)-Hies 400, SEQUENCE: 95 et Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 5 10 10 15 eu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu Ile Ala His Arg 20 yr Ann Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala 35 16 al Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser 5 10 13 14 16 15 16 16 16 16 17 10 17 10 10 10 10 10 10 10 10 10 10	acccaat	ctc	caago	ctcca	at gt	ctgt	ttct	gtt	ggco	yata	gagi	taac	cat d	gcti	tgtag	c 2	340		
<pre>gctcaggaa ccgattatag tttgactatt agctcagtgc agccaggag tgctgaacc 2520 actattgcc agcaaaggtc ctcatatcca ctgactttcg ggtgtggaac gaagttggaa 2580 tcaagggag ggggcggtt ccacactac actgacttcg ggtgtggaac gaagttggaa 2580 210- sEQ ID NO 95 210- sEQ ID NO 95 211- LENGTH: se4 212- TYPE: PET 213- CRGNINS: Artificial Sequence 220- FEATURE: 220- FEATURE: 220- FEATURE: 220- SEQUENCE: 95 et Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 15 eu Pro Gly Ala Arg Cys Glu Ala His Dys Ser Glu ILe Ala His Arg 20 20 yr Aen Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala 35 a 35 a Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser 80 a Ala Aen Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu 95 a Ala Aen Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu 95 a Ala Aen Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu 95 a Ala Aen Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu 95 a Ala Aen Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu 95 a Ala Aen Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu 95 a Ala Aen Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu 95 a Ala Aen Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu 95 a Ala Aen Cys Asp Lys Asp Lys Aen Glu Cys Phe Leu Gln His Lys 115 a 100 an Leu Arg Glu Aen Tyr Gly Glu Leu Ala App Cys 115 a 120 and Clu Pro Phe Glu Arg Pro Glu Ala Glu Ala 113 a 120 and Clu Aen Pro Thr Thr Phe Met Gly His Tyr 150 a for Thr Lys Glu Aen Pro Thr Thr Phe Met Gly His Tyr 150 a His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu 175 a 160 10 a 160 10 10 a 160 10 10 a 160 10 10 10 10 10 11 11 Leu Thr Gln Cys Cys Ala 180 a 190 10 10 10 10 10 10 10 10 10 10 10 10 10</pre>	gcatcct	cta	gtgt	cccat	ta ta	atgea	actgo	g ctt	caad	caga	age	caggi	taa a	aagco	ccaaa	g 2	400		
actattgcc agcaaaggtc ctcatatcca ctgactttcg ggtgtggaac gaagttggaa 2580 tcaagggag gggggggtt ccacactacac caccact gatag 2625 210- SEQ ID NO 95 211- LENGTH: 884 212- TYPE: PET 213- CRCARINE: Artificial Sequence 220- FEATURE: 220- FEATURE: 220- SEQUENCE: 95 et Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 1 10 10 20 20 20 20 21 20 21 20 25 eu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu ILe Ala His Arg 20 20 20 20 7 Ann Anp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala $\frac{1}{45}$ 40 $\frac{1}{55}$ al Gln Glu Val Thr Arp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser 90 10 10 100 10 100 10 100 10 100 10 100 20 7 20 Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu $\frac{1}{95}$ 29 Ash Ann Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu $\frac{1}{95}$ 29 Ash Ann Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu $\frac{1}{95}$ 29 Ala 11e Pro Ann Leu Arg Glu Aen Tyr Gly Glu Leu Ala Asp Cys 100 100 1100 20 Thr Lys Gln Glu Pro Glu Arg Aen Glu Cys Phe Leu Gln His Lys 125 20 Thr Lys Gln Glu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala 13 130 110 20 Thr Lys Glu Aan Pro Thr Thr Phe Met Gly His Tyr 150 20 Thr Lys Glu Aan Pro Thr Thr Phe Met Gly His Tyr 150 20 Asp Ann Pro Ser Leu Pro Pro Tyr Phe Tyr Ala Pro Glu Leu 175 20 10 20 Thr Lys Glu Glu Tyr Aan Glu Ile Lys Thr Cys Cys Ala 100 20 10 20 Thr Lys Glu Glu Tyr Ann Glu Ile Lys Thr Cys Cys Ala 100 20 Thr Lys Glu Glu Tyr Ann Glu Ile Lys Tyr Tyr Ala Glu Gln Tyr Ann Glu Ile Lys Tyr 175 20 Ala Asp Lys Glu Glu Tyr Ann Glu Ile Lys Thr Cys Cys Ala 100 20 Ang Ann Pro Ser Leu Tyr Tyr Ala Glu Gln Tyr Ann Cys Lys Lys Lys Cys Ala 100 20 Thr Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Cly Val Lys	ttgttga	attt .	attt	gacat	cc ca	aactt	gget	t t c t	ggag	gtgc	ctto	caage	gtt t	ttctq	ggttc	c 2	460		
<pre>tcaaggag ggggcggtc ccaccatcac gatag 2625 210, SEQ ID NO 95 211, LENGTH: 804 212, TYPE: PET 213, OKGNINS: Attificial Sequence 220, PEATURE: 223, OTHER INFORMATION: Synthetic: LS-mouse SA-(Gly4Ser)3-scFv (VL-VH) cK138-(Gly4Ser)-His6 400, SEQUENCE: 95 et Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 5 10 15 eu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu Ile Ala His Arg 20 25 yr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala 35 he Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu 50 14 Ala Asn Cys Asp Leu Arg Glu Ala Lys Thr Cys Val Ala Asp Glu Ser 5 70 15 Ala Asp Cys Jey Ser Leu His Thr Leu Phe Gly Asp Lys Leu 95 ys Ala Ile Pro Asm Leu Arg Glu Ang Tyr Gly Glu Leu Ala Asp Cys 100 105 115 97 Asp Asp Pro Ser Leu His Thr Leu Phe Gly Asp Lys Leu 95 ys Ala Ile Pro Asm Leu Arg Glu App Tyr Gly Glu Leu Ala Asp Cys 115 115 97 Asp Asp Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala 130 16 130 17 135 16 140 141 Ala Asp Cys Glu Asp Pro Thr Thr Phe Met Gly His Tyr 155 160 164 His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu 165 170 170 175 160 185 180 180 181 Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu 165 190 18 Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys</pre>	ggctcag	ıgaa ı	ccgai	ttata	ag tt	tgad	ctatt	agc	tcag	gtgc	agco	caga	gga t	tget	gcaac	c 2	520		
210. SEQ ID NO 95 211. LENGUM. 212. LENGUM. 213. DEGAINS: Artificial Sequence 225. OTHER INDEMATION: Synthetic: LS-mouse SA-(Gly4Ser)3-scFv (VL-VH) CK138-(Gly4Ser)-His6 400. SEQUENCE: 95 et Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 5 10 120 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 20 21 20 20 21 20 21 20 21 21 21 21 21 22 23 24 25 26 27 28 29	tactatt	gcc .	agcaa	aaggt	c ct	cata	atcca	a ctg	jactt	tcg	ggt	gtgg	aac q	gaagi	ttgga	a 2	580		
2115 LEWOTH: 884 212 > TYPE: PRT 213 > ORGANISM: Artificial Sequence 220 > FEATURE: 223 > OTHER INFORMATION: Synthetic: LS-mouse SA- (Gly4Ser) 3-scFv (VL-VH) CK138-(Gly4Ser)-Hise 400 > SEQUENCE: 95 et Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 5 eu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu IIe Ala His Arg 20 yr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu I Leu La 50 95 al Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser 70 51 10 11 11 12 13 13 14 15 15 16 17 18 19 19 10 115 116 125 126 127 128 129 120 120 121 122 123 124 125 126	atcaagg	gag g	9999	cggtt	te ec	cacca	atcac	c cac	cato	cact	gata	ag				2	625		
etAspMetArgValProAlaGlnLeuLeuGlyLeuLeuTrp10101111111111111111111111euProGlyAlaArgCysGluAlaHisLysSerGluIleAlaHisArgyrAsnAspLeuGlyGluGluHisPheLysGlyLeuValLeuIleAla6075SrFrYrAspGluHisAlaLysLeuIleAla5070FrAlaLysFrCysValAlaAspGluSer61GluValThrAspPheAlaLysThrCysValAlaAspGluSer6070FrAspPheAlaLysThrCysValAlaAspGluSer61GluValThrAspLysSerGluAspLysBuSer7570FrAlaLysThrCysCysLueAlaAspGluSer79AspLysSerLysFrCysValAlaAspCysLeu70FrNoFrGluAspFrGluAspCysLeu70FrNo<	<220> F <223> O C	EATU THER K138	RE: INF(- (Gl ₃	ORMA: y4Sei	FION :	: Syr	-		LS-n	nouse	e SA	- (Gl	74Sei	r)3-1	scFv	(VL-V	'H)		
10 15 10 15 eu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu Ila Ala His Arg yr Asn Asp Leu Gly Glu Glu His Pro Gly Leu Gly His Arg Ys Ser Glu His Pho Gly Leu Gly Leu Ila Ala 50 Gln Tyr Leu Gly Leu Ila Ala Lys Leu Ila Ala 50 Gln Tyr Leu Gly Kap Gly Ser Gly Nr Cys Val Ila Lys Leu His Mr 50 Gln Tyr Leu Gly Kap Kap <td></td> <td></td> <td></td> <td></td> <td>Pro</td> <td>∆la</td> <td>Gln</td> <td>I.e11</td> <td>I.011</td> <td>Clu</td> <td>T</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Pro	∆la	Gln	I.e11	I.011	Clu	T	_							
20 25 30 yr Asn Asp Leu Gly Gly Leu Val Leu Ile Ala as So Gly Val Val Leu Ile Ala as Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Ile Ala al Gln Val Thr Asp Phe Ala Lys Thr Ser So al Gln Val Thr Asp Phe Ala Asp Glu Ser So al Asn Cys Asp Phe Ala Asp Glu Ser So yr Ala Asn Cys Asp Leu So Ser So	1 1	, nee	111.9		110	111Ca						1.011	Len	Len	Trn				
35 40 45 he Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu al Glu Val Thr Asp Phe Ala Lys Val Ala Asp Glu Ser al Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser al Ala Asn Cys Asp Lus Thr Cys Val Ala Asp Glu Ser ys Ala Asn Cys Asp Lus Thr Leu Phe Glu Asp Lus Asp Sup Lus Sup Sup Lus Asp Lus Asp Lus Asp Lus Asp Lus Asp Lus Sup				5						Gry	Leu	Leu	Leu		Trp				
50 55 60 a1 Glu Val Thr Asp Fhe Ala Lys Thr Cys Val Ala Asp Glu Ser a Ala Asn Cys Asp Lys Thr Cys Val Ala Asp Glu Ser 1a Ala Asn Cys Asp Lys Ser Leu His Thr Cys Val Ala Asp Glu Ser 80 ys Ala Ile Pro Asp Lys Ser Leu His Thr Lys Pro Lys Leu Pro	Leu Prc	Gly			Сүз	Glu	Ala	His	10	-			Ala	15	-				
5 70 75 80 1a Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu ys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys ys Ala Ile Pro Asn Leu Arg Glu Cys Glu Leu Ala Asp Cys ys Thr Lys Gln Glu Arg Ala Tyr Glu Glu Asp Cys ys Thr Lys Gln Glu Arg Ang Glu Cys Phe Leu Glu Ala Lys ys Thr Lys Gln Glu Pro Glu Ang Pro Glu Ala Glu Ala ys Thr Ser Fro Pro Pro Thr Pro Glu Ala Pro		1 Asp	20	Arg	-		His	His 25	10 Lys	Ser	Glu	Ile Val	Ala 30	15 His	Arg				
ys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys ys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys ys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys sp Asp Asn Pro Pho Glu Arg Pro Glu Arg Pro Glu Arg Pro Glu Arg Pro Glu Ala Fit Fit </td <td>Tyr Asn Phe Ser</td> <td>n Asp 35</td> <td>20 Leu</td> <td>Arg Gly</td> <td>Glu</td> <td>Gln Lys</td> <td>His 40</td> <td>His 25 Phe</td> <td>10 Lys Lys</td> <td>Ser Gly</td> <td>Glu Leu Glu</td> <td>Ile Val 45</td> <td>Ala 30 Leu</td> <td>15 His Ile</td> <td>Arg Ala</td> <td></td> <td></td> <td></td> <td></td>	Tyr Asn Phe Ser	n Asp 35	20 Leu	Arg Gly	Glu	Gln Lys	His 40	His 25 Phe	10 Lys Lys	Ser Gly	Glu Leu Glu	Ile Val 45	Ala 30 Leu	15 His Ile	Arg Ala				
100 105 110 ys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys sp Asp Asn Pro Glu Arg Asn Glu Arg Pro Glu Ala Glu Ala sp Asp Asn Pro Iso Pro Pho Glu Ala Glu Ala 130 N Ser Phe Lys Pho Pho Glu Ala Glu Ala 130 N Ser Phe Lys Pho Pho Glu Ala Glu Ala 130 N Pro Pho Thr Thr Pho Ser Ser Ser Pho Pho Ser Pho Ser Ser Ser Ser Ser Pho Thr	Tyr Asn Phe Ser 50	n Asp 35 : Gln	20 Leu Tyr	Arg Gly Leu	Glu Gln Asp	Gln Lys 55	His 40 Cys	His 25 Phe Ser	10 Lys Lys Tyr	Ser Gly Asp Cys	Glu Leu Glu 60	Ile Val 45 His	Ala 30 Leu Ala	15 His Ile Lys	Arg Ala Leu Ser				
115 120 125 sp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala 130 135 Pro Phe Glu Arg Pro Glu Ala Glu Ala 140 et Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr 150 150 Pro Tyr 155 eu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu 165 160 Pro Tyr Phe Tyr Ala Pro Glu Leu 175 eu Tyr Tyr Ala Glu Gln Tyr Asn Glu 11e Leu Thr Gln Cys Cys Ala 190 Pro Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys	Tyr Asn Phe Ser 50 Val Gln 65	n Asp 35 : Gln n Glu	20 Leu Tyr Val	Arg Gly Leu Thr Asp	Glu Gln Asp 70	Gln Lys 55 Phe	His 40 Cys Ala	His 25 Phe Ser Lys	10 Lys Lys Tyr Thr	Ser Gly Asp Cys 75	Glu Leu Glu 60 Val	Ile Val 45 His Ala	Ala 30 Leu Ala Asp	15 His Ile Lys Glu Lys	Arg Ala Leu Ser 80				
130 135 140 et Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr 150 eu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu 160 eu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala 190 lu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys	Tyr Asn Phe Ser 50 Val Gln 65 Ala Ala	1 Asp 35 7 Gln 1 Glu 4 Asn	20 Leu Tyr Val Cys Pro	Arg Gly Leu Thr Asp 85	Glu Gln Asp 70 Lys	Gln Lys 55 Phe Ser	His 40 Cys Ala Leu	His 25 Phe Ser Lys His Asn	10 Lys Lys Tyr Thr Thr 90	Ser Gly Asp Cys 75 Leu	Glu Leu Glu 60 Val Phe	Ile Val 45 His Ala Gly	Ala 30 Leu Ala Asp Asp Ala	15 His Ile Lys Glu Lys 95	Arg Ala Leu Ser 80 Leu				
45 150 155 160 eu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu 165 170 175 175 eu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala 180 185 190	Tyr Asn Phe Ser 50 Val Gln 65 Ala Ala Cys Ala	Asp 35 Gln Glu A Asn A Ile	20 Leu Tyr Val Cys Pro 100	Arg Gly Leu Thr Asp 85 Asn	Glu Gln Asp 70 Lys Leu	Gln Lys 55 Phe Ser Arg	His 40 Cys Ala Leu Glu Arg	His 25 Phe Ser Lys His Asn 105	10 Lys Lys Tyr Thr 90 Tyr	Ser Gly Asp Cys 75 Leu Gly	Glu Leu Glu 60 Val Phe Glu	Ile Val 45 His Ala Gly Leu Leu	Ala 30 Leu Ala Asp Ala 110	15 His Lys Glu Lys 95 Asp	Arg Ala Leu Ser 80 Leu Cys				
165170175eu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala180185190lu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys	Tyr Asn Phe Ser 50 Val Gln 65 Ala Ala Cys Ala Cys Thr Asp Asp	Asp 35 Gln Glu Asn Ile Lys 115 Asn	20 Leu Tyr Val Cys Pro 100 Gln	Arg Gly Leu Thr 85 Asn Glu	Glu Gln Asp 70 Lys Leu Pro	Gln Lys 55 Phe Ser Arg Glu Pro	His 40 Cys Ala Leu Glu Arg 120	His 25 Phe Ser Lys His Asn 105 Asn	10 Lys Lys Tyr Thr Thr Tyr Glu	Ser Gly Asp Cys 75 Leu Gly Cys	Glu Leu Glu 60 Val Phe Glu Phe Pro	Ile Val 45 His Ala Gly Leu Leu 125	Ala 30 Leu Ala Asp Asp Ala 110 Gln	15 His Lys Glu Lys 95 Asp	Arg Ala Leu Ser 80 Leu Cys Lys				
180 185 190 lu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys	Tyr Asn Phe Ser 50 Val Gln 65 Ala Ala Cys Ala Cys Ala Cys Thr Asp Asp 130	Asp 35 Coln Glu Coln Coln Coln Coln Coln Coln Coln Coln	20 Leu Tyr Val Cys Pro 100 Gln Pro	Arg Gly Leu Thr Asp 85 Asn Glu Ser	Glu Gln Asp 70 Lys Leu Leu Leu	Gln Lys 55 Phe Ser Arg Glu Pro 135	His 40 Cys Ala Leu Glu Arg 120 Pro	His 25 Phe Ser Lys His Asn 105 Asn Phe	10 Lys Lys Tyr Thr Thr Glu Glu	Ser Gly Asp Cys 75 Leu Gly Cys Arg Thr	Glu Leu Glu Val Phe Glu Phe Phe Pho 140	Ile Val 45 Ala Gly Leu Leu 125 Glu	Ala 30 Leu Ala Asp Ala 110 Gln Ala	15 His Lys Glu Lys 95 Asp His Glu	Arg Ala Leu Ser 80 Leu Cys Lys Ala Tyr				
	Tyr Asn Phe Ser 50 Val Gln 65 Ala Ala Cys Ala Cys Thr Asp Asp 130 Met Cys	s Thr	20 Leu Tyr Val Cys Pro 100 Gln Pro Ser	Arg Gly Leu Thr Asp 85 Asn Glu Ser Phe Ala	Glu Gln Asp 70 Lys Leu Pro Leu Leu Lys 150	Gln Lys 55 Phe Ser Arg Glu Pro 135 Glu	His 40 Cys Ala Leu Glu Arg 120 Pro Asn	His 25 Phe Ser Lys His Asn 105 Asn Phe Pro	10 Lys Lys Tyr Thr Thr Glu Glu Thr Tyr	Ser Gly Asp Cys 75 Leu Gly Cys Arg Thr 155	Glu Leu Glu Val Phe Glu Phe Pho 140 Phe	Ile Val 45 Ala Gly Leu Leu 125 Glu Met	Ala 30 Leu Ala Asp Asp Ala 110 Gln Ala Gly	15 His Lys Glu Lys 95 Asp His Glu His	Arg Ala Leu Ser 80 Leu Cys Lys Ala Tyr 160				
	Tyr Asn Phe Ser 50 Val Gln 65 Ala Ala Cys Ala Cys Ala Cys Thr Asp Asp 130 Met Cys 145 Leu His	35 Gln Asp Glu Asn Ile Lys 115 Asn Thr Glu Glu	20 Leu Tyr Val Cys Pro 100 Gln Pro Ser Val Ala	Arg Gly Leu Thr Asp 85 Asn Glu Ser Phe Ala	Glu Gln Asp 70 Lys Leu Pro Leu Lys 150 Arg	Gln Lys 55 Phe Ser Arg Glu Pro 135 Glu Arg	His 40 Cys Ala Leu Glu Arg 120 Pro Asn His	His 25 Phe Ser Lys His Asn 105 Asn Phe Pro Pro Glu	10 Lys Tyr Thr Thr Glu Glu Thr Tyr Tyr Tyr	Ser Gly Asp Cys 75 Leu Gly Cys Arg Thr 155 Phe	Glu Leu Glu Oval Phe Glu Phe Pho 140 Phe Tyr	Ile Val 45 Ala Gly Leu Leu 125 Glu Met Ala	Ala 30 Leu Ala Asp Ala 110 Gln Ala Gly Pro Cys	15 His Lys Glu Lys Asp His Glu His Glu	Arg Ala Leu Ser 80 Leu Cys Lys Ala Tyr 160 Leu				

			n		

													CIII	<u></u>	
Glu	Lys 210	Ala	Leu	Val	Ser	Ser 215		Arg	Gln	Arg	Met 220	Lys	Сув	Ser	Ser
Met 225	Gln	Lys	Phe	Gly	Glu 230	Arg	Ala	Phe	ГЛа	Ala 235	Trp	Ala	Val	Ala	Arg 240
Leu	Ser	Gln	Thr	Phe 245	Pro	Asn	Ala	Asp	Phe 250	Ala	Glu	Ile	Thr	Lys 255	Leu
Ala	Thr	Asp	Leu 260	Thr	Lys	Val	Asn	Lys 265	Glu	Суз	Суз	His	Gly 270	Asp	Leu
Leu	Glu	Cys 275	Ala	Asp	Asp	Arg	Ala 280	Glu	Leu	Ala	ГЛа	Tyr 285	Met	Суз	Glu
Asn	Gln 290	Ala	Thr	Ile	Ser	Ser 295	-	Leu	Gln	Thr	Сув 300	Сув	Asp	Lys	Pro
Leu 305	Leu	Гла	Lys	Ala	His 310	Суа	Leu	Ser	Glu	Val 315	Glu	His	Asp	Thr	Met 320
Pro	Ala	Aab	Leu	Pro 325	Ala	Ile	Ala	Ala	Asp 330	Phe	Val	Glu	Aap	Gln 335	Glu
Val	Cys	Lys	Asn 340	Tyr	Ala	Glu	Ala	Lys 345	Asp	Val	Phe	Leu	Gly 350	Thr	Phe
Leu	Tyr	Glu 355		Ser	Arg	Arg	His 360		Asp	Tyr	Ser	Val 365		Leu	Leu
Leu	-		Ala	Lys	Lys	Tyr	Glu	Ala	Thr	Leu			Сув	Сүз	Ala
	370 Ala	Asn	Pro	Pro		375 Cys		Gly	Thr		380 Leu	Ala	Glu	Phe	
385 Pro	Leu	Val	Glu		390 Pro	Lys	Asn	Leu		395 Lys	Thr	Asn	Суз	-	400 Leu
Tyr	Glu	Lys		405 Gly	Glu	Tyr	Gly		410 Gln	Asn	Ala	Ile		415 Val	Arg
Tyr	Thr	Gln	420 Lys	Ala	Pro	Gln	Val	425 Ser	Thr	Pro	Thr	Leu	430 Val	Glu	Ala
Ala	Arg	435 Asn	- Leu	Glv	Arq	Val	440 Glv	Thr	Lvs	Cvs	Cvs	445 Thr	Leu	Pro	Glu
	450			-	-	455 Val	-		-	-	460				
465		-			470			-	-	475					480
-		-		485		Glu	-		490					495	
Гла	Cys	Суз	Ser 500	Gly	Ser	Leu	Val	Glu 505	Arg	Arg	Pro	Суз	Phe 510	Ser	Ala
Leu	Thr	Val 515	Asp	Glu	Thr	Tyr	Val 520		Lys	Glu	Phe	Lys 525	Ala	Glu	Thr
Phe	Thr 530	Phe	His	Ser	Asp	Ile 535		Thr	Leu	Pro	Glu 540	Lys	Glu	Lys	Gln
Ile 545	Lys	Lys	Gln	Thr	Ala 550	Leu	Ala	Glu	Leu	Val 555	Lys	His	Lys	Pro	Lys 560
Ala	Thr	Ala	Glu	Gln 565	Leu	Lys	Thr	Val	Met 570	Asp	Asp	Phe	Ala	Gln 575	Phe
Leu	Asp	Thr	Cys 580	Суз	Lys	Ala	Ala	Asp 585	Lys	Asp	Thr	Суз	Phe 590	Ser	Thr
Glu	Gly	Pro 595		Leu	Val	Thr	Arg 600	Cys	Lys	Asp	Ala	Leu 605		Gly	Gly
Gly	Gly		Gly	Gly	Gly	Gly			Gly	Gly	Gly		Ala	Ser	Ala

-cont	zinued		

610 615 620
Ile Gln Met Thr Arg Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp 625 630 635 640
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Tyr His Asp Gly Ser Ala 645 650 655
Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr 660 665 670
Gly Ala Ser Tyr Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 675 680 685
Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu690695700
AspPheAlaThrTyrTyrCysGlnSerTyrSerLeuIleThr705710715720
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Gly Thr Thr Ala Ala Ser 725 730 735
Gly Ser Ser Gly Gly Ser Ser Ser Gly Ala Glu Val Gln Leu Val Glu 740 745 750
Ser Asp Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys 755 760 765
Ala Ala Ser Gly Phe Asn Leu Ser Tyr Tyr Gly Met His Trp Val Arg 770 775 780
Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Tyr Ile Ala Ser Tyr 785 790 795 800
Pro Gly Tyr Thr Ser Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile 805 810 815
Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu 820 825 830
Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser Gly Tyr Ser 835 840 845
Tyr Ser Pro Tyr Tyr Ser Trp Phe Ser Ala Gly Met Asn Tyr Trp Gly 850 855 860
Gln Gly Ala Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser His His 865 870 875 880
His His His
<210> SEQ ID NO 96 <211> LENGTH: 875 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mouse SA-(Gly4Ser)3-scFv (VL-VH) CK157-(Gly4Ser)-His6
<400> SEQUENCE: 96
Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 1 5 10 15
Leu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu Ile Ala His Arg 20 25 30
Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala 35 40 45
Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu 50 55 60
Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser

65					70					75					80
Ala	Ala	Asn	Суз	Asp 85	ГЛЗ	Ser	Leu	His	Thr 90	Leu	Phe	Gly	Asp	Lys 95	Leu
Суз	Ala	Ile	Pro 100	Asn	Leu	Arg	Glu	Asn 105	Tyr	Gly	Glu	Leu	Ala 110	Asp	Сув
Суз	Thr	Lys 115	Gln	Glu	Pro	Glu	Arg 120	Asn	Glu	Сув	Phe	Leu 125	Gln	His	Lys
Asp	Asp 130	Asn	Pro	Ser	Leu	Pro 135	Pro	Phe	Glu	Arg	Pro 140	Glu	Ala	Glu	Ala
Met 145	Cys	Thr	Ser	Phe	Lys 150	Glu	Asn	Pro	Thr	Thr 155	Phe	Met	Gly	His	Tyr 160
Leu	His	Glu	Val	Ala 165	Arg	Arg	His	Pro	Tyr 170	Phe	Tyr	Ala	Pro	Glu 175	Leu
Leu	Tyr	Tyr	Ala 180	Glu	Gln	Tyr	Asn	Glu 185	Ile	Leu	Thr	Gln	Cys 190	Cys	Ala
Glu	Ala	Asp 195	Гла	Glu	Ser	Суз	Leu 200	Thr	Pro	Lys	Leu	Asp 205	Gly	Val	Lys
Glu	Lys 210	Ala	Leu	Val	Ser	Ser 215	Val	Arg	Gln	Arg	Met 220	Lys	Сув	Ser	Ser
Met 225	Gln	Lys	Phe	Gly	Glu 230	Arg	Ala	Phe	Lys	Ala 235	Trp	Ala	Val	Ala	Arg 240
Leu	Ser	Gln	Thr	Phe 245	Pro	Asn	Ala	Asp	Phe 250	Ala	Glu	Ile	Thr	Lys 255	Leu
Ala	Thr	Asp	Leu 260	Thr	Lys	Val	Asn	Lys 265	Glu	Сүз	СЛа	His	Gly 270	Asp	Leu
Leu	Glu	Cys 275	Ala	Asp	Asp	Arg	Ala 280	Glu	Leu	Ala	ГÀа	Tyr 285	Met	Суз	Glu
Asn	Gln 290	Ala	Thr	Ile	Ser	Ser 295	Lys	Leu	Gln	Thr	Суз 300	Сүз	Asp	Lys	Pro
Leu 305	Leu	Lys	Lys	Ala	His 310	Суз	Leu	Ser	Glu	Val 315	Glu	His	Asp	Thr	Met 320
Pro	Ala	Asp	Leu	Pro 325	Ala	Ile	Ala	Ala	Asp 330	Phe	Val	Glu	Asp	Gln 335	Glu
Val	Cys	Lys	Asn 340	Tyr	Ala	Glu	Ala	Lys 345	Asp	Val	Phe	Leu	Gly 350	Thr	Phe
Leu	Tyr	Glu 355	Tyr	Ser	Arg	Arg	His 360	Pro	Asp	Tyr	Ser	Val 365	Ser	Leu	Leu
Leu	Arg 370		Ala	Lys	Lys	Tyr 375		Ala	Thr	Leu	Glu 380	Lys	Сүз	Cys	Ala
Glu 385		Asn	Pro	Pro	Ala 390	Суз	Tyr	Gly	Thr	Val 395	Leu	Ala	Glu	Phe	Gln 400
	Leu	Val	Glu	Glu 405		Lys	Asn	Leu	Val 410		Thr	Asn	Суз	Asp 415	Leu
Tyr	Glu	Lys	Leu 420		Glu	Tyr	Gly	Phe 425		Asn	Ala	Ile	Leu 430		Arg
Tyr	Thr			Ala	Pro	Gln		ser	Thr	Pro	Thr			Glu	Ala
Ala		435 Asn	Leu	Gly	Arg		440 Gly	Thr	Гла	Cys		445 Thr	Leu	Pro	Glu
Asp	450 Gln	Arg	Leu	Pro	Cys	455 Val	Glu	Asp	Tyr	Leu	460 Ser	Ala	Ile	Leu	Asn
465		5			470			T		475					480

_															
Arg	Val	Суз	Leu	Leu 485	His	Glu	Lys	Thr	Pro 490	Val	Ser	Glu	His	Val 495	Thr
Lya	Сув	Суз	Ser 500	Gly	Ser	Leu	Val	Glu 505	Arg	Arg	Pro	Суз	Phe 510	Ser	Ala
Leu	Thr	Val 515	Asp	Glu	Thr	Tyr	Val 520	Pro	Lys	Glu	Phe	Lys 525	Ala	Glu	Thr
Phe	Thr 530	Phe	His	Ser	Asp	Ile 535	Суз	Thr	Leu	Pro	Glu 540	Lys	Glu	Lys	Gln
Ile 545	Lys	ГЛа	Gln	Thr	Ala 550	Leu	Ala	Glu	Leu	Val 555	ГЛа	His	ГЛа	Pro	Lys 560
Ala	Thr	Ala	Glu	Gln 565	Leu	Lys	Thr	Val	Met 570	Asp	Asp	Phe	Ala	Gln 575	Phe
Leu	Asp	Thr	Суз 580	СЛа	ГЛа	Ala	Ala	Asp 585	ГÀа	Asp	Thr	СЛа	Phe 590	Ser	Thr
Glu	Gly	Pro 595	Asn	Leu	Val	Thr	Arg 600	Сүз	ГÀа	Asp	Ala	Leu 605	Ala	Gly	Gly
Gly	Gly 610	Ser	Gly	Gly	Gly	Gly 615	Ser	Gly	Gly	Gly	Gly 620	Ser	Ala	Ser	Asp
Ile 625	Gln	Met	Thr	Gln	Ser 630	Pro	Ser	Ser	Leu	Ser 635	Ala	Ser	Val	Gly	Asp 640
Arg	Val	Thr	Ile	Thr 645	Сүз	Arg	Ala	Ser	Gln 650	Ser	Tyr	Gly	Gly	Val 655	Ala
Trp	Tyr	Gln	Gln 660	Lys	Pro	Gly	Lys	Ala 665	Pro	Lys	Leu	Leu	Ile 670	Tyr	Ser
Ala	Ser	Tyr 675	Leu	Tyr	Ser	Gly	Val 680	Pro	Ser	Arg	Phe	Ser 685	Gly	Ser	Arg
Ser	Gly 690	Thr	Asp	Phe	Thr	Leu 695	Thr	Ile	Ser	Ser	Leu 700	Gln	Pro	Glu	Asp
705			-	-	710					715					720
	Gly			725			-	-	730					735	
	Gly	-	740			-		745					750		-
-	Gly	755				-	760			-		765	-		
Ser	770					775		Gly			780				
785					790					795					800
-	Tyr		-	805		-			810	-				815	
Ala	Asp	Thr	Ser 820	Γλa	Asn	Thr	Ala	Tyr 825	Leu	Gln	Met	Asn	Ser 830	Leu	Arg
Ala	Glu	Asp 835	Thr	Ala	Val	Tyr	Tyr 840	Суз	Ala	Arg	His	Tyr 845	Tyr	Trp	Tyr
Asp	Ala 850	Thr	Asp	Tyr	Trp	Gly 855	Gln	Gly	Thr	Leu	Val 860	Thr	Val	Ser	Ser
Gly 865	Gly	Gly	Gly	Ser	His 870	His	His	His	His	His 875					

```
-continued
```

<210> SEQ ID NO 97 <211> LENGTH: 880 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mouse SA-(Gly4Ser)3-scFv (VL-VH) CK129-(Gly4Ser)-His6 <400> SEQUENCE: 97 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser 65 70 75 80 Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala 130 135 Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu 245 250 Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr Phe

Leu	Tyr	Glu 355	Tyr	Ser	Arg	Arg	His 360	Pro	Asp	Tyr	Ser	Val 365	Ser	Leu	Leu
Leu	Arg 370	Leu	Ala	Lys	Lys	Tyr 375	Glu	Ala	Thr	Leu	Glu 380	Lys	Cys	Cys	Ala
Glu 385	Ala	Asn	Pro	Pro	Ala 390	Сүз	Tyr	Gly	Thr	Val 395	Leu	Ala	Glu	Phe	Gln 400
Pro	Leu	Val	Glu	Glu 405	Pro	Lys	Asn	Leu	Val 410	Lys	Thr	Asn	Суз	Asp 415	Leu
Tyr	Glu	Lys	Leu 420	Gly	Glu	Tyr	Gly	Phe 425	Gln	Asn	Ala	Ile	Leu 430	Val	Arg
Tyr	Thr	Gln 435	Lys	Ala	Pro	Gln	Val 440	Ser	Thr	Pro	Thr	Leu 445	Val	Glu	Ala
Ala	Arg 450	Asn	Leu	Gly	Arg	Val 455	Gly	Thr	ГЛа	Сув	Сув 460	Thr	Leu	Pro	Glu
Asp 465	Gln	Arg	Leu	Pro	Cys 470	Val	Glu	Asp	Tyr	Leu 475	Ser	Ala	Ile	Leu	Asn 480
Arg	Val	Сув	Leu	Leu 485	His	Glu	Lys	Thr	Pro 490	Val	Ser	Glu	His	Val 495	Thr
Lys	Суз	Сув	Ser 500	Gly	Ser	Leu	Val	Glu 505	Arg	Arg	Pro	Сув	Phe 510	Ser	Ala
Leu	Thr	Val 515	Asp	Glu	Thr	Tyr	Val 520	Pro	Lys	Glu	Phe	Lys 525	Ala	Glu	Thr
Phe	Thr 530	Phe	His	Ser	Asp	Ile 535	Суз	Thr	Leu	Pro	Glu 540	Lys	Glu	Lys	Gln
Ile 545	Lys	Lys	Gln	Thr	Ala 550	Leu	Ala	Glu	Leu	Val 555	ГÀа	His	Lys	Pro	Lys 560
Ala	Thr	Ala	Glu	Gln 565	Leu	Lys	Thr	Val	Met 570	Asp	Asp	Phe	Ala	Gln 575	Phe
Leu	Asp	Thr	Суз 580	Суз	Lys	Ala	Ala	Asp 585	ГÀЗ	Asp	Thr	Суз	Phe 590	Ser	Thr
Glu	Gly	Pro 595	Asn	Leu	Val	Thr	Arg 600	Суз	Lys	Asp	Ala	Leu 605	Ala	Gly	Gly
Gly	Gly 610	Ser	Gly	Gly	Gly	Gly 615	Ser	Gly	Gly	Gly	Gly 620	Ser	Ala	Ser	Asp
625	Gln				630					635				-	640
Arg	Val	Thr	Ile	Thr 645	Суз	Arg	Ala	Ser	Gln 650	Tyr	Gly	Gly	Tyr	Val 655	Ala
Trp	Tyr	Gln	Gln 660	Lys	Pro	Gly	Lys	Ala 665	Pro	Lys	Leu	Leu	Ile 670	Tyr	Gly
Ala	Ser	Leu 675	Leu	Tyr	Ser	Gly	Val 680	Pro	Ser	Arg	Phe	Ser 685	Gly	Gly	Arg
Ser	Gly 690	Thr	Asp	Phe	Thr	Leu 695	Thr	Ile	Ser	Ser	Leu 700	Gln	Pro	Glu	Asp
Phe 705	Ala	Thr	Tyr	Tyr	Cys 710	Gln	Arg	Gly	His	Ala 715	Leu	Ile	Thr	Phe	Gly 720
Gln	Gly	Thr	Lys	Val 725	Glu	Ile	Glu	Gly	Thr 730	Thr	Ala	Ala	Ser	Gly 735	Ser
Ser	Gly	Gly	Ser 740	Ser	Ser	Gly	Ala	Glu 745	Val	Gln	Leu	Val	Glu 750	Ser	Gly

_												con	cin.	ued	
Gly	Gly	Leu 755	Val	Gln	Pro	Gly	Gly 760	Ser	Leu	Arg	Leu	Ser 765	Суз	Ala	Ala
Ser	Gly 770	Phe	Asn	Ile	Ser	Ser 775	Tyr	Gly	Ser	Met	His 780	Trp	Val	Arg	Gln
Ala 785	Pro	Gly	Lys	Gly	Leu 790	Glu	Trp	Val	Ala	Ser 795	Ile	Tyr	Pro	Tyr	Ser 800
Ser	Ser	Thr	Tyr	Tyr 805	Ala	Asp	Ser	Val	Lys 810	Gly	Arg	Phe	Thr	Ile 815	Ser
Ala	Aab	Thr	Ser 820	Lys	Asn	Thr	Ala	Tyr 825	Leu	Gln	Met	Asn	Ser 830	Leu	Arg
Ala	Glu	Asp 835	Thr	Ala	Val	Tyr	Tyr 840	Суз	Ala	Arg	Gly	Tyr 845	Gly	Pro	Trp
Tyr	Ala 850	Tyr	Ser	Tyr	Phe	Ala 855	Leu	Asp	Tyr	Trp	Gly 860	Gln	Gly	Thr	Leu
Val 865	Thr	Val	Ser	Ser	Gly 870	Gly	Gly	Gly	Ser	His 875	His	His	His	His	His 880
<220 <223 <400 Met	0> FH 3> 01 CH 0> SH	EATUR THER (138- EQUEN	RE: INF(-ds1 NCE:	ORMA (VL: 98 Val	ific TION 100Q Pro	: Sy: >C /	nthe VH4	tic: 4G>C) - (G Leu	ly4S	er)-1	His6	-	Leu	
1 Leu	Pro	Gly		5 Arg	Суз	Glu	Ala		10 Lys	Ser	Glu	Ile		15 His	Arg
Tyr	Asn		20 Leu	Gly	Glu	Gln	His 40	25 Phe	Lys	Gly	Leu	Val 45	30 Leu	Ile	Ala
Phe	Ser 50	35 Gln	Tyr	Leu	Gln	Lys 55		Ser	Tyr	Asp	Glu 60		Ala	Lys	Leu
Val 65		Glu	Val	Thr	Asp 70		Ala	Lys	Thr	Суз 75		Ala	Asp	Glu	Ser 80
	Ala	Asn	Суз	Asp 85	Lys	Ser	Leu	His	Thr 90		Phe	Gly	Asp	Lys 95	
Суз	Ala	Ile	Pro 100	Asn	Leu	Arg	Glu	Asn 105	Tyr	Gly	Glu	Leu	Ala 110	Asp	Суа
Суз	Thr	Lys 115	Gln	Glu	Pro	Glu	Arg 120	Asn	Glu	Cys	Phe	Leu 125	Gln	His	Lys
Asp	Asp 130	Asn	Pro	Ser	Leu	Pro 135	Pro	Phe	Glu	Arg	Pro 140	Glu	Ala	Glu	Ala
Met 145	Сув	Thr	Ser	Phe	Lys 150	Glu	Asn	Pro	Thr	Thr 155	Phe	Met	Gly	His	Tyr 160
Leu	His	Glu	Val	Ala 165	Arg	Arg	His	Pro	Tyr 170	Phe	Tyr	Ala	Pro	Glu 175	Leu
Leu	Tyr	Tyr	Ala 180	Glu	Gln	Tyr	Asn	Glu 185	Ile	Leu	Thr	Gln	Cys 190	СЛа	Ala
Glu	Ala	Asp 195	Lys	Glu	Ser	Суз	Leu 200	Thr	Pro	Lys	Leu	Asp 205	Gly	Val	Lys
Glu	Lys 210	Ala	Leu	Val	Ser	Ser 215	Val	Arg	Gln	Arg	Met 220	Lys	Суз	Ser	Ser

-continu	ed
----------	----

Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu 325 330 Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr Phe Leu Tyr Glu Tyr Ser Arg Arg His Pro Asp Tyr Ser Val Ser Leu Leu Leu Arg Leu Ala Lys Lys Tyr Glu Ala Thr Leu Glu Lys Cys Ala Glu Ala Asn Pro Pro Ala Cys Tyr Gly Thr Val Leu Ala Glu Phe Gln Pro Leu Val Glu Glu Pro Lys Asn Leu Val Lys Thr Asn Cys Asp Leu Tyr Glu Lys Leu Gly Glu Tyr Gly Phe Gln Asn Ala Ile Leu Val Arg Tyr Thr Gln Lys Ala Pro Gln Val Ser Thr Pro Thr Leu Val Glu Ala Ala Arg Asn Leu Gly Arg Val Gly Thr Lys Cys Cys Thr Leu Pro Glu Asp Gln Arg Leu Pro Cys Val Glu Asp Tyr Leu Ser Ala Ile Leu Asn Arg Val Cys Leu Leu His Glu Lys Thr Pro Val Ser Glu His Val Thr Lys Cys Cys Ser Gly Ser Leu Val Glu Arg Arg Pro Cys Phe Ser Ala Leu Thr Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Lys Ala Glu Thr Phe Thr Phe His Ser Asp Ile Cys Thr Leu Pro Glu Lys Glu Lys Gln Ile Lys Lys Gln Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly 595 600 Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Ser Ala

-continued	
------------	--

													COIL	CIII	ueu				
I1 62		Gln	Met	Thr	Arg	Ser 630	Pro	Ser	Ser	Leu	Ser 635	Ala	Ser	Val	Gly	Asp 640			
Ar	g	Val	Thr	Ile	Thr 645	Суз	Arg	Ala	Ser	Gln 650	Tyr	His	Asp	Gly	Ser 655	Ala			
Al	.a	Trp	Tyr	Gln 660	Gln	Lys	Pro	Gly	Lys 665	Ala	Pro	ГЛа	Leu	Leu 670	Ile	Tyr			
Gl	y .	Ala	Ser 675	Tyr	Leu	Tyr	Ser	Gly 680	Val	Pro	Ser	Arg	Phe 685	Ser	Gly	Ser			
Ar		Ser 690	Gly	Thr	Asp	Phe	Thr 695	Leu	Thr	Ile	Ser	Ser 700	Leu	Gln	Pro	Glu			
As 70	_	Phe	Ala	Thr	Tyr	Tyr 710	Суз	Gln	Gln	Ser	Ser 715	Tyr	Ser	Leu	Ile	Thr 720			
Ph	ne	Gly	Cys	Gly	Thr 725	Lys	Val	Glu	Ile	Lys 730	Gly	Thr	Thr	Ala	Ala 735	Ser			
Gl	·У	Ser	Ser	Gly 740		Ser	Ser	Ser	Gly 745	Ala	Glu	Val	Gln	Leu 750	Val	Glu			
Se	er.	Asp	Gly 755		Leu	Val	Gln	Pro 760	Gly	Gly	Ser	Leu	Arg 765	Leu	Ser	Суз			
Al		Ala 770			Phe	Asn	Leu 775	Ser	Tyr	Tyr	Gly	Met 780		Trp	Val	Arg			
G1 78	.n		Pro	Gly	Lys	Cys 790		Glu	Trp	Val	Ala 795		Ile	Ala	Ser	Tyr 800			
		Gly	Tyr	Thr	Ser 805	Tyr	Ala	Asp	Ser	Val 810		Gly	Arg	Phe	Thr 815				
Se	er .	Ala	Asp	Thr 820		Lys	Asn	Thr	Ala 825		Leu	Gln	Met	Asn 830		Leu			
Ar	g	Ala	Glu 835		Thr	Ala	Val	Tyr 840		Сув	Ala	Arg	Ser 845		Tyr	Ser			
Ту				Tyr	Tyr	Ser	Trp 855		Ser	Ala	Gly			Tyr	Trp	Gly			
	n	850 Gly	Ala	Leu	Val	Thr		Ser	Ser				Gly	Ser	His				
86 Hi		His	His	His		870					875					880			
< 2 < 2 < 2 < 2	211 212 213 220	> LH > TY > OH > FH > OT	ENGTH YPE : RGANI EATUH THER	ISM: RE: INF(84 Art: ORMA'	ific: TION 43A>(: Syı	nthe	cic:					y4Se:	r)3-s	∋cFv	(VL-VH)		
				NCE :															
M∈ 1	et .	Asp	Met	Arg	Val 5	Pro	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Trp			
Le	eu	Pro	Gly	Ala 20	Arg	Сүз	Glu	Ala	His 25	Lys	Ser	Glu	Ile	Ala 30	His	Arg			
Ту	r.	Asn	Asp 35	Leu	Gly	Glu	Gln	His 40	Phe	Lys	Gly	Leu	Val 45	Leu	Ile	Ala			
Ph		Ser 50	Gln	Tyr	Leu	Gln	Lys 55	Суз	Ser	Tyr	Asp	Glu 60	His	Ala	Lys	Leu			
Va 65		Gln	Glu	Val	Thr	Asp 70	Phe	Ala	Lys	Thr	Сув 75	Val	Ala	Asp	Glu	Ser 80			

Ala	Ala	Asn	Сув	Asp 85	Lys	Ser	Leu	His	Thr 90	Leu	Phe	Gly	Asp	Lys 95	Leu
Суз	Ala	Ile	Pro 100	Asn	Leu	Arg	Glu	Asn 105	Tyr	Gly	Glu	Leu	Ala 110	Asp	Суз
Сүз	Thr	Lys 115	Gln	Glu	Pro	Glu	Arg 120	Asn	Glu	Суз	Phe	Leu 125	Gln	His	Lys
Asp	Asp 130	Asn	Pro	Ser	Leu	Pro 135	Pro	Phe	Glu	Arg	Pro 140	Glu	Ala	Glu	Ala
Met 145	Суз	Thr	Ser	Phe	Lys 150	Glu	Asn	Pro	Thr	Thr 155	Phe	Met	Gly	His	Tyr 160
Leu	His	Glu	Val	Ala 165	Arg	Arg	His	Pro	Tyr 170	Phe	Tyr	Ala	Pro	Glu 175	Leu
Leu	Tyr	Tyr	Ala 180	Glu	Gln	Tyr	Asn	Glu 185	Ile	Leu	Thr	Gln	Cys 190	Суз	Ala
Glu	Ala	Asp 195	Lys	Glu	Ser	Суз	Leu 200	Thr	Pro	Lys	Leu	Asp 205	Gly	Val	Lys
Glu	Lys 210	Ala	Leu	Val	Ser	Ser 215	Val	Arg	Gln	Arg	Met 220	Lys	Суз	Ser	Ser
Met 225	Gln	Lys	Phe	Gly	Glu 230	Arg	Ala	Phe	Lys	Ala 235	Trp	Ala	Val	Ala	Arg 240
Leu	Ser	Gln	Thr	Phe 245	Pro	Asn	Ala	Asp	Phe 250	Ala	Glu	Ile	Thr	Lys 255	Leu
Ala	Thr	Asp	Leu 260	Thr	Lys	Val	Asn	Lys 265	Glu	СЛа	СЛа	His	Gly 270	Asp	Leu
Leu	Glu	Сув 275	Ala	Asp	Aap	Arg	Ala 280	Glu	Leu	Ala	Lys	Tyr 285	Met	Сув	Glu
Asn	Gln 290	Ala	Thr	Ile	Ser	Ser 295	Гла	Leu	Gln	Thr	Сув 300	Суз	Asp	Lys	Pro
Leu 305	Leu	Lys	Lys	Ala	His 310	Суз	Leu	Ser	Glu	Val 315	Glu	His	Asp	Thr	Met 320
Pro	Ala	Asp	Leu	Pro 325	Ala	Ile	Ala	Ala	Asp 330	Phe	Val	Glu	Asp	Gln 335	Glu
Val	Суз	Lys	Asn 340	Tyr	Ala	Glu	Ala	Lys 345	Asp	Val	Phe	Leu	Gly 350	Thr	Phe
Leu	Tyr	Glu 355	Tyr	Ser	Arg	Arg	His 360	Pro	Asp	Tyr	Ser	Val 365	Ser	Leu	Leu
Leu	Arg 370	Leu	Ala	Lys	Lys	Tyr 375	Glu	Ala	Thr	Leu	Glu 380	Lys	Суз	Сүз	Ala
Glu 385	Ala	Asn	Pro	Pro	Ala 390	Суз	Tyr	Gly	Thr	Val 395	Leu	Ala	Glu	Phe	Gln 400
Pro	Leu	Val	Glu	Glu 405	Pro	Lys	Asn	Leu	Val 410	Lys	Thr	Asn	Суа	Asp 415	Leu
Tyr	Glu	Lys	Leu 420	Gly	Glu	Tyr	Gly	Phe 425	Gln	Asn	Ala	Ile	Leu 430	Val	Arg
Tyr	Thr	Gln 435	Lys	Ala	Pro	Gln	Val 440	Ser	Thr	Pro	Thr	Leu 445	Val	Glu	Ala
Ala	Arg 450	Asn	Leu	Gly	Arg	Val 455	Gly	Thr	Lys	Сув	Сув 460	Thr	Leu	Pro	Glu
Asp 465		Arg	Leu	Pro	Cys 470	Val	Glu	Asp	Tyr	Leu 475	Ser	Ala	Ile	Leu	Asn 480
	Val	Cya	Leu	Leu		Glu	Lys	Thr	Pro		Ser	Glu	His	Val	

-continued

_				485					490					495	
Lys	Сув	Суз	Ser 500	Gly	Ser	Leu	Val	Glu 505	Arg	Arg	Pro	Cys	Phe 510	Ser	Ala
Leu	. Thr	Val 515	Asp	Glu	Thr	Tyr	Val 520	Pro	Lys	Glu	Phe	Lys 525	Ala	Glu	Thr
Phe	• Thr 530	Phe	His	Ser	Asp	Ile 535	Суз	Thr	Leu	Pro	Glu 540	Lys	Glu	Lys	Gln
Ile 545	Lys	Lys	Gln	Thr	Ala 550	Leu	Ala	Glu	Leu	Val 555	Lys	His	Lys	Pro	Lys 560
Ala	1 Thr	Ala	Glu	Gln 565	Leu	Lys	Thr	Val	Met 570	Asp	Asp	Phe	Ala	Gln 575	Phe
Leu	ı Asp	Thr	Cys 580	Суз	Lys	Ala	Ala	Asp 585	Lys	Asp	Thr	Сүз	Phe 590	Ser	Thr
Glu	Gly	Pro 595	Asn	Leu	Val	Thr	Arg 600	Суз	Lys	Asp	Ala	Leu 605	Ala	Gly	Gly
Glγ	Gly 610	Ser	Gly	Gly	Gly	Gly 615	Ser	Gly	Gly	Gly	Gly 620	Ser	Ala	Ser	Ala
Ile 625	Gln	Met	Thr	Arg	Ser 630	Pro	Ser	Ser	Leu	Ser 635	Ala	Ser	Val	Gly	Asp 640
Arç	Val	Thr	Ile	Thr 645	Сүа	Arg	Ala	Ser	Gln 650	Tyr	His	Asp	Gly	Ser 655	Ala
Ala	Trp	Tyr	Gln 660	Gln	Lys	Pro	Gly	Lys 665	Суз	Pro	Lys	Leu	Leu 670	Ile	Tyr
Glγ	Ala	Ser 675	Tyr	Leu	Tyr	Ser	Gly 680	Val	Pro	Ser	Arg	Phe 685	Ser	Gly	Ser
Arg	Ser 690	Gly	Thr	Asp	Phe	Thr 695	Leu	Thr	Ile	Ser	Ser 700	Leu	Gln	Pro	Glu
As <u>r</u> 705	Phe	Ala	Thr	Tyr	Tyr 710	Суз	Gln	Gln	Ser	Ser 715	Tyr	Ser	Leu	Ile	Thr 720
Phe	e Gly	Gln	Gly	Thr 725	Lys	Val	Glu	Ile	Lys 730	Gly	Thr	Thr	Ala	Ala 735	Ser
Glγ	Ser	Ser	Gly 740	Gly	Ser	Ser	Ser	Gly 745	Ala	Glu	Val	Gln	Leu 750	Val	Glu
Sei	Asp	Gly 755	Gly	Leu	Val	Gln	Pro 760	Gly	Gly	Ser	Leu	Arg 765	Leu	Ser	Суз
Ala	Ala 770	Ser	Gly	Phe	Asn	Leu 775	Ser	Tyr	Tyr	Gly	Met 780	His	Trp	Val	Arg
Glr 785	l Ala	Pro	Gly	Lys	Gly 790	Leu	Glu	Trp	Val	Ala 795	Tyr	Ile	Ala	Ser	Tyr 800
Pro	Gly	Tyr	Thr	Ser 805	Tyr	Ala	Asp	Ser	Val 810	Lys	Gly	Arg	Phe	Thr 815	Ile
Sei	Ala	Asp	Thr 820	Ser	Lys	Asn	Thr	Ala 825	Tyr	Leu	Gln	Met	Asn 830	Ser	Leu
Arg	Ala	Glu 835	Asp	Thr	Ala	Val	Tyr 840	Tyr	Суз	Ala	Arg	Ser 845	Gly	Tyr	Ser
Туз	Ser 850	Pro	Tyr	Tyr	Ser	Trp 855	Phe	Ser	Ala	Gly	Met 860	Asn	Tyr	Trp	Gly
Суя 865	Gly	Ala	Leu	Val	Thr 870	Val	Ser	Ser	Gly	Gly 875	Gly	Gly	Ser	His	His 880
	His	His	His												

```
-continued
```

<210> SEQ ID NO 100 <211> LENGTH: 875 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mouse SA-(Gly4Ser)3-scFv (VL-VH) CK157-ds1 (VL100Q>C / VH44E>C)-(Gly4Ser)-His6 <400> SEQUENCE: 100 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser 65 70 75 80 Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala 130 135 Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu 245 250 Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr Phe

-	СО	nt	in	ue	d

Leu	Tyr	Glu 355	Tyr	Ser	Arg	Arg	His 360	Pro	Asp	Tyr	Ser	Val 365	Ser	Leu	Leu
Leu	Arg 370	Leu	Ala	Lys	Lys	Tyr 375	Glu	Ala	Thr	Leu	Glu 380	Lys	Cys	Суз	Ala
Glu 385	Ala	Asn	Pro	Pro	Ala 390	Сүз	Tyr	Gly	Thr	Val 395	Leu	Ala	Glu	Phe	Gln 400
Pro	Leu	Val	Glu	Glu 405	Pro	Lys	Asn	Leu	Val 410	Lys	Thr	Asn	Cys	Asp 415	Leu
Tyr	Glu	Lys	Leu 420	Gly	Glu	Tyr	Gly	Phe 425	Gln	Asn	Ala	Ile	Leu 430	Val	Arg
Tyr	Thr	Gln 435	Lys	Ala	Pro	Gln	Val 440	Ser	Thr	Pro	Thr	Leu 445	Val	Glu	Ala
Ala	Arg 450	Asn	Leu	Gly	Arg	Val 455	Gly	Thr	Lys	Cys	Cys 460	Thr	Leu	Pro	Glu
Asp 465	Gln	Arg	Leu	Pro	Cys 470	Val	Glu	Asp	Tyr	Leu 475	Ser	Ala	Ile	Leu	Asn 480
Arg	Val	Cys	Leu	Leu 485	His	Glu	Lys	Thr	Pro 490	Val	Ser	Glu	His	Val 495	Thr
Lys	Cys	Cys	Ser 500	Gly	Ser	Leu	Val	Glu 505	Arg	Arg	Pro	Сув	Phe 510	Ser	Ala
Leu	Thr	Val 515	Asp	Glu	Thr	Tyr	Val 520	Pro	Lys	Glu	Phe	Lys 525	Ala	Glu	Thr
Phe	Thr 530	Phe	His	Ser	Asp	Ile 535	Сүз	Thr	Leu	Pro	Glu 540	Lys	Glu	Lys	Gln
Ile 545	Lys	Lys	Gln	Thr	Ala 550	Leu	Ala	Glu	Leu	Val 555	Lys	His	Lys	Pro	Lys 560
Ala	Thr	Ala	Glu	Gln 565	Leu	Lys	Thr	Val	Met 570	Asp	Asp	Phe	Ala	Gln 575	Phe
Leu	Asp	Thr	Cys 580	Суз	Lys	Ala	Ala	Asp 585	Lys	Asp	Thr	Сүз	Phe 590	Ser	Thr
Glu	Gly	Pro 595	Asn	Leu	Val	Thr	Arg 600	Суз	Lys	Asp	Ala	Leu 605	Ala	Gly	Gly
Gly	Gly 610	Ser	Gly	Gly	Gly	Gly 615	Ser	Gly	Gly	Gly	Gly 620	Ser	Ala	Ser	Asp
Ile 625	Gln	Met	Thr	Gln	Ser 630	Pro	Ser	Ser	Leu	Ser 635	Ala	Ser	Val	Gly	Asp 640
Arg	Val	Thr	Ile	Thr 645	Сүз	Arg	Ala	Ser	Gln 650	Ser	Tyr	Gly	Gly	Val 655	Ala
Trp	Tyr	Gln	Gln 660	ГЛа	Pro	Gly	ГЛа	Ala 665	Pro	Lys	Leu	Leu	Ile 670	Tyr	Ser
Ala	Ser	Tyr 675	Leu	Tyr	Ser	Gly	Val 680	Pro	Ser	Arg	Phe	Ser 685	Gly	Ser	Arg
Ser	Gly 690	Thr	Asp	Phe	Thr	Leu 695	Thr	Ile	Ser	Ser	Leu 700	Gln	Pro	Glu	Asp
Phe 705	Ala	Thr	Tyr	Tyr	Cys 710	Gln	Gln	Pro	Ser	His 715	Leu	Ile	Thr	Phe	Gly 720
Сүз	Gly	Thr	Glu	Val 725	Glu	Ile	Гла	Gly	Thr 730	Thr	Ala	Ala	Ser	Gly 735	Ser
Ser	Gly	Gly	Ser 740	Ser	Ser	Gly	Ala	Glu 745	Val	Gln	Leu	Val	Glu 750	Ser	Gly

											-	con	tin	ued	
Gly	Gly	Leu 755	Val	Gln	Pro	Gly	Gly 760	Ser	Leu	Arg	Leu	Ser 765	Cys	Ala	Ala
	Gly 770	Ser	Asn	Pro	Tyr	Tyr 775	Tyr	Gly	Gly	Thr	His 780	Trp	Val	Arg	Gln
Ala 785	Pro	Gly	Glu	Cys	Leu 790	Glu	Trp	Val	Ala	Ser 795	Ile	Gly	Ser	Tyr	Pro 800
Gly	Tyr	Thr	Asp	Tyr 805	Ala	Asp	Ser	Val	Lys 810	Gly	Arg	Phe	Thr	Ile 815	Ser
Ala	Asp	Thr	Ser 820	Lys	Asn	Thr	Ala	Tyr 825	Leu	Gln	Met	Asn	Ser 830	Leu	Arg
Ala	Glu	Asp 835	Thr	Ala	Val	Tyr	Tyr 840	Суз	Ala	Arg	His	Tyr 845	Tyr	Trp	Tyr
Asp	Ala 850	Thr	Asp	Tyr	Trp	Gly 855	Gln	Gly	Thr	Leu	Val 860	Thr	Val	Ser	Ser
Gly 865	Gly	Gly	Gly	Ser	His 870	His	His	His	His	His 875					
<212 <213 <220	.> LH :> T :> OH :> OH :> FH :> OT	ENGTH (PE : RGAN] EATUH THER	H: 8' PRT ISM: RE: INF(75 Art: DRMA	ific: TION 43A>(: Syı	- nthe	tic:					y4Se	r)3-:	scFv
<400)> SH	EQUEN	ICE :	101											
Met 1	Asp	Met	Arg	Val 5	Pro	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Trp
Leu	Pro	Gly	Ala 20	Arg	Суз	Glu	Ala	His 25	Lys	Ser	Glu	Ile	Ala 30	His	Arg
Tyr	Asn	Asp 35	Leu	Gly	Glu	Gln	His 40	Phe	Lys	Gly	Leu	Val 45	Leu	Ile	Ala
Phe	Ser 50	Gln	Tyr	Leu	Gln	Lys 55	Суз	Ser	Tyr	Asp	Glu 60	His	Ala	ГЛЗ	Leu
Val 65	Gln	Glu	Val	Thr	Asp 70	Phe	Ala	Lys	Thr	Cys 75	Val	Ala	Asp	Glu	Ser 80
Ala	Ala	Asn	Суз	Asp 85	Lys	Ser	Leu	His	Thr 90	Leu	Phe	Gly	Asp	Lys 95	Leu
СЛа	Ala	Ile	Pro 100	Asn	Leu	Arg	Glu	Asn 105	Tyr	Gly	Glu	Leu	Ala 110	Asp	Суз
Сув	Thr	Lys 115	Gln	Glu	Pro	Glu	Arg 120		Glu	Суз	Phe	Leu 125	Gln	His	Lys
_	Asp 130	Asn	Pro	Ser	Leu	Pro 135	Pro	Phe	Glu	Arg	Pro 140	Glu	Ala	Glu	Ala
Met 145	Сув	Thr	Ser	Phe	Lys 150	Glu	Asn	Pro	Thr	Thr 155	Phe	Met	Gly	His	Tyr 160
Leu	His	Glu	Val	Ala 165	Arg	Arg	His	Pro	Tyr 170	Phe	Tyr	Ala	Pro	Glu 175	Leu
Leu	Tyr	Tyr	Ala 180	Glu	Gln	Tyr	Asn	Glu 185	Ile	Leu	Thr	Gln	Cys 190	Суз	Ala
Glu	Ala	Asp 195	Lys	Glu	Ser	Суз	Leu 200		Pro	Lys	Leu	Asp 205	Gly	Val	Lys
Glu	Lys 210	Ala	Leu	Val	Ser	Ser 215	Val	Arg	Gln	Arg	Met 220	Lys	Cys	Ser	Ser

Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu 325 330 Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr Phe Leu Tyr Glu Tyr Ser Arg Arg His Pro Asp Tyr Ser Val Ser Leu Leu Leu Arg Leu Ala Lys Lys Tyr Glu Ala Thr Leu Glu Lys Cys Ala Glu Ala Asn Pro Pro Ala Cys Tyr Gly Thr Val Leu Ala Glu Phe Gln Pro Leu Val Glu Glu Pro Lys Asn Leu Val Lys Thr Asn Cys Asp Leu Tyr Glu Lys Leu Gly Glu Tyr Gly Phe Gln Asn Ala Ile Leu Val Arg Tyr Thr Gln Lys Ala Pro Gln Val Ser Thr Pro Thr Leu Val Glu Ala Ala Arg Asn Leu Gly Arg Val Gly Thr Lys Cys Cys Thr Leu Pro Glu Asp Gln Arg Leu Pro Cys Val Glu Asp Tyr Leu Ser Ala Ile Leu Asn Arg Val Cys Leu Leu His Glu Lys Thr Pro Val Ser Glu His Val Thr Lys Cys Cys Ser Gly Ser Leu Val Glu Arg Arg Pro Cys Phe Ser Ala Leu Thr Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Lys Ala Glu Thr Phe Thr Phe His Ser Asp Ile Cys Thr Leu Pro Glu Lys Glu Lys Gln Ile Lys Lys Gln Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Ser Asp

											-	COII	ιm	uea	
Ile 625	Gln	Met	Thr	Gln	Ser 630	Pro	Ser	Ser	Leu	Ser 635	Ala	Ser	Val	Gly	Asp 640
Arg	Val	Thr	Ile	Thr 645	Сүз	Arg	Ala	Ser	Gln 650	Ser	Tyr	Gly	Gly	Val 655	Ala
Trp	Tyr	Gln	Gln 660		Pro	Gly	Lys	Суз 665	Pro	Lys	Leu	Leu	Ile 670	Tyr	Ser
Ala	Ser	Tyr 675		Tyr	Ser	Gly	Val 680	Pro	Ser	Arg	Phe	Ser 685	Gly	Ser	Arg
Ser	Gly 690		Asp	Phe	Thr	Leu 695	Thr	Ile	Ser	Ser	Leu 700	Gln	Pro	Glu	Asp
Phe 705	Ala	Thr	Tyr	Tyr	Cys 710	Gln	Gln	Pro	Ser	His 715	Leu	Ile	Thr	Phe	Gly 720
Gln	Gly	Thr	Glu	Val 725	Glu	Ile	Гла	Gly	Thr 730	Thr	Ala	Ala	Ser	Gly 735	Ser
Ser	Gly	Gly	Ser 740		Ser	Gly	Ala	Glu 745	Val	Gln	Leu	Val	Glu 750	Ser	Gly
Gly	Gly	Leu 755	Val	Gln	Pro	Gly	Gly 760	Ser	Leu	Arg	Leu	Ser 765	Суз	Ala	Ala
Ser	Gly 770	Ser	Asn	Pro	Tyr	Tyr 775		Gly	Gly	Thr	His 780		Val	Arg	Gln
Ala 785			Glu	Glu	Leu 790		Trp	Val	Ala	Ser 795		Gly	Ser	Tyr	Pro 800
	Tyr	Thr	Asp	Tyr 805		Asp	Ser	Val	Lys 810		Arg	Phe	Thr	Ile 815	
Ala	Asp	Thr	Ser 820	Lys	Asn	Thr	Ala	Tyr 825	Leu	Gln	Met	Asn	Ser 830		Arg
Ala	Glu	Asp 835	Thr		Val	Tyr	Tyr 840		Ala	Arg	His	Tyr 845		Trp	Tyr
Asp		Thr		Tyr	Trp	Gly 855		Gly	Thr	Leu			Val	Ser	Ser
		Gly				His			His		860				
865					870					875					
<21: <21: <21: <22:	L> L) 2> T 3> O) 0> F)	EATU	H: 7 PRT ISM: RE:	39 Art:	ific: TION		-		LS-1	nous	e SA	- (Gl	y4Se:	r)-VI	L CK157-His6
<40)> SI	EQUEI	NCE:	102											
Met 1	Asp	Met	Arg	Val 5	Pro	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Trp
Leu	Pro	Gly	Ala 20	Arg	Сүз	Glu	Ala	His 25	Lys	Ser	Glu	Ile	Ala 30	His	Arg
Tyr	Asn	Asp 35	Leu	Gly	Glu	Gln	His 40	Phe	ГЛа	Gly	Leu	Val 45	Leu	Ile	Ala
Phe	Ser 50	Gln	Tyr	Leu	Gln	Lys 55	Суз	Ser	Tyr	Asp	Glu 60	His	Ala	Lys	Leu
Val 65	Gln	Glu	Val	Thr	Asp 70	Phe	Ala	Lys	Thr	Суз 75	Val	Ala	Asp	Glu	Ser 80
Ala	Ala	Asn	Cys	Asp 85	Гла	Ser	Leu	His	Thr 90	Leu	Phe	Gly	Asp	Lys 95	Leu

-continued

												COII		<u></u>	
Сүз	Ala	Ile	Pro 100	Asn	Leu	Arg	Glu	Asn 105	Tyr	Gly	Glu	Leu	Ala 110	Asp	Суз
Суз	Thr	Lys 115	Gln	Glu	Pro	Glu	Arg 120	Asn	Glu	Суз	Phe	Leu 125	Gln	His	Lys
Asp	Asp 130	Asn	Pro	Ser	Leu	Pro 135	Pro	Phe	Glu	Arg	Pro 140	Glu	Ala	Glu	Ala
Met 145	Cys	Thr	Ser	Phe	Lys 150	Glu	Asn	Pro	Thr	Thr 155	Phe	Met	Gly	His	Tyr 160
Leu	His	Glu	Val	Ala 165	Arg	Arg	His	Pro	Tyr 170	Phe	Tyr	Ala	Pro	Glu 175	Leu
Leu	Tyr	Tyr	Ala 180	Glu	Gln	Tyr	Asn	Glu 185	Ile	Leu	Thr	Gln	Cys 190	CAa	Ala
Glu	Ala	Asp 195	Lys	Glu	Ser	Суз	Leu 200	Thr	Pro	Lys	Leu	Asp 205	Gly	Val	Lys
Glu	Lys 210	Ala	Leu	Val	Ser	Ser 215	Val	Arg	Gln	Arg	Met 220	Lys	Cys	Ser	Ser
Met 225	Gln	Lys	Phe	Gly	Glu 230	Arg	Ala	Phe	Lys	Ala 235	Trp	Ala	Val	Ala	Arg 240
Leu	Ser	Gln	Thr	Phe 245	Pro	Asn	Ala	Asp	Phe 250	Ala	Glu	Ile	Thr	Lys 255	Leu
Ala	Thr	Asp	Leu 260	Thr	ГЛа	Val	Asn	Lys 265	Glu	Суз	Суз	His	Gly 270	Asp	Leu
Leu	Glu	Сув 275	Ala	Asp	Asp	Arg	Ala 280	Glu	Leu	Ala	Lys	Tyr 285	Met	Cys	Glu
Asn	Gln 290	Ala	Thr	Ile	Ser	Ser 295	Lys	Leu	Gln	Thr	Суз 300	Суз	Asp	Lys	Pro
Leu 305	Leu	Lys	Lys	Ala	His 310	Сүз	Leu	Ser	Glu	Val 315	Glu	His	Asp	Thr	Met 320
Pro	Ala	Asp	Leu	Pro 325	Ala	Ile	Ala	Ala	Asp 330	Phe	Val	Glu	Asp	Gln 335	Glu
Val	Суз	Lys	Asn 340	Tyr	Ala	Glu	Ala	Lys 345	Asp	Val	Phe	Leu	Gly 350	Thr	Phe
Leu	Tyr	Glu 355	Tyr	Ser	Arg	Arg	His 360	Pro	-	Tyr	Ser	Val 365	Ser	Leu	Leu
Leu	Arg 370	Leu	Ala	Lys	Гла	Tyr 375	Glu	Ala	Thr	Leu	Glu 380	Lys	Суз	Cys	Ala
Glu 385	Ala	Asn	Pro	Pro	Ala 390	Суз	Tyr	Gly	Thr	Val 395	Leu	Ala	Glu	Phe	Gln 400
Pro	Leu	Val	Glu	Glu 405	Pro	Lys	Asn	Leu	Val 410	Lys	Thr	Asn	Cys	Asp 415	Leu
Tyr	Glu	Lys	Leu 420	Gly	Glu	Tyr	Gly	Phe 425	Gln	Asn	Ala	Ile	Leu 430	Val	Arg
Tyr	Thr	Gln 435	Lys	Ala	Pro	Gln	Val 440	Ser	Thr	Pro	Thr	Leu 445	Val	Glu	Ala
Ala	Arg 450	Asn	Leu	Gly	Arg	Val 455	Gly	Thr	Lys	Суз	Cys 460	Thr	Leu	Pro	Glu
Asp 465	Gln	Arg	Leu	Pro	Cys 470	Val	Glu	Asp	Tyr	Leu 475	Ser	Ala	Ile	Leu	Asn 480
	Val	Сув	Leu	Leu 485		Glu	Lys	Thr	Pro 490		Ser	Glu	His	Val 495	
Lys	Сув	Сув	Ser		Ser	Leu	Val	Glu		Arg	Pro	Суз	Phe		Ala

	CO	n	-	4.	n		\sim	2
-	CO	LL.	ι.	1	11	u	e	CI.

											-	con	tin	led	
			500					505					510		
Leu	Thr	Val 515	Asp	Glu	Thr	Tyr	Val 520	Pro	Lys	Glu	Phe	Lys 525	Ala	Glu	Thr
Phe	Thr 530	Phe	His	Ser	Asp	Ile 535	Суз	Thr	Leu	Pro	Glu 540	ГЛЗ	Glu	Lys	Gln
Ile 545	Lys	Lys	Gln	Thr	Ala 550	Leu	Ala	Glu	Leu	Val 555	Lys	His	Lys	Pro	Lүв 560
Ala	Thr	Ala	Glu	Gln 565	Leu	ГЛа	Thr	Val	Met 570	Aap	Asp	Phe	Ala	Gln 575	Phe
Leu	Asp	Thr	Cys 580	Суз	ГЛа	Ala	Ala	Asp 585	Lys	Asp	Thr	Суз	Phe 590	Ser	Thr
Jlu	Gly	Pro 595	Asn	Leu	Val	Thr	Arg 600	Суз	Lys	Asp	Ala	Leu 605	Ala	Gly	Gly
Jly	Gly 610	Ser	Gly	Gly	Gly	Gly 615	Ser	Gly	Gly	Gly	Gly 620	Ser	Ala	Ser	Asp
[le 525	Gln	Met	Thr	Gln	Ser 630	Pro	Ser	Ser	Leu	Ser 635	Ala	Ser	Val	Gly	Asp 640
Arg	Val	Thr	Ile	Thr 645	СЛа	Arg	Ala	Ser	Gln 650	Ser	Tyr	Gly	Gly	Val 655	Ala
Irp	Tyr	Gln	Gln 660	ГÀа	Pro	Gly	Lys	Ala 665	Pro	Lys	Leu	Leu	Ile 670	Tyr	Ser
Ala	Ser	Tyr 675	Leu	Tyr	Ser	Gly	Val 680	Pro	Ser	Arg	Phe	Ser 685	Gly	Ser	Arg
Ser	Gly 690	Thr	Asp	Phe	Thr	Leu 695	Thr	Ile	Ser	Ser	Leu 700	Gln	Pro	Glu	Asp
Phe 705	Ala	Thr	Tyr	Tyr	Cys 710	Gln	Gln	Pro	Ser	His 715	Leu	Ile	Thr	Phe	Gly 720
Gln	Gly	Thr	Glu	Val 725	Glu	Ile	Lys	Gly	Gly 730	Gly	Gly	Ser	His	His 735	His
His	His	His													
<211 <212 <213 <220)> FE	ENGTH PE: RGANI EATUH	I: 7! PRT SM: RE:	55 Art:	ific: TION		-		LS-n	nouse	e sa:	- (Gl	/4Sei	r) - VH	H CK157-His6
<400)> SE	EQUEI	ICE :	103											
let L	Asp	Met	Arg	Val 5	Pro	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Trp
Leu	Pro	Gly	Ala 20	Arg	Суа	Glu	Ala	His 25	Lys	Ser	Glu	Ile	Ala 30	His	Arg
Fyr	Asn	Asp 35	Leu	Gly	Glu	Gln	His 40	Phe	Lys	Gly	Leu	Val 45	Leu	Ile	Ala
Phe	Ser 50	Gln	Tyr	Leu	Gln	Lys 55	Сүз	Ser	Tyr	Asp	Glu 60	His	Ala	Lys	Leu
Val 65	Gln	Glu	Val	Thr	Asp 70	Phe	Ala	Lys	Thr	Cys 75	Val	Ala	Asp	Glu	Ser 80
Ala	Ala	Asn	Суз	Asp 85	Lys	Ser	Leu	His	Thr 90	Leu	Phe	Gly	Aab	Lys 95	Leu
Сув	Ala	Ile	Pro 100	Asn	Leu	Arg	Glu	Asn 105	Tyr	Gly	Glu	Leu	Ala 110	Asp	Суа

-	CC	nt	in	ue	d

Суа	Thr	Lys 115	Gln	Glu	Pro	Glu	Arg 120	Asn	Glu	Суз	Phe	Leu 125	Gln	His	Lys
Asp	Asp 130		Pro	Ser	Leu	Pro 135		Phe	Glu	Arg	Pro 140		Ala	Glu	Ala
Met 145	Суз	Thr	Ser	Phe	Lys 150	Glu	Asn	Pro	Thr	Thr 155	Phe	Met	Gly	His	Tyr 160
Leu	His	Glu	Val	Ala 165	Arg	Arg	His	Pro	Tyr 170	Phe	Tyr	Ala	Pro	Glu 175	Leu
Leu	Tyr	Tyr	Ala 180	Glu	Gln	Tyr	Asn	Glu 185	Ile	Leu	Thr	Gln	Cys 190	Суз	Ala
Glu	Ala	Asp 195	Lys	Glu	Ser	Сүз	Leu 200	Thr	Pro	Lys	Leu	Asp 205	Gly	Val	Lya
Glu	Lys 210	Ala	Leu	Val	Ser	Ser 215	Val	Arg	Gln	Arg	Met 220	Lys	Cys	Ser	Ser
Met 225	Gln	ГÀа	Phe	Gly	Glu 230	Arg	Ala	Phe	ГÀа	Ala 235	Trp	Ala	Val	Ala	Arg 240
Leu	Ser	Gln	Thr	Phe 245	Pro	Asn	Ala	Asp	Phe 250	Ala	Glu	Ile	Thr	Lys 255	Leu
Ala	Thr	Asp	Leu 260	Thr	Lys	Val	Asn	Lys 265	Glu	Суз	Сүз	His	Gly 270	Asp	Leu
Leu	Glu	Сув 275	Ala	Asp	Asp	Arg	Ala 280	Glu	Leu	Ala	Гла	Tyr 285	Met	Сув	Glu
Asn	Gln 290	Ala	Thr	Ile	Ser	Ser 295	Lys	Leu	Gln	Thr	Сув 300	Суз	Asp	Lys	Pro
Leu 305	Leu	Lys	Lys	Ala	His 310	Сув	Leu	Ser	Glu	Val 315	Glu	His	Asp	Thr	Met 320
Pro	Ala	Asp	Leu	Pro 325	Ala	Ile	Ala	Ala	Asp 330	Phe	Val	Glu	Asp	Gln 335	Glu
Val	Суз	Lys	Asn 340	Tyr	Ala	Glu	Ala	Lys 345	Asp	Val	Phe	Leu	Gly 350	Thr	Phe
Leu	Tyr	Glu 355	Tyr	Ser	Arg	Arg	His 360	Pro	Asp	Tyr	Ser	Val 365	Ser	Leu	Leu
Leu	Arg 370	Leu	Ala	Lys	Lys	Tyr 375	Glu	Ala	Thr	Leu	Glu 380	Lys	Суз	Суз	Ala
Glu 385	Ala	Asn	Pro	Pro	Ala 390	Сүз	Tyr	Gly	Thr	Val 395	Leu	Ala	Glu	Phe	Gln 400
Pro	Leu	Val	Glu	Glu 405	Pro	ГЛЗ	Asn	Leu	Val 410	Гла	Thr	Asn	Суз	Asp 415	Leu
Tyr	Glu	Lys	Leu 420	Gly	Glu	Tyr	Gly	Phe 425	Gln	Asn	Ala	Ile	Leu 430	Val	Arg
Tyr	Thr	Gln 435	Lys	Ala	Pro	Gln	Val 440	Ser	Thr	Pro	Thr	Leu 445	Val	Glu	Ala
Ala	Arg 450	Asn	Leu	Gly	Arg	Val 455	Gly	Thr	Lys	Суз	Cys 460	Thr	Leu	Pro	Glu
Asp 465	Gln	Arg	Leu	Pro	Cys 470	Val	Glu	Asp	Tyr	Leu 475	Ser	Ala	Ile	Leu	Asn 480
Arg	Val	Суз	Leu	Leu 485	His	Glu	Lys	Thr	Pro 490	Val	Ser	Glu	His	Val 495	Thr
Lys	Суз	Суз	Ser 500	Gly	Ser	Leu	Val	Glu 505	Arg	Arg	Pro	Суз	Phe 510	Ser	Ala

-continued

-continued	
Leu Thr Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Lys Ala Glu Thr 515 520 525	
Phe Thr Phe His Ser Asp Ile Cys Thr Leu Pro Glu Lys Glu Lys Gln 530 535 540	
Ile Lys Lys Gln Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys 545 550 555 560	
Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe 565 570 575	
Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr 580 585 590	
Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly 595 600 605	
Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Ser Ala 610 615 620	
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 625 630 635 640	
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ser Asn Pro Tyr Tyr Tyr 645 650 655	
Gly Gly Thr His Trp Val Arg Gln Ala Pro Gly Glu Glu Leu Glu Trp 660 665 670	
Val Ala Ser Ile Gly Ser Tyr Pro Gly Tyr Thr Asp Tyr Ala Asp Ser 675 680 685	
Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala 690 695 700	
Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 705 710 715 720	
Cys Ala Arg His Tyr Tyr Trp Tyr Asp Ala Thr Asp Tyr Trp Gly Gln 725 730 735	
Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser His His His 740 745 750	
His His	
755	
<210> SEQ ID NO 104 <211> LENGTH: 880 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mouse SA-(Gly4Ser)3-scFv (VL-VH)	
CK129-ds1 (VL100Q>C / VH44G>C)-(Gly4Ser)-His6	
Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 1 5 10 15	
Leu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu Ile Ala His Arg 20 25 30	
Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala 35 40 45	
Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu 50 55 60	
Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser	
65 70 75 80 Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu	
85 90 95	

Cys	Ala	Ile	Pro 100	Asn	Leu	Arg	Glu	Asn 105	Tyr	Gly	Glu	Leu	Ala 110	Asp	Сув	
Cys	Thr	Lys 115	Gln	Glu	Pro	Glu	Arg 120	Asn	Glu	Cys	Phe	Leu 125	Gln	His	Lys	
Asp	Asp 130	Asn	Pro	Ser	Leu	Pro 135	Pro	Phe	Glu	Arg	Pro 140	Glu	Ala	Glu	Ala	
Met 145	Cys	Thr	Ser	Phe	Lys 150	Glu	Asn	Pro	Thr	Thr 155	Phe	Met	Gly	His	Tyr 160	
Leu	His	Glu	Val	Ala 165	Arg	Arg	His	Pro	Tyr 170	Phe	Tyr	Ala	Pro	Glu 175	Leu	
Leu	Tyr	Tyr	Ala 180	Glu	Gln	Tyr	Asn	Glu 185	Ile	Leu	Thr	Gln	Cys 190	Суз	Ala	
Glu	Ala	Asp 195	Lys	Glu	Ser	Суз	Leu 200	Thr	Pro	Lys	Leu	Asp 205	Gly	Val	Lys	
Glu	Lys 210	Ala	Leu	Val	Ser	Ser 215	Val	Arg	Gln	Arg	Met 220	Lys	Cys	Ser	Ser	
Met 225	Gln	Lys	Phe	Gly	Glu 230	Arg	Ala	Phe	Lys	Ala 235	Trp	Ala	Val	Ala	Arg 240	
Leu	Ser	Gln	Thr	Phe 245	Pro	Asn	Ala	Asp	Phe 250	Ala	Glu	Ile	Thr	Lys 255	Leu	
Ala	Thr	Asp	Leu 260	Thr	Lys	Val	Asn	Lys 265	Glu	Cys	Cys	His	Gly 270	Asp	Leu	
Leu	Glu	Cys 275	Ala	Asp	Asp	Arg	Ala 280	Glu	Leu	Ala	Lys	Tyr 285	Met	Суз	Glu	
Asn	Gln 290	Ala	Thr	Ile	Ser	Ser 295	Lys	Leu	Gln	Thr	Суз 300	Сүз	Aab	Lys	Pro	
Leu 305	Leu	Lys	Lys	Ala	His 310	Суз	Leu	Ser	Glu	Val 315	Glu	His	Aab	Thr	Met 320	
Pro	Ala	Asp	Leu	Pro 325	Ala	Ile	Ala	Ala	Asp 330	Phe	Val	Glu	Asp	Gln 335	Glu	
Val	Суа	Lys	Asn 340	Tyr	Ala	Glu	Ala	Lys 345	Asp	Val	Phe	Leu	Gly 350	Thr	Phe	
Leu	Tyr	Glu 355	Tyr	Ser	Arg	Arg	His 360	Pro	Asp	Tyr	Ser	Val 365	Ser	Leu	Leu	
Leu	Arg 370	Leu	Ala	ГЛа	ГЛа	Tyr 375	Glu	Ala	Thr	Leu	Glu 380	ГЛа	Суз	Суз	Ala	
Glu 385	Ala	Asn	Pro	Pro	Ala 390	Сүз	Tyr	Gly	Thr	Val 395	Leu	Ala	Glu	Phe	Gln 400	
Pro	Leu	Val	Glu	Glu 405	Pro	Lys	Asn	Leu	Val 410	Lys	Thr	Asn	Cys	Asp 415	Leu	
Tyr	Glu	Γλa	Leu 420	Gly	Glu	Tyr	Gly	Phe 425	Gln	Asn	Ala	Ile	Leu 430	Val	Arg	
Tyr	Thr	Gln 435	Lys	Ala	Pro	Gln	Val 440	Ser	Thr	Pro	Thr	Leu 445	Val	Glu	Ala	
Ala	Arg 450	Asn	Leu	Gly	Arg	Val 455	Gly	Thr	Lys	Cys	Cys 460	Thr	Leu	Pro	Glu	
Asp 465	Gln	Arg	Leu	Pro	Cys 470	Val	Glu	Asp	Tyr	Leu 475	Ser	Ala	Ile	Leu	Asn 480	
Arg	Val	Суз	Leu	Leu 485	His	Glu	Lys	Thr	Pro 490	Val	Ser	Glu	His	Val 495	Thr	

-cont	

														ueu	
Lys	Cys	Сув	Ser 500	Gly	Ser	Leu	Val	Glu 505	Arg	Arg	Pro	СЛа	Phe 510	Ser	Ala
Leu	Thr	Val 515	Asp	Glu	Thr	Tyr	Val 520	Pro	Lys	Glu	Phe	Lys 525	Ala	Glu	Thr
Phe	Thr 530	Phe	His	Ser	Asp	Ile 535	-	Thr	Leu	Pro	Glu 540	ГЛа	Glu	Lys	Gln
Ile 545	Lys	Lys	Gln	Thr	Ala 550	Leu	Ala	Glu	Leu	Val 555	ГÀз	His	Lys	Pro	Lys 560
Ala	Thr	Ala	Glu	Gln 565	Leu	Lys	Thr	Val	Met 570	Asp	Asp	Phe	Ala	Gln 575	Phe
Leu	Asp	Thr	Cys 580	Суа	ГЛа	Ala	Ala	Asp 585	ГЛа	Asp	Thr	Суз	Phe 590	Ser	Thr
Glu	Gly	Pro 595	Asn	Leu	Val	Thr	Arg 600		ГЛа	Asp	Ala	Leu 605	Ala	Gly	Gly
Gly	Gly 610	Ser	Gly	Gly	Gly	Gly 615		Gly	Gly	Gly	Gly 620	Ser	Ala	Ser	Asp
Ile 625	Gln	Met	Thr	Gln	Ser 630	Pro	Ser	Pro	Leu	Ser 635	Ala	Ser	Val	Gly	Asp 640
Arg	Val	Thr	Ile	Thr 645	Суа	Arg	Ala	Ser	Gln 650	Tyr	Gly	Gly	Tyr	Val 655	Ala
Trp	Tyr	Gln	Gln 660	Lys	Pro	Gly	Lys	Ala 665	Pro	Lys	Leu	Leu	Ile 670	Tyr	Gly
Ala	Ser	Leu 675	Leu	Tyr	Ser	Gly	Val 680	Pro	Ser	Arg	Phe	Ser 685	Gly	Gly	Arg
Ser	Gly 690	Thr	Asp	Phe	Thr	Leu 695	Thr	Ile	Ser	Ser	Leu 700	Gln	Pro	Glu	Asp
Phe 705	Ala	Thr	Tyr	Tyr	Cys 710	Gln	Arg	Gly	His	Ala 715	Leu	Ile	Thr	Phe	Gly 720
СЛа	Gly	Thr	Lys	Val 725	Glu	Ile	Glu	Gly	Thr 730	Thr	Ala	Ala	Ser	Gly 735	Ser
Ser	Gly	Gly	Ser 740	Ser	Ser	Gly	Ala	Glu 745	Val	Gln	Leu	Val	Glu 750	Ser	Gly
Gly	Gly	Leu 755	Val	Gln	Pro	Gly	Gly 760		Leu	Arg	Leu	Ser 765	Суз	Ala	Ala
Ser	Gly 770	Phe	Asn	Ile	Ser	Ser 775	Tyr	Gly	Ser	Met	His 780	Trp	Val	Arg	Gln
Ala 785	Pro	Gly	Lys	Суз	Leu 790	Glu	Trp	Val	Ala	Ser 795	Ile	Tyr	Pro	Tyr	Ser 800
	Ser	Thr	Tyr	Tyr 805	Ala	Asp	Ser	Val	Lys 810	Gly	Arg	Phe	Thr	Ile 815	
Ala	Asp	Thr	Ser 820	Гла	Asn	Thr	Ala	Tyr 825	Leu	Gln	Met	Asn	Ser 830	Leu	Arg
Ala	Glu	Asp 835		Ala	Val	Tyr	Tyr 840	-	Ala	Arg	Gly	Tyr 845	Gly	Pro	Trp
Tyr			Ser	Tyr	Phe		Leu		Tyr	Trp			Gly	Thr	Leu
	850 Thr	Val	Ser	Ser	-	-		Gly	Ser		860 His	His	His	His	
865					870					875					880

<211> LENGTH: 880 <212> TYPE: PRT

-continued

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mouse SA-(Gly4Ser)3-scFv (VL-VH) CK129-ds2 (VL43A>C / VH105Q>C)-(Gly4Ser)-His6 <400> SEQUENCE: 105 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser 65 70 75 80 Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu 275 280 285 Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr Phe Leu Tyr Glu Tyr Ser Arg Arg His Pro Asp Tyr Ser Val Ser Leu Leu

-continued

Leu	Arg 370	Leu	Ala	Lys	Lys	Tyr 375	Glu	Ala	Thr	Leu	Glu 380	Lys	Сув	Суз	Ala
Glu 385	Ala	Asn	Pro	Pro	Ala 390	Сүз	Tyr	Gly	Thr	Val 395	Leu	Ala	Glu	Phe	Gln 400
Pro	Leu	Val	Glu	Glu 405	Pro	Lys	Asn	Leu	Val 410	Lys	Thr	Asn	Cys	Asp 415	Leu
Tyr	Glu	Lys	Leu 420	Gly	Glu	Tyr	Gly	Phe 425	Gln	Asn	Ala	Ile	Leu 430	Val	Arg
Tyr	Thr	Gln 435	Lys	Ala	Pro	Gln	Val 440	Ser	Thr	Pro	Thr	Leu 445	Val	Glu	Ala
Ala	Arg 450	Asn	Leu	Gly	Arg	Val 455	Gly	Thr	Lys	Сув	Cys 460	Thr	Leu	Pro	Glu
Asp 465	Gln	Arg	Leu	Pro	Cys 470	Val	Glu	Asp	Tyr	Leu 475	Ser	Ala	Ile	Leu	Asn 480
Arg	Val	Cys	Leu	Leu 485	His	Glu	Lys	Thr	Pro 490	Val	Ser	Glu	His	Val 495	Thr
ГЛа	Cys	Cys	Ser 500	Gly	Ser	Leu	Val	Glu 505	Arg	Arg	Pro	Суз	Phe 510	Ser	Ala
Leu	Thr	Val 515	Asp	Glu	Thr	Tyr	Val 520	Pro	Lys	Glu	Phe	Lys 525	Ala	Glu	Thr
Phe	Thr 530	Phe	His	Ser	Asp	Ile 535	Сүз	Thr	Leu	Pro	Glu 540	Lys	Glu	Lys	Gln
Ile 545	Lys	Lys	Gln	Thr	Ala 550	Leu	Ala	Glu	Leu	Val 555	Lys	His	Lys	Pro	Lys 560
Ala	Thr	Ala	Glu	Gln 565	Leu	Lys	Thr	Val	Met 570	Asp	Asp	Phe	Ala	Gln 575	Phe
Leu	Asp	Thr	Cys 580	Сув	Lys	Ala	Ala	Asp 585	Lys	Asp	Thr	Суз	Phe 590	Ser	Thr
Glu	Gly	Pro 595	Asn	Leu	Val	Thr	Arg 600	Суз	Lys	Asp	Ala	Leu 605	Ala	Gly	Gly
Gly	Gly 610	Ser	Gly	Gly	Gly	Gly 615	Ser	Gly	Gly	Gly	Gly 620	Ser	Ala	Ser	Asp
Ile 625	Gln	Met	Thr	Gln	Ser 630	Pro	Ser	Pro	Leu	Ser 635	Ala	Ser	Val	Gly	Asp 640
Arg	Val	Thr	Ile	Thr 645	Суз	Arg	Ala	Ser	Gln 650	Tyr	Gly	Gly	Tyr	Val 655	Ala
Trp	Tyr	Gln	Gln 660	Гла	Pro	Gly	ГЛа	Суз 665	Pro	ГЛа	Leu	Leu	Ile 670	Tyr	Gly
Ala	Ser	Leu 675	Leu	Tyr	Ser	Gly	Val 680	Pro	Ser	Arg	Phe	Ser 685	Gly	Gly	Arg
Ser	Gly 690	Thr	Asp	Phe	Thr	Leu 695	Thr	Ile	Ser	Ser	Leu 700	Gln	Pro	Glu	Asp
Phe 705	Ala	Thr	Tyr	Tyr	Cys 710	Gln	Arg	Gly	His	Ala 715	Leu	Ile	Thr	Phe	Gly 720
Gln	Gly	Thr	Lys	Val 725	Glu	Ile	Glu	Gly	Thr 730	Thr	Ala	Ala	Ser	Gly 735	Ser
Ser	Gly	Gly	Ser 740		Ser	Gly	Ala	Glu 745		Gln	Leu	Val	Glu 750	Ser	Gly
Gly	Gly			Gln	Pro	Gly	-		Leu	Arg	Leu			Ala	Ala
Ser	Gly	755 Phe	Asn	Ile	Ser	Ser	760 Tyr	Gly	Ser	Met	His	765 Trp	Val	Arg	Gln

-	cont	i	nu	ed

770 775 780 Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Ser Ile Tyr Pro Tyr Ser	
785 790 795 800	
Ser Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser 805 810 815	
Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg 820 825 830	
Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Gly Pro Trp 835 840 845	
Tyr Ala Tyr Ser Tyr Phe Ala Leu Asp Tyr Trp Gly Cys Gly Thr Leu 850 855 860	
Val Thr Val Ser Ser Gly Gly Gly Gly Ser His His His His His His 865 870 875 880	
<pre><210> SEQ ID NO 106 <211> LENGTH: 875 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mouse SA-(Gly4Ser)3-scFv (VH-VL) sm3E-ds (VH44R>C / VL100G>C)-(Gly4Ser)-His6</pre>	
<400> SEQUENCE: 106	
Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 1 5 10 15	
Leu Pro Gly Ala Arg Cys Glu Ala His Lys Ser Glu Ile Ala His Arg 20 25 30	
Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala 35 40 45	
Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu 50 55 60	
Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser 65 70 75 80	
Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu 85 90 95	
Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys 100 105 110	
Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys 115 120 125	
Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala 130 135 140	
Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr 145 150 155 160	
Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu 165 170 175	
Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala 180 185 190	
Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys 195 200 205	
Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser 210 215 220	
Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg 225 230 235 240	

	-0010111000							<u></u>							
Leu	Ser	Gln	Thr	Phe 245	Pro	Asn	Ala	Asp	Phe 250	Ala	Glu	Ile	Thr	Lys 255	Leu
Ala	Thr	Asp	Leu 260	Thr	Lys	Val	Asn	Lys 265		Суз	СЛа	His	Gly 270	Asp	Leu
Leu	Glu	Cys 275	Ala	Asp	Asp	Arg	Ala 280	Glu	Leu	Ala	Lys	Tyr 285	Met	Суз	Glu
Asn	Gln 290	Ala	Thr	Ile	Ser	Ser 295	Lys	Leu	Gln	Thr	Суз 300	Суз	Asp	Lys	Pro
Leu 305	Leu	Lys	Lys	Ala	His 310	Суз	Leu	Ser	Glu	Val 315	Glu	His	Asp	Thr	Met 320
Pro	Ala	Asp	Leu	Pro 325	Ala	Ile	Ala	Ala	Asp 330	Phe	Val	Glu	Asp	Gln 335	Glu
Val	Cys	Lys	Asn 340		Ala	Glu	Ala	Lys 345		Val	Phe	Leu	Gly 350	Thr	Phe
Leu	Tyr	Glu 355	Tyr	Ser	Arg	Arg	His 360		Asp	Tyr	Ser	Val 365	Ser	Leu	Leu
Leu	Arg 370	Leu	Ala	ГЛа	Lya	Tyr 375	Glu	Ala	Thr	Leu	Glu 380	ГЛа	Суз	Суз	Ala
Glu 385	Ala	Asn	Pro	Pro	Ala 390	Суа	Tyr	Gly	Thr	Val 395	Leu	Ala	Glu	Phe	Gln 400
Pro	Leu	Val	Glu	Glu 405	Pro	Lys	Asn	Leu	Val 410	Lys	Thr	Asn	Суз	Asp 415	Leu
Tyr	Glu	Lys	Leu 420		Glu	Tyr	Gly	Phe 425		Asn	Ala	Ile	Leu 430		Arg
Tyr	Thr	Gln 435		Ala	Pro	Gln	Val 440	Ser	Thr	Pro	Thr	Leu 445	Val	Glu	Ala
Ala	Arg 450		Leu	Gly	Arg	Val 455		Thr	Lys	Суз	Cys 460		Leu	Pro	Glu
Asp 465		Arg	Leu	Pro	Cys 470	Val	Glu	Asp	Tyr	Leu 475		Ala	Ile	Leu	Asn 480
	Val	Cys	Leu	Leu 485		Glu	Lys	Thr	Pro 490		Ser	Glu	His	Val 495	
Lys	Суз	Суз	Ser 500		Ser	Leu	Val	Glu 505		Arg	Pro	Суз	Phe 510		Ala
Leu	Thr			Glu	Thr	Tyr			Lys	Glu	Phe	-		Glu	Thr
Phe		515 Phe	His	Ser	Asp	Ile	520 Cys	Thr	Leu	Pro		525 Lys	Glu	Lys	Gln
	530 Lys	Lys	Gln	Thr		535 Leu	Ala	Glu	Leu		540 Lys	His	Lys	Pro	-
545 Ala	Thr	Ala	Glu		550 Leu	Lys	Thr	Val		555 Asp	Aap	Phe	Ala	Gln	560 Phe
Leu	Asp	Thr	Cys	565 Cys	Lys	Ala	Ala	Asp	570 Lys	Asp	Thr	Cys	Phe	575 Ser	Thr
	-		580	-	-			585	-	-		-	590		
	-	595				Thr	600	-	-	-		605		-	-
Gly	Gly 610	Ser	Gly	Gly	Gly	Gly 615	Ser	Gly	Gly	Gly	Gly 620	Ser	Ala	Ser	Gln
Val 625	Lys	Leu	Glu	Gln	Ser 630	Gly	Ala	Glu	Val	Val 635	ГЛа	Pro	Gly	Ala	Ser 640
Val	Lys	Leu	Ser	Сув	LYa	Ala	Ser	Gly	Phe	Asn	Ile	ГЛа	Asp	Ser	Tyr

645 650 655	
Met His Trp Leu Arg Gln Gly Pro Gly Gln Cys Leu Glu Trp Ile Gly	
660 665 670	
Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe Gln675680685	
Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ala Asn Thr Ala Tyr Leu 690 695 700	
Gly Leu Ser Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys Asn 705 710 715 720	
Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly 725 730 735	
Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 740 745 750	
Ser Gly Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ser Ser 755 760 765	
Met Ser Val Ser Val Gly Asp Arg Val Thr Ile Ala Cys Ser Ala Ser 770 775 780	
Ser Ser Val Pro Tyr Met His Trp Leu Gln Gln Lys Pro Gly Lys Ser	
785 790 795 800 Pro Leg Leg Leg Leg Thr Cor Am Leg Als Cor Cly Vol Pro Pro Pro	
Pro Lys Leu Leu Ile Tyr Leu Thr Ser Asn Leu Ala Ser Gly Val Pro 805 810 815	
Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile 820 825 830	
Ser Ser Val Gln Pro Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Arg 835 840 845	
Ser Ser Tyr Pro Leu Thr Phe Gly Cys Gly Thr Lys Leu Glu Ile Lys 850 855 860	
Gly Gly Gly Ser His His His His His 865 870 875	
<210> SEQ ID NO 107 <211> LENGTH: 573 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL138-107-G3-c-myc-Ag	ga2
<400> SEQUENCE: 107	
atgaaggttt tgattgtott gttggotato ttogotgott tgocattggo ottagotoaa	60
ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagccacc	120
gagetgagat gecagtgeet geagaceetg cagggeatee acceeaagaa cateeagage	180
gtgaacgtga agtcccctgg cccccactgc gcccagaccg aagtgatcgc caccctgaag	240
aacggccgga aggcctgcct gaaccccgcc agccccatcg tgaagaaaat catcgagaag	300
atgetgaaca gegacaagag caaeggegga ggegaacaaa agettatete egaagaagae	360
ttgcaggaac tgacaactat atgcgagcaa atcccctcac caactttaga atcgacgccg	420
tactctttgt caacgactac tattttggcc aacgggaagg caatgcaagg agtttttgaa	480
tattacaaat cagtaacgtt tgtcagtaat tgcggttctc acccctcaac aactagcaaa	540
ggcagcccca taaacacaca gtatgtttt taa	573

```
-continued
```

<211> LENGTH: 573 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL238-107-G3-c-myc-Aga2 <400> SEQUENCE: 108 atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60 ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagccaca 120 gagetgagat gecagtgeet ceagaeacte eagggeatee acetgaagaa eateeagage 180 gtgaaagtga agtcccctgg cccccactgc gcccagacag aagtgatcgc caccctgaag 240 aatggccaga aggcctgcct gaaccccgcc agccctatgg tcaagaaaat catcgagaag 300 atgctgaaga acggcaagag caacggcgga ggcgaacaaa agcttatctc cgaagaagac 360 ttgcaggaac tgacaactat atgcgagcaa atcccctcac caactttaga atcgacgccg 420 tactctttgt caacgactac tattttggcc aacgggaagg caatgcaagg agtttttgaa 480 tattacaaat cagtaacgtt tgtcagtaat tgcggttctc acccctcaac aactagcaaa 540 ggcagcccca taaacacaca gtatgttttt taa 573 <210> SEO ID NO 109 <211> LENGTH: 573 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL338-107-G3-c-myc-Aga2 <400> SEOUENCE: 109 atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60 ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagtgacc 120 gagetgagat gecagtgeet ceagaeacte cagggeatee acetgaagaa catecagage 180 gtgaacgtgc ggagccctgg ccctcattgt gcccagacag aagtgatcgc caccctgaag 240 aatggcaaga aggcctgcct gaaccccgcc agccctatgg tgcagaagat catcgagaag 300 atcctgaaca agggcagcac caacggcgga ggcgaacaaa agcttatctc cgaagaagac 360 ttgcaggaac tgacaactat atgcgagcaa atcccctcac caactttaga atcgacgccg 420 tactctttgt caacgactac tattttggcc aacgggaagg caatgcaagg agtttttgaa 480 tattacaaat cagtaacgtt tgtcagtaat tgcggttctc acccctcaac aactagcaaa 540 ggcagcccca taaacacaca gtatgttttt taa 573 <210> SEQ ID NO 110 <211> LENGTH: 573 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL432-101-G3-c-myc-Aga2 <400> SEQUENCE: 110 atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60 ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagaggct 120 gaagaggacg gcgateteea gtgeetgtge gtgaaaacea eeageeaagt geggeeeaga 180 cacatcacca geetggaagt gatcaaggee ggaeeecact gteetaeege ceagetgatt 240

-continued	ontinue	ed
------------	---------	----

-continued	
gccaccctga agaacggccg gaagatctgc ctggacctcc aggcccccct gtacaagaag	300
atcatcaaga agetgetgga aageggegga ggegaacaaa agettatete egaagaagae	360
ttgcaggaac tgacaactat atgcgagcaa atcccctcac caactttaga atcgacgccg	420
tactctttgt caacgactac tattttggcc aacgggaagg caatgcaagg agtttttgaa	480
tattacaaat cagtaacgtt tgtcagtaat tgcggttctc acccctcaac aactagcaaa	540
ggcagcccca taaacacaca gtatgtttt taa	573
<210> SEQ ID NO 111 <211> LENGTH: 576 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL544-114-G3-c-myc-A	ga2
<400> SEQUENCE: 111	
atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa	60
ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagactgcgc	120
gagetgagat gegtgtgeet geagaceace eagggegtge acceeaagat gateageaae	180
ctccaggtgt tcgccatcgg cccccagtgc agcaaggtgg aagtggtggc cagcctgaag	240
aacggcaaag agatctgcct ggaccccgag gccccattcc tgaagaaagt gatccagaag	300
atcctggacg gcggcaacaa agagaacggc ggaggcgaac aaaagcttat ctccgaagaa	360
gacttgcagg aactgacaac tatatgcgag caaatcccct caccaacttt agaatcgacg	420
ccgtactctt tgtcaacgac tactattttg gccaacggga aggcaatgca aggagttttt	480
gaatattaca aatcagtaac gtttgtcagt aattgcggtt ctcacccctc aacaactagc	540
aaaggcagcc ccataaacac acagtatgtt ttttaa	576
<210> SEQ ID NO 112 <211> LENGTH: 576 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL644-114-G3-c-myc-A	ga2
<400> SEQUENCE: 112	
atgaaggttt tgattgtott gttggotato ttogotgott tgocattggo ottagotoaa	60
coggttattt ctactacogt oggttocgot goagaaggot otttggacaa gagactgaco	120
gagetgeggt geacetgtet gagagtgaee etgegegtga acceeaagae eateggeaag	180
ctccaggtgt tccctgccgg ccctcagtgc agcaaggtgg aagtggtggc cagcctgaaa	240
aacggaaaac aagtgtgcct ggaccccgag gccccattcc tgaagaaagt gatccagaag	300
ateetggaca geggcaacaa gaagaaegge ggaggegaae aaaagettat eteegaagaa	360
gacttgcagg aactgacaac tatatgcgag caaatcccct caccaacttt agaatcgacg	420
ccgtactctt tgtcaacgac tactattttg gccaacggga aggcaatgca aggagttttt	480
gaatattaca aatcagtaac gtttgtcagt aattgcggtt ctcacccctc aacaactagc	540
aaaggcagcc ccataaacac acagtatgtt ttttaa	576
<210> SEQ ID NO 113	

<210> SEQ ID NO 113 <211> LENGTH: 552 <212> TYPE: DNA

-continued
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL759-121-G3-c-myc-Aga2</pre>
<400> SEQUENCE: 113
atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60
ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagccgag 120
ctgcggtgca tgtgcatcaa gaccaccagc ggaatccacc ccaagaatat ccagtccctg 180
gaagtgattg gcaaggggcac ccactgcaac caggtggaag tgattgccac actgaaagac 240
ggccggaaga tctgcctgga ccctgacgcc cccagaatca agaaaatcgt gcagaaaaag 300
ctgggcggag gcgaacaaaa gcttatctcc gaagaagact tgcaggaact gacaactata 360
tgcgagcaaa tcccctcacc aactttagaa tcgacgccgt actctttgtc aacgactact 420
attttggcca acgggaaggc aatgcaagga gtttttgaat attacaaatc agtaacgttt 480
gtcagtaatt gcggttetea eeecteaaca actageaaag geageeeeat aaacacaeag 540
tatgttttt aa 552
<210> SEQ ID NO 114 <211> LENGTH: 576 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL829-99-G3-c-myc-Aga2
<400> SEQUENCE: 114
atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60
ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagccaaa 120
gaactgeggt geeagtgeat caagaeetae ageaageeet teeaceeeaa gtteateaaa 180
gaactgagag tgatcgagag cggccctcac tgcgccaaca ccgagatcat cgtgaagctg 240
agcgacggca gagagctgtg cctggacccc aaagaaaact gggtgcagcg ggtggtggaa 300
aagtteetga agegggeega gaacagegge ggaggegaae aaaagettat eteegaagaa 360
gacttgcagg aactgacaac tatatgcgag caaatcccct caccaacttt agaatcgacg 420
ccgtactctt tgtcaacgac tactattttg gccaacggga aggcaatgca aggagttttt 480
gaatattaca aatcagtaac gtttgtcagt aattgcggtt ctcacccctc aacaactagc 540
aaaggcagcc ccataaacac acagtatgtt ttttaa 576
<210> SEQ ID NO 115 <211> LENGTH: 672 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL923-115-G3-c-myc-Aga2
<400> SEQUENCE: 115
atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60
ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagaaccccc 120
gtcgtgcgga agggcagatg cagctgtatc agcaccaacc agggcaccat ccatctccag 180
tetetgaagg acetgaagea gttegeeeee ageeceaget gegagaagat egagattate 240
gccacactga aaaacggggt gcagacctgc ctgaaccccg acagcgccga cgtgaaagaa 300

-cont	inued
-conc	THUEU

-continued	
ctgatcaaga aatgggagaa acaggtgtcc cagaagaaga agcagaagaa cggaaagaag	360
caccagaaaa agaaagtgct gaaagtgcgg aagtcccagc ggagccggca gaagaaaacc	420
acaggcggag gcgaacaaaa gcttatctcc gaagaagact tgcaggaact gacaactata	480
tgcgagcaaa tcccctcacc aactttagaa tcgacgccgt actctttgtc aacgactact	540
attttggcca acgggaaggc aatgcaagga gtttttgaat attacaaatc agtaacgttt	600
gtcagtaatt gcggttctca cccctcaaca actagcaaag gcagccccat aaacacacag	660
tatgttttt aa	672
<210> SEQ ID NO 116 <211> LENGTH: 594 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL1022-98-G3-c-myc-Ag	ga2
<400> SEQUENCE: 116	
atgaaggttt tgattgtott gttggotato ttogotgott tgocattggo ottagotoaa	60
ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagtgcct	120
ctgagcagaa ccgtgcggtg cacctgtatc agcatcagca accagcccgt gaaccccaga	180
agcetggaaa agetggaaat cateeeegee ageeagttet geeeeagagt ggaaattate	240
gccaccatga agaagaaagg cgagaagcgg tgcctgaacc ccgagagcaa ggccatcaag	300
aacctgctga aggccgtgtc caaagagcgg agcaagcgga gcccaggcgg aggcgaacaa	360
aagettatet eegaagaaga ettgeaggaa etgacaaeta tatgegagea aateeeetea	420
ccaactttag aatcgacgcc gtactctttg tcaacgacta ctattttggc caacgggaag	480
gcaatgcaag gagtttttga atattacaaa tcagtaacgt ttgtcagtaa ttgcggttct	540
cacccctcaa caactagcaa aggcagcccc ataaacacac agtatgtttt ttaa	594
<210> SEQ ID NO 117 <211> LENGTH: 582 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-hCXCL1122-94-G3-c-myc-Ag	ga2
<400> SEQUENCE: 117	
atgaaggttt tgattgtott gttggotato ttogotgott tgocattggo ottagotcaa	60
ccggttattt ctactaccgt cggttccgct gcagaaggot ctttggacaa gagattcccc	120
atgttcaage ggggeagatg eetgtgeate ggeeetggeg tgaaageegt gaaggtggee	180 240
gatategaga aggecageat catgtaeece ageaacaaet gegaeaagat egaagtgate	300
atcaccctga aagagaacaa gggccagaga tgcctgaatc ccaagtccaa gcaggcccgg	
ctgatcatca agaaggtgga acggaagaac ttcggcggag gcgaacaaaa gcttatctcc	360
gaagaagact tgcaggaact gacaactata tgcgagcaaa tcccctcacc aactttagaa	420
tcgacgccgt actctttgtc aacgactact attttggcca acgggaaggc aatgcaagga	480
gtttttgaat attacaaatc agtaacgttt gtcagtaatt gcggttctca cccctcaaca	540
actagcaaag gcagccccat aaacacacag tatgttttt aa	582

```
-continued
```

<211> LENGTH: 570 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-mCXCL128-96-G3-c-myc-Aga2 <400> SEQUENCE: 118 atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60 ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagccaac 120 gagetgeggt gecagtgeet geagaceatg geeggeatee acetgaagaa cateeagage 180 ctgaaggtgc tgcccagcgg ccctcactgc acccagaccg aagtgatcgc caccctgaag 240 300 aacqqcaqaq aqqcctqcct qqatcccqaq qcccccctqq tqcaqaaaat cqtqcaqaaa atgctgaagg gcgtgcccaa gggcggaggc gaacaaaagc ttatctccga agaagacttg 360 caggaactga caactatatg cgagcaaatc ccctcaccaa ctttagaatc gacgccgtac 420 tetttgteaa egaetaetat tttggeeaac gggaaggeaa tgeaaggagt ttttgaatat 480 tacaaatcag taacgtttgt cagtaattgc ggttctcacc cctcaacaac tagcaaaggc 540 agccccataa acacacagta tgtttttaa 570 <210> SEO ID NO 119 <211> LENGTH: 573 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-mCXCL231-100-G3-c-myc-Aga2 <400> SEOUENCE: 119 atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60 ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagccagc 120 gagetgeggt gecagtgeet gaaaaceetg eeeeggtgg aetteaagaa eateeagage 180 ctgagcgtga cccccctgg ccctcactgt gcccagaccg aagtgatcgc caccctgaag 240 ggcggccaga aagtgtgcct ggaccccgag gcccccctgg tgcagaagat catccagaag 300 atcctgaaca agggcaaggc caacggcgga ggcgaacaaa agcttatctc cgaagaagac 360 ttgcaggaac tgacaactat atgcgagcaa atcccctcac caactttaga atcgacgccg 420 tactctttgt caacgactac tattttggcc aacgggaagg caatgcaagg agtttttgaa 480 tattacaaat cagtaacgtt tgtcagtaat tgcggttctc acccctcaac aactagcaaa 540 ggcagcccca taaacacaca gtatgttttt taa 573 <210> SEQ ID NO 120 <211> LENGTH: 573 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-mCXCL331-100-G3-c-myc-Aga2 <400> SEQUENCE: 120 atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60 ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagcctct 120 gagetgagat gecagtgeet gaacaeeetg eeeegggtgg aettegagae aateeagage 180 ctgaccgtga cccccctgg ccctcactgt acccagacag aagtgatcgc caccctgaag 240

-cont	inued
-conc	THUEU

-continued	
gacggccagg aagtgtgcct gaatccccag ggccccagac tccagatcat catcaagaag	300
ateetgaagt eeggeaagag cageggegga ggegaacaaa agettatete egaagaagae	360
ttgcaggaac tgacaactat atgcgagcaa atcccctcac caactttaga atcgacgccg	420
tactctttgt caacgactac tattttggcc aacgggaagg caatgcaagg agtttttgaa	480
tattacaaat cagtaacgtt tgtcagtaat tgcggttctc acccctcaac aactagcaaa	540
ggcagcccca taaacacaca gtatgtttt taa	573
<210> SEQ ID NO 121 <211> LENGTH: 591 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-mCXCL430-105-G3-c-myc-A	4ga2
<400> SEQUENCE: 121	
atgaaggttt tgattgtett gttggetate ttegetgett tgeeattgge ettageteaa	60
ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagtgaca	120
tetgeeggee etgaggaaag egaeggegat etgtettgeg tgtgegtgaa aaceateage	180
ageggeatee acetgaagea cateaceage etggaagtga teaaggeegg eaggeaetgt	240
gccgtgcctc agctgattgc caccctgaag aacggccgga agatctgcct ggacagacag	300
gcccccctgt acaagaaagt gattaagaag atcctggaaa gcggcggagg cgaacaaaag	360
cttatctccg aagaagactt gcaggaactg acaactatat gcgagcaaat cccctcacca	420
actttagaat cgacgccgta ctctttgtca acgactacta ttttggccaa cgggaaggca	480
atgcaaggag tttttgaata ttacaaatca gtaacgtttg tcagtaattg cggttctcac	540
ccctcaacaa ctagcaaagg cagccccata aacacacagt atgtttttta a	591
<210> SEQ ID NO 122 <211> LENGTH: 576 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-mCXCL548-118-G3-c-myc-F	Aga2
<400> SEQUENCE: 122	
atgaaggttt tgattgtett gttggetate ttegetgett tgeeattgge ettageteaa	60
ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagagccacc	120
gagetgagat gegtgtgeet gaeegtgaee eecaagatea aeeecaaget gategeeaae	180
ctggaagtga teeetgeegg eeeteagtge eeeacegtgg aagtgattge eaagetgaag	240
aaccagaaag aagtgtgcct ggaccccgag gcccccgtga tcaagaagat catccagaag	300
ateetgggea gegacaagaa gaaageegge ggaggegaae aaaagettat eteegaagaa	360
gacttgcagg aactgacaac tatatgcgag caaatcccct caccaacttt agaatcgacg	420
ccgtactctt tgtcaacgac tactattttg gccaacggga aggcaatgca aggagttttt	480
gaatattaca aatcagtaac gtttgtcagt aattgcggtt ctcacccctc aacaactagc	540
aaaggcagcc ccataaacac acagtatgtt ttttaa	576
<210> SEQ ID NO 123	

<210> SEQ ID NO 123 <211> LENGTH: 561 <212> TYPE: DNA

-continued

247

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-mCXCL748-113-G3-c-myc-Aga2 <400> SEQUENCE: 123 atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60 ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagaatcgag 120 ctgcggtgcc ggtgcaccaa caccatcagc ggcatccctt tcaacagcat cagcctcgtg 180 aacgtgtaca gacccggcgt gcactgcgcc gacgtggaag tgattgctac actgaagaat 240 gggcagaaaa cctgcctgga ccccaacgcc cctggcgtga agcggatcgt gatgaagatt 300 360 ctqqaaqqct acqqcqqaqq cqaacaaaaq cttatctccq aaqaaqactt qcaqqaactq acaactatat gcgagcaaat cccctcacca actttagaat cgacgccgta ctctttgtca 420 acgactacta ttttggccaa cgggaaggca atgcaaggag tttttgaata ttacaaatca 480 gtaacgtttg tcagtaattg cggttctcac ccctcaacaa ctagcaaagg cagccccata 540 aacacacagt atgttttta a 561 <210> SEO ID NO 124 <211> LENGTH: 678 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-mCXCL922-126-G3-c-myc-Aga2 <400> SEQUENCE: 124 atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60 ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagaaccctc 120 gtgatccgga acgcccggtg cagctgtatc agcaccagca gaggcaccat ccactacaag 180 agcotgaagg atotgaagca gttogoooco agooccaact goaacaagac ogagattato 240 gccacactga aaaacgggga ccagacctgt ctggaccccg acagcgccaa cgtgaagaaa 300 ctgatgaagg aatgggagaa gaagatcagc cagaagaaga agcagaagcg gggcaagaaa 360 caccagaaaa acatgaagaa ccggaagccc aagacccccc agagccggcg gagatccaga 420 aagaccacag geggaggega acaaaagett ateteegaag aagaettgea ggaaetgaca 480 actatatgcg agcaaatccc ctcaccaact ttagaatcga cgccgtactc tttgtcaacg 540 actactattt tggccaacgg gaaggcaatg caaggagttt ttgaatatta caaatcagta 600 acgtttgtca gtaattgcgg ttctcacccc tcaacaacta gcaaaggcag ccccataaac 660 acacagtatg tttttaa 678 <210> SEQ ID NO 125 <211> LENGTH: 594 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: pCHA-LS-mCXCL1022-98-G3-c-myc-Aga2 <400> SEQUENCE: 125 atgaaggttt tgattgtctt gttggctatc ttcgctgctt tgccattggc cttagctcaa 60 ccggttattt ctactaccgt cggttccgct gcagaaggct ctttggacaa gagaatccca 120 ctggccagaa ccgtgcggtg caactgcatc cacatcgacg atggccccgt gcggatgaga 180

Ala Leu Ala Gln Pro Val Ile Ser Thr Val Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Ala Thr Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Thr Glu Ser Yal Asp Val Thr Lys Ser Pro Gly Pro His Cys Ala Thr Leu Ala Ser Val Thr Leu Ser Val Asp Val Lys Ser Pro Gly Pro His Cys Ala Glu Ser Val Thr Leu Lys Ser Pro Gly Pro His Cys Ala Glu Val Ile Ala Thr Leu Lys					-cont:	inued		
Anactysnik aggeottag ceagaaggig agaaagagg ceccaggigg aggeggaacaa 360 Aagettate eggangaga etigacaggi agaaagagg ceccaggigg aggeggaacaa 420 Seaacttag aategacgee gractettig teaacgacta etatiggge aateceeta 420 Seaacttag aategacgee gractettig teaacgacta etatigge caacgggaag 480 Seaacttag aategacgee gractettig teaacgace tigtecagta tiggeggite 540 Seaacttag aategacgee gractettig teaacgace agtagttit tia 594 Seaactage aggeergge gractettig teaacgace agtagtit tia 594 Seaactage aggeergge gractettig tegacgeerg aggeggite tige agtagtage 100 Seaactage aggeerggig etatecee ageaagget dieggacga gagatege 110 Augusteggi tigstigtetti gitggetate tiegetigge diagtagte 110 Augusteggi aggeerggig eggeerggi gaagaagget dieggaaggeg gaagatege 120 Segona aggeerggig eggeerggi gaagaaggi teerge gagaaggeg gaagatege 120 Segona aggeerggig eggeerggi gaacategeer gagaaggee gaagatege 120 Segona aggeerggig eggeerggi gaagaaggi gagaagaat tiegeggeggi gaagatege 120 Segona aggeerggig gaetaceee ageaaggee gagaagaat tiegeggeggi gaagatege 120 Segona aggeerggig gaetaceee ageaaggee gagaacat gaggeeggi 300 Stagateaga aggeerggig gaetaceee tigeaaggee gageergaaat tiegegaeggi 300 Stagateaga aggeerggig agatagee tiettigeaa caacatatig caggaaate 120 Secondaeaage tiateeee augeaagge gaeeeeataa acacaaga tigttittaa 600 Secondaeaage tittigaat taeeaaateg aagettig cagtaatige 540 Sygaaggeaa tigeaaggee ageeergaa gaeeeeataa acacaaga tigttittaa 600 Secondaeaa tigeaaagge ageeerge 220 MER INEONNATION: Symbetic: LS-EXCLI38-107-63-e-mye-Aga2 Secondaeae tigeaaagge ageeerge 220 MER INEONNATION: Symbetic: LS-EXCLI38-107-63-e-mye-Aga2 Secondaeae tigeaaagge ageeerge 350 MER INEONNATION: Symbetic: LS-EXCLI38-107-63-e-mye-Aga2 Secondaeae tigeaaagge ageeerge ageeerge ageeerge ageeerge ageeerge ageeerge ageeerge 360 Second age 360 Secondaeae tigeaaagge ageergeeerge ageeerge ageeergeeer	gccatcggca	agctggaaat	catccccg	cc agcctgagct	geeccagag	t ggaaattatc	240	
Agettaff oggaagag of tigogagga ofgaaatt tatgogaga atcoorta 420 seaachttag aatogaogo gtactottig teacagacta ofattligg oaagggaag 450 paatgoaag gagttifga atataoaa togtaacgi tigtoagtaa tigoggtot 540 seacoortaa caactageaa aggeagecee ataacacae agtafgitt tima 594 220- SEG ID NO 136 2220- TYPE: DNA 2230- STERINES. Artificial Sequence 2200- FEATURE: 2200- SEQUENCE: 126 tigaaggtif tigatigtet gitggetate tigocagat geoggaag digaaggae 4000- SEQUENCE: 126 tigaaggee ggeoggee gatetacee ageaaggee gatggeeeg gaaggeegg 150 pagacoaga aggeoagge gatetacee ageaaggee gagaaggee 240 pagacoaga aggeoagge gatetacee ageaaggee gagaaggee gagaggeeg 240 pagacoaga aggeoagge gatetace gageacgge cagaagge gagaggae 240 pagacoaga aggeoagge gatetacea geoacagge gagaattee 420 pagacoaga aggeoagge gatetacea geoacagge gagaattee 420 pagacoaga aggeoagge gatetacea geoacagge gagaattee 420 pagacoaga aggeoagge gatetacea geocacage gagaagtee 510 gggatetage aggeoagge gatetacea geocacage gagaattee 420 pagacoaga aggeoagge gatetacea geocacage gagaattee 510 gggatetace cetaacaae tageaaggee geocaca acceacage gageoggaa 210- SEQ ID NO 127 2115 LEMENT 150 2125 - SERVINE: 2230- OTHER INFORMATION: Synthesis: LS-NCKCLI38-107-63-e-mye-Aga2 400- SEQUENCE: 127 400 SEQUENCE: 127 401 10 15 2125 - SERVINE: 2230- OTHER INFORMATION: Synthesis: LS-NCKCLI38-107-63-e-mye-Aga2 400 SEQUENCE: 127 402 10 127 213 LEMENT 150 213 LEMENT 150 214 LEW 1 LEW LEW LEW AM 10 SP ALA ALA DEW PNO -Aga2 400 SEQUENCE: 127 400 LEWE 100 127 215 LEMENT 150 216 LEWE ALA OF DUF AM ALA DEWE PNO LEW LEWE LEWE AM ALA DEWE PNO LEWE 150 217 LEWENT 150 218 LEWENT 150 219 SECUENCE: 127 400 LEWENT 150 210 LEWENT 150 ALA OF DUF AM ALA OF DUF AM ALA DEWENT 150 210 LEWENT 150 210 LEWENT 150 211 LEWENT 150 211 LEWENT 150 212 LE	gccaccatga	agaagaacga	a cgagcagc	gg tgcctgaaco	c ccgagagca	a gaccatcaag	300	
A second the second sec	aacctgatga	aggcctttag	ı ccagaagc	gg agcaagaggg	g ccccaggcg	g aggcgaacaa	360	
probability of the probability	aagcttatct	ccgaagaaga	a cttgcagg	aa ctgacaacta	a tatgcgagc	a aatcccctca	420	
1210- SEQ ID NO 126 1210- SEQ ID NO 126 1215- IDENT: 500 1215- IDENT: 500 120- SEQUENCE: 126 120- SEQUENCE: 126 120- SEQUENCE: 126 120- SEQUENCE: 126 120- SEQUENCE: 127 120- SEQUENCE: 127 121- IDENT: 190 1215- IDENT:	ccaactttag	aatcgacgco	gtactctt	tg tcaacgacta	a ctattttgg	c caacgggaag	4 80	
<pre>2:10. SEQ ID NO 126 2:11. LENGTH: 600 2:12. TYPE: DNA 2:12. TYPE: DNA 2:13. GQANISH: Attificial Sequence 2:20. PHATURE: 2:20. OTHER INFORMATION: Synthetic: pCHA-LS-mCXCL1122-100-G3-c-myc-Aga2 4:400. SEQUENCE: 126 4:400. SEQUENCE: 127 4:400. SEQUENCE: 126 4:400. SEQUENCE: 126 4:400. SEQUENCE: 127 4:11. EMBOTH: 190 4:210. SEQ ID NO 127 4:11. EMBOTH: 190 4:210. SEQUENCE: 127 4:400. SEQUENCE: 128 4:400. SEQUENCE: 128 4:400.</pre>	gcaatgcaag	gagtttttga	a atattaca	aa tcagtaacgt	ttgtcagta	a ttgcggttct	540	
<pre>211 = LENGTH: 600 2120 FERTURE: 2233 OTHER INFORMATION: Synthetic: pCHA-LS-mCXCL1122-100-G3-c-myc-Aga2 4400 > SEQUENCE: 124 atgaaggitt tgatigtet gitgggtate ttogetgget tgocatgge ctaggecagg 120 argtteage agggecaggt gatetacce ageaaegget gagaagatge 124 atgaagatgaga aggecagegt gatetacce ageaaegget gggaagatgate 240 stgateaga aggecagegt gatetacce ageaaegget gggaagatge 240 stgateaga aggecagegt gatetacce ageaaegget gggaagatge 240 stgateaga aggecaget gatetacce ageaaegget gggaagat gggagggg 360 stgateaga aggecaget tettgteag gggaagatge caggteagat gggggagg 360 stgateaga aggecaget tettgaat tacaaateag taacgttgt cagtaattg 540 stgaaggaag tgaagaagaat tteetgegg ggagaact gggagaaat ggaggaggaa tgaagaagget 112 stooreaceaa etttagaate gaegeegtae tettgteaa egaceagta tgtttttaa 600 stooreaceaa etttagaate gaegeegtae tettgteaa egaceagt tgtttttaa 600 stooreaceaa etttagaate gaegaegga agecceataa acacaegta tgtttttaa 600 stooreaceaca ttigaaatg gaegeegtae tetts bencKCl138-107-63-c-myc-Aga2 stooreaceacaettageaagge agecceataa acacaegta tgtttttaa 600 stooreaceacaettageaagge ageceeataa egaegaegee ageaegeeage stooreaceacaettageaagge ageceetaa egaeageeageeageeageeageeageeageeageea</pre>	cacccctcaa	caactagcaa	a aggcagcc	cc ataaacacad	c agtatgttt	t ttaa	594	
Arigaagitt tgatigtett gitiggetate tiegetigett tegeeatigge ettagetea begegitatt tgatigtett gitiggetate tiegetiget tegeeatigge ettagetea begegitatt tegatigteet giggeteeget geegaagiget ettiggaca gagatteet 120 biggateaga aggeeagig eettaeee ageaegget gegaaagig gaagiggee biggaaetaga aggeeagig gattaeee ageaegget gegaaetag gaagiggee 300 biggateaga aggeeaga gageagaa teetiggae eeagatea gaggeegga 300 biggaeagaa aggeeaga gageagaa teetiggee eeagatea gaggeegga 300 biggaeagaaa aggeeaga gageagaa teetiggee eeagatea gaggeegga 300 biggaeagaaa teeaagae ttateeea ageageegta eatatat gegaeaaaa 420 biggaaggea tigeaggag tittigaatat taeaaateag taaegtig eagtaatig 340 35 2110 SER ID NO 127 2111 LENGTH: 190 2122 TTPE: PRT 2113 ORGMIN: Artificial Sequence 2200 FEATURE: 2130 ORGMIN: Artificial Sequence 2200 FEATURE: 2130 ORGMIN: Artificial Sequence 2200 SEQUENCE: 127 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 10 10 2130 ORGMIN: Artificial Sequence 25 30 2149 Ser Leu App Lys Arg Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln 45 50 51 51 52 54 55 56 56 57 57 50 57 50 57 50 57 50 50 57 50 57 50 50 57 50 57 50 50 57 50 50 57 50 50 57 50 50 57 50 50 57 50 50 57 50 57 50 50 57 50 57 50 50 57 50 50 57 50 50 57 50 50 57 50 50 57 50 50 57 57 50 57 57 50 57 57 50 57 57 50 57 57 50 57 57 57 50 57 57 57 57 57 57 57 57 57 57	<211> LENG <212> TYPE <213> ORGA <220> FEAT	TH: 600 : DNA NISM: Artif URE:	-		5-mCXCL1122	-100-G3-c-my	rc-Aga2	
ccqgttatt ctactaccgt cggtccgct gcagaagget ctttggacaa gagattectg 120 atgttcaage aggeceggtg ectgtgeete ggeeetggaa tgaaggeegg gaagatggee 180 gagategaga aggeeeggtg gatetacece aceaaegget gegacaaggt ggaagtgate 240 gtgaccatga aggeeeggt gatetacece aceaaegget gegacaaggt ggaagtgate 240 gtgaccatga aggeeedge gatetacece aceaaegget gegacaagge ggagatgate 240 gtgaccatge aggetatega gaagaagat teetggace ccagateeaa geaggeeegg 360 gaacaaaage ttateteega agaagaettg eaggaaetga eaetatatg egageaate 420 ceetecaeeaa ettagaate gaegeegta tettgeaa eaetatatg egageaate 420 gegacgaag aggeeatge gaegetate tettgeaa eaetatatg egageaate 420 gggaaggeaa tgeaaggagt tttgaatat tacaaateag taaegttgt eagtaattge 540 gggateteaee ettageaagge ageeeeaa aceaeaagt agtttttaa 600 210 SEO ID NO 127 211 LENDWN: 190 2120 SEO ID NO 127 2130 ORGANISM: Artificial Sequence 220 FEATURE: 2230 OTHER INFORMATION: Synthetic: LS-hCXCL138-107-G3-e-mye-Aga2 400 SEQUENCE: 127 Met Lys Val Leu ILev Ala IIe Phe Ala Ala Leu Pro Leu 15 Ala Leu Ala Cln Pro Val IIe Ser Thr Thr Val Gly Ser Ala Ala Glu 20 31y Ser Leu App Lys Arg Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln 35 55 57 57 57 57 57 57 57 57 5	<400> SEQU	ENCE: 126						
atgutcaage aggeergyg octgygeerd geochggaa tgaaggeergy gaagatggee jagategaga aggeerageg gatetaceee ageeragge ggaaatgaeggegg gaagtggee jtgacatga aggeerageg gatetaceee ageeraggeeregg 300 ttgateatge aggetatega gaagaagat teetggeeggeggeagaate gggeeggaagte jtgacatge aggetatega gaagaagat teetggeegge ggeagaacta gggeeggaagte tateteega agaagaettg eaggaaetga eaactatatg egageaagte tateteega agaagaettg eaggaaetga eaactatatg egageaagte jagaagaaa tetateega gaagagat teettgteaa egaetatatt teggeeaact 420 seecteaae ettagaate gaegeegta tetttgteaa egaetatatt teggeeaact 420 segaaggaa tgeaaggagt tttgaatat taeaaateag taaegttgt eagtaattge 540 jggaaggeaa tgeaaggag aggeeeraa aceacaagta tgtttttaa 540 jggteteaee eeteaaae tageaaagge ageeeeaaa aceacaagta tgtttttaa 540 220 > SEO ID NO 127 2212 > TPE: PNT 2213 > LENGTH: 190 2220 > TPENTURE: 2223 > OFHER INFORMATION: synthetic: LS-hCXCL138-107-G3-e-myc-Aga2 4400 > SEQUENCE: 127 44et Lyo Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 15 Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu 20 31y Ser Leu Asp Lys Arg Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln 35 55 57 57 57 57 57 57 57 57 5	atgaaggttt	tgattgtctt	gttggcta	tc ttcgctgctt	tgccattgg	c cttagctcaa	u 60	
pagatogaga aggocagogt gatctacoc agcaacggot gogacaaggt ggaagtogato ptgacatga aggocacaa goggocagaa tgoctgaco ccagatocaa goaggocogg itgatoatgo aggotatoga gaagaagat ttootgogo ggoagaacat ggoggaggo pagacaaaago ttatotooga agaagaat ttootgogo ggoagaacat ggoggagago pagacaaaago ttatotooga agaagaat ttootgogo ggoagaacat ggoggaggo pagacaaaago ttatotooga agaagaat ttootgogo ggoagaacat ggooggaggo pagacaaaago ttatotooga agaagaat ttootgogo ggoagaactat tttggocaac pagagaggaa tgoaaggag ttttgaatat tacaaatoag taacgttgt cagtaattgo pagatotaco cotoaacaac tagoaaaggo agococataa acacacagta tgtttttaa foo pagacagoo gaooraaa cagoaggo ggococataa acacacagta tgtttttaa foo pagatotaco cotoaacaac tagoaaggo agococataa acacacagta tgtttttaa foo pagatotaco cotoaacaac tagoaaggo agococataa pagatotaco cotoaacaac tagoago pagatotaco cotoaacaac tagoaaggo agococataa pagatotaco cotoaacaac tagoago pagatotaco cotoaacaac tagoago pagatotaco cotoaacaac tagoago pagatotaco cotoacaac tagoago pagatotaco cotoacaac tagoago pagatotaco cotoacaac tagoago pagatotaco pagatotaco cotoacaac pagatotaco pagatotaco cotoacaac tagoago pagatotaco pagatotaco cotoacaac pagatotaco pagatotaco cotoacaac pagatotaco pagatotaco pagatotaco pagatotaco cotoacaac pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotaco pagatotac	ccggttattt	ctactaccgt	cggttccg	ct gcagaaggct	: ctttggaca	a gagattcctg	j 120	
gtgacatga aggocacaa goggcagaa tgoctggac ccaqatcoaa goaggocggg 300 tgatacatgo aggoctatoga Gaagaagaat ttootgoggo ggoagaacat ggoggaggo 360 gaacaaaago ttatotooga agaagactg cagaactga caactatatg oggocaato 420 cootcaccaa otttagaato gaogoogtao totttgtoaa ogactactat tttggocaac 480 gggaaggocaa tgocaggagt tttgaatat tacaaatoag taacgttgt cagtaattgo 540 gggtatotoco cotcaacaac tagoaaggo agococataa acacacagta tgtttttaa 600 2210> SEQ ID NO 127 2211> DENOTH: 190 2220> FEATURE: 2220> FEATURE: 2220> FEATURE: 2220> FEATURE: 2220> SEQUENCE: 127 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 1 0 15 Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu 20 Sily Ser Leu Asp Lys Arg Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln 40 Ser Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys 55 57 70 75 58 10 10 10 10 10 10 10 10 10 10	atgttcaagc	agggccggtg	y cctgtgca	tc ggccctggaa	a tgaaggccg	t gaagatggcc	180	
Status and the set of	gagatcgaga	aggccagcgt	gatctacc	cc agcaacggct	gcgacaagg	t ggaagtgatc	240	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	gtgaccatga	aggcccacaa	ı gcggcaga	ga tgcctggaco	c ccagatcca	a gcaggcccgg	300	
<pre>create a contrage of the contract of the</pre>	ctgatcatgc	aggctatcga	a gaagaaga	at ttcctgcgg	c ggcagaaca	t gggcggaggc	360	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	gaacaaaagc	ttatctccga	a agaagact	tg caggaactga	a caactatat	g cgagcaaatc	420	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ccctcaccaa	ctttagaato	gacgccgt	ac tctttgtcaa	a cgactacta	t tttggccaac	480	
2210> SEQ ID NO 127 2211> LENGTH: 190 2222 TYPE: PRT 2223> OTHER INFORMATION: Synthetic: LS-hCXCL138-107-G3-c-myc-Aga2 220> FEATURE: 2223> OTHER INFORMATION: Synthetic: LS-hCXCL138-107-G3-c-myc-Aga2 2400> SEQUENCE: 127 4et Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 10 15 Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu 20 25 30 30 31y Ser Leu Asp Lys Arg Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln 40 45 50 16 55 16 16 10 11 10 45 50 17 70 75 80 Asn Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys 85 90 95 11e Ile Glu Lys Met Leu Asn Ser Asp Lys Ser Asn Gly Gly Gly Glu 10 10 105 110	gggaaggcaa	tgcaaggagt	: ttttgaat	at tacaaatcaq	g taacgtttg	t cagtaattgo	: 540	
<pre>211> LENGTH: 190 212> TYPE: PRT 213> ORGANISM: Artificial Sequence 220> FEATURE: 222> OTHER INFORMATION: Synthetic: LS-hCXCL138-107-G3-c-myc-Aga2 223> OTHER INFORMATION: Synthetic: LS-hCXCL138-107-G3-c-myc-Aga2 22400> SEQUENCE: 127 4et Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 1</pre>	ggttctcacc	cctcaacaac	tagcaaag	gc agccccataa	a acacacagt	a tgttttttaa	u 600	
Ala 5 10 15 Ala Ala Gl No Val Sub Sub Ala Sub Sub Gly Ala Ala Gly No Val Sub Thr Na Gly Sub Ala Gly Gly And Sub Sub And Sub Thr Sub Gly Sub Ala Gly Gly And Sub Sub And Sub Thr Sub Gly Sub Ala Gly Gly And And Sub Thr Gly Sub Gly Sub Gly And Gly Sub Sub Gly Sub And Sub Thr Gly Sub Sub Thr Sub Gly Sub Sub Sub Sub Sub Sub Sub Sub Thr Sub	<211> LEÑG <212> TYPE <213> ORGA <220> FEAT <223> OTHE	TH: 190 : PRT NISM: Artif URE: R INFORMATI			CL138-107-G	3-c-myc-Aga2	1	
AlaLeuAlaGlnProValIleSerThrValGlySerAlaAlaGlu30SerLeuAspLysArgAlaThrGluLeuArgCysGlnCysLeuGln31ySerLeuAspLysArgAlaThrGluLeuArgCysGlnCysLeuGln30SerLeuAspLysArgAlaThrGluLeuArgCysGlnCysLeuGln50SerSerGlnGlySerNaIleGlnSerValAspValLys55ProGlyProHisCysAlaGlnThrGluValIleAlaThrLeu55ProGlyProHisCysAlaGlnThrGluValLeuLys8055ProGlyProHisCysLeuAspProAlaSerProIleValLys80AspLysAlaCysLeuAspProAlaSerProIleValLysLysSer61IleGluLysMetLeuAspSerAspGluSerSerGluSer70ProLysLysLysLysLysLysLysLysSerSer <td>Met Lys Va 1</td> <td></td> <td>/al Leu Le</td> <td></td> <td>e Ala Ala L</td> <td></td> <td></td> <td></td>	Met Lys Va 1		/al Leu Le		e Ala Ala L			
35 40 45 Fhr Leu Gln Gly Ile His Pro Lys Asn Ile Gln Ser Val Asn Val Lys 50 55 55 Ser Val Asn Val Lys 60 75 1e Ala Thr Leu Lys 65 70 Gly Arg Lys Ala Cys Leu Asn Pro Ala Ser Pro Ile Val Lys 80 Asn Gly Arg Lys Met Leu Asn Ser Asp Lys Ser Asn Gly Gly Gly Glu 110 110		a Gln Pro N	Val Ile Se	r Thr Thr Val	-	la Ala Glu		
50 55 60 Ser Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys 55 55 70 70 75 Asn Gly Arg Lys Ala Cys Leu Asn Pro Ala Ser Pro Ile Val Lys 80 Asn Gly Arg Lys Met Leu Asn Ser Asp Lys Ser Asn Gly Gly Gly Glu 90 100 105	-		-	r Glu Leu Arç		ys Leu Gln		
70 75 80 Asm Gly Arg Lys Ala Cys Leu Asm Pro Ala Ser Pro Ile Val Lys Lys 85 90 95 Ile Ile Glu Lys Met Leu Asm Ser Asp Lys Ser Asm Gly Gly Glu 100 105 110		n Gly Ile H	-	s Asn Ile Glr		sn Val Lys		
85 90 95 Ile Ile Glu Lys Met Leu Asn Ser Asp Lys Ser Asn Gly Gly Glu 100 105 110	Ser Pro Gl 65	-	-		l Ile Ala T	-		
100 105 110	Asn Gly Ar		Ys Leu As		r Pro Ile V			
31n Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile Cys	Ile Ile Gl	-	.eu Asn Se		-			
	Gln Lys Le	u Ile Ser (3lu Glu As	p Leu Gln Glu	ı Leu Thr T	hr Ile Cys		

Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser 130 135 140 Thr Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser 165 170 Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe <210> SEQ ID NO 128 <211> LENGTH: 190 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL238-107-G3-c-myc-Aga2 <400> SEQUENCE: 128 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr Leu Gln Gly Ile His Leu Lys Asn Ile Gln Ser Val Lys Val Lys Ser Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn Gly Gln Lys Ala Cys Leu Asn Pro Ala Ser Pro Met Val Lys Lys Ile Ile Glu Lys Met Leu Lys Asn Gly Lys Ser Asn Gly Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile Cys Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe <210> SEQ ID NO 129 <211> LENGTH: 190 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL338-107-G3-c-myc-Aga2 <400> SEQUENCE: 129 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu

-continue	ed
-----------	----

Gly	Ser	Leu 35	Aab	Lys	Arg	Val	Thr 40	Glu	Leu	Arg	Сүз	Gln 45	Cys	Leu	Gln
Thr	Leu 50	Gln	Gly	Ile	His	Leu 55	Lys	Asn	Ile	Gln	Ser 60	Val	Asn	Val	Arg
Ser 65	Pro	Gly	Pro	His	Cys 70	Ala	Gln	Thr	Glu	Val 75	Ile	Ala	Thr	Leu	Lys 80
Asn	Gly	Lys	Lys	Ala 85	Суз	Leu	Asn	Pro	Ala 90	Ser	Pro	Met	Val	Gln 95	Lys
Ile	Ile	Glu	Lys 100	Ile	Leu	Asn	Lys	Gly 105	Ser	Thr	Asn	Gly	Gly 110	Gly	Glu
Gln	ГЛа	Leu 115	Ile	Ser	Glu	Glu	Asp 120	Leu	Gln	Glu	Leu	Thr 125	Thr	Ile	Суз
Glu	Gln 130	Ile	Pro	Ser	Pro	Thr 135	Leu	Glu	Ser	Thr	Pro 140	Tyr	Ser	Leu	Ser
Thr 145	Thr	Thr	Ile	Leu	Ala 150	Asn	Gly	Lys	Ala	Met 155	Gln	Gly	Val	Phe	Glu 160
Tyr	Tyr	Lys	Ser	Val 165	Thr	Phe	Val	Ser	Asn 170	Cys	Gly	Ser	His	Pro 175	Ser
Thr	Thr	Ser	Lys 180	Gly	Ser	Pro	Ile	Asn 185	Thr	Gln	Tyr	Val	Phe 190		
<213 <220 <223	8> OF 0> FF 8> OT	(PE : RGANI EATUR THER EQUEN	ISM: RE: INF(ORMA.			-		LS-ł	nCXCI	G432-	-101	-G3-0	e-myo	z-Aga2
						_	_						_	_	_
Met 1	Lys	Val	Leu	Ile 5	Val	Leu	Leu	Ala	Ile 10	Phe	Ala	Ala	Leu	Pro 15	Leu
Ala	Leu	Ala	Gln 20	Pro	Val	Ile	Ser	Thr 25	Thr	Val	Gly	Ser	Ala 30	Ala	Glu
Gly	Ser	Leu 35	Aab	Lys	Arg	Glu	Ala 40	Glu	Glu	Asp	Gly	Asp 45	Leu	Gln	Суа
Leu	Сув 50	Val	ГЛа	Thr	Thr	Ser 55	Gln	Val	Arg	Pro	Arg 60	His	Ile	Thr	Ser
	61										00				
65	GIU	Val	Ile	Lys	Ala 70	Gly	Pro	His	Суа	Pro 75	Thr	Ala	Gln	Leu	Ile 80
					70					75					80
Ala	Thr	Leu	Lys	Asn 85	70 Gly	Arg	Lys	Ile	Суз 90	75 Leu	Thr	Leu	Gln	Ala 95	80 Pro
Ala Leu	Thr Tyr	Leu Lys	Lys Lys 100	Asn 85 Ile	70 Gly Ile	Arg Lys	Lys Lys	Ile Leu 105	Cys 90 Leu	75 Leu Glu	Thr Asp	Leu Gly	Gln Gly 110	Ala 95 Gly	80 Pro Glu
Ala Leu Gln	Thr Tyr Lys	Leu Lys Leu 115	Lys Lys 100 Ile	Asn 85 Ile Ser	70 Gly Ile Glu	Arg Lys Glu	Lys Lys Asp 120	Ile Leu 105 Leu	Cys 90 Leu Gln	75 Leu Glu Glu	Thr Asp Ser	Leu Gly Thr 125	Gln Gly 110 Thr	Ala 95 Gly Ile	80 Pro Glu Cys
Ala Leu Gln Glu	Thr Tyr Lys Gln 130	Leu Lys Leu 115 Ile	Lys Lys 100 Ile Pro	Asn 85 Ile Ser Ser	70 Gly Ile Glu Pro	Arg Lys Glu Thr 135	Lys Lys Asp 120 Leu	Ile Leu 105 Leu Glu	Cys 90 Leu Gln Ser	75 Leu Glu Glu Thr	Thr Asp Ser Leu Pro	Leu Gly Thr 125 Tyr	Gln Gly 110 Thr Ser	Ala 95 Gly Ile Leu	80 Pro Glu Cys Ser
Ala Leu Gln Glu Thr 145	Thr Tyr Lys Gln 130 Thr	Leu Lys Leu 115 Ile Thr	Lys 100 Ile Pro Ile	Asn 85 Ile Ser Ser Leu	70 Gly Ile Glu Pro Ala 150	Arg Lys Glu Thr 135 Asn	Lys Lys Asp 120 Leu Gly	Ile Leu 105 Leu Glu Lys	Cys 90 Leu Gln Ser Ala	75 Leu Glu Glu Thr Met 155	Thr Asp Ser Leu Pro 140	Leu Gly Thr 125 Tyr Gly	Gln Gly 110 Thr Ser Val	Ala 95 Gly Ile Leu Phe	80 Pro Glu Cys Ser Glu 160
Ala Leu Gln Glu Thr 145 Tyr	Thr Tyr Lys Gln 130 Thr Tyr	Leu Lys Leu 115 Ile Thr Lys	Lys Lys 100 Ile Pro Ile Ser	Asn 85 Ile Ser Ser Leu Val 165	70 Gly Ile Glu Pro Ala 150 Thr	Arg Lys Glu Thr 135 Asn Phe	Lys Lys Asp 120 Leu Gly Val	Ile Leu 105 Leu Glu Lys Ser	Cys 90 Leu Gln Ser Ala Asn 170	75 Leu Glu Glu Thr Met 155 Cys	Thr Asp Ser Leu Pro 140 Gln	Leu Gly Thr 125 Tyr Gly Ser	Gln Gly 110 Thr Ser Val His	Ala 95 Gly Ile Leu Phe Pro	80 Pro Glu Cys Ser Glu 160

```
-continued
```

<210> SEQ ID NO 131 <211> LENGTH: 191 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL544-114-G3-c-myc-Aga2 <400> SEQUENCE: 131 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Leu Arg Glu Leu Arg Cys Val Cys Leu Gln Thr Thr Gln Gly Val His Pro Lys Met Ile Ser Asn Leu Gln Val Phe 50 55 Ala Ile Gly Pro Gln Cys Ser Lys Val Glu Val Val Ala Ser Leu Lys Asn Gly Lys Glu Ile Cys Leu Asp Pro Glu Ala Pro Phe Leu Lys Lys Val Ile Gln Lys Ile Leu Asp Gly Gly Asn Lys Glu Asn Gly Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile Cys Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe <210> SEQ ID NO 132 <211> LENGTH: 191 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL644-114-G3-c-myc-Aga2 <400> SEQUENCE: 132 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Leu Thr Glu Leu Arg Cys Thr Cys Leu Arg Val Thr Leu Arg Val Asn Pro Lys Thr Ile Gly Lys Leu Gln Val Phe Pro Ala Gly Pro Gln Cys Ser Lys Val Glu Val Val Ala Ser Leu Lys Asn Gly Lys Gln Val Cys Leu Asp Pro Glu Ala Pro Phe Leu Lys Lys Val Ile Gln Lys Ile Leu Asp Ser Gly Asn Lys Lys Asn Gly Gly Gly

Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile Cys Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe <210> SEQ ID NO 133 <211> LENGTH: 183 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL759-121-G3-c-myc-Aga2 <400> SEQUENCE: 133 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Ala Glu Leu Arg Cys Met Cys Ile Lys Thr Thr Ser Gly Ile His Pro Lys Asn Ile Gln Ser Leu Glu Val Ile Gly Lys Gly Thr His Cys Asn Gln Val Glu Val Ile Ala Thr Leu Lys Asp Gly Arg Lys Ile Cys Leu Asp Pro Asp Ala Pro Arg Ile Lys Lys Ile Val Gln Lys Lys Leu Gly Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile Cys Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser Thr Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe <210> SEQ ID NO 134 <211> LENGTH: 191 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL829-99-G3-c-myc-Aga2 <400> SEQUENCE: 134 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 1 5 Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu

_	CO	nt	in	ue	d
	00	TTC.		uc	a

			20					25					30		
Gly	Ser	Leu 35	Asp	Lys	Arg	Ala	Lys 40	Glu	Leu	Arg	Суз	Gln 45	Cys	Ile	Lys
Thr	Tyr 50	Ser	Lys	Pro	Phe	His 55	Pro	Lys	Phe	Ile	Lys 60	Glu	Leu	Arg	Val
Ile 65	Glu	Ser	Gly	Pro	His 70	Суз	Ala	Asn	Thr	Glu 75	Ile	Ile	Val	Lys	Leu 80
Ser	Asp	Gly	Arg	Glu 85	Leu	Cys	Leu	Asp	Pro 90	Lys	Glu	Asn	Trp	Val 95	Gln
Arg	Val	Val	Glu 100	Lys	Phe	Leu	Lys	Arg 105	Ala	Glu	Asn	Ser	Gly 110	Gly	Gly
Glu	Gln	Lys 115	Leu	Ile	Ser	Glu	Glu 120	Asp	Leu	Gln	Glu	Leu 125	Thr	Thr	Ile
Сув	Glu 130	Gln	Ile	Pro	Ser	Pro 135	Thr	Leu	Glu	Ser	Thr 140	Pro	Tyr	Ser	Leu
Ser 145	Thr	Thr	Thr	Ile	Leu 150	Ala	Asn	Gly	Lys	Ala 155	Met	Gln	Gly	Val	Phe 160
Glu	Tyr	Tyr	Lys	Ser 165	Val	Thr	Phe	Val	Ser 170	Asn	Сув	Gly	Ser	His 175	Pro
Ser	Thr	Thr	Ser 180	ГЛа	Gly	Ser	Pro	Ile 185	Asn	Thr	Gln	Tyr	Val 190	Phe	
<211 <212 <213 <220	L> LI 2> T 3> OF 0> FI	EQ II ENGTH YPE: RGANI EATUH THER	H: 22 PRT ISM: RE:	23 Art:			-		LS-ł	nCXCI	-923·	-115-	-G3-0	e-myc	c-Aga2
<400)> SI	EQUEI	ICE :	135											
Met 1	Lys	Val	Leu	Ile 5	Val	Leu	Leu	Ala	Ile 10	Phe	Ala	Ala	Leu	Pro 15	Leu
Ala	Leu	Ala	Gln 20	Pro	Val	Ile	Ser		The				712		
Gly	Ser	T						25	1111	Val	Gly	Ser	30	AIA	Glu
Cys		цец 35	Asp	ГЛа	Arg	Thr	Pro 40								
	Ile 50						40	Val	Val	Arg	Lys	Gly 45	30 Arg	Cys	Ser
Leu 65	50	35	Thr	Asn	Gln	Gly 55	40 Thr	Val Ile	Val His	Arg Leu	Lys Gln 60	Gly 45 Ser	30 Arg Leu	Cys Lys	Ser Asp
65	50 Lys	35 Ser	Thr Phe	Asn Ala	Gln Pro 70	Gly 55 Ser	40 Thr Pro	Val Ile Ser	Val His Cys	Arg Leu Glu 75	Lys Gln 60 Lys	Gly 45 Ser Ile	30 Arg Leu Glu	Cys Lys Ile	Ser Asp Ile 80
65 Ala	50 Lys Thr	35 Ser Gln	Thr Phe Lys	Asn Ala Asn 85	Gln Pro 70 Gly	Gly 55 Ser Val	40 Thr Pro Gln	Val Ile Ser Thr	Val His Cys Cys 90	Arg Leu Glu 75 Leu	Lys Gln 60 Lys Asn	Gly 45 Ser Ile Pro	30 Arg Leu Glu Asp	Cys Lys Ile Ser 95	Ser Asp Ile 80 Ala
65 Ala Asp	50 Lys Thr Val	35 Ser Gln Leu	Thr Phe Lys Glu 100	Asn Ala Asn 85 Leu	Gln Pro 70 Gly Ile	Gly 55 Ser Val Lys	40 Thr Pro Gln Lys	Val Ile Ser Thr Trp 105	Val His Cys Cys 90 Glu	Arg Leu Glu 75 Leu Lys	Lys Gln 60 Lys Asn Gln	Gly 45 Ser Ile Pro Val	30 Arg Leu Glu Asp Ser 110	Cys Lys Ile Ser 95 Gln	Ser Asp Ile 80 Ala Lys
65 Ala Asp Lys	50 Lys Thr Val Lys	35 Ser Gln Leu Lys Gln	Thr Phe Lys Glu 100 Lys	Asn Ala Asn 85 Leu Asn	Gln Pro 70 Gly Ile Gly	Gly 55 Ser Val Lys Lys	40 Thr Pro Gln Lys Lys 120	Val Ile Ser Thr Trp 105 His	Val His Cys 90 Glu Gln	Arg Leu Glu 75 Leu Lys Lys	Lys Gln 60 Lys Asn Gln Lys	Gly 45 Ser Ile Pro Val Lys 125	30 Arg Leu Glu Asp Ser 110 Val	Cys Lys Ile Ser 95 Gln Leu	Ser Asp Ile 80 Ala Lys Lys
65 Ala Asp Lys Val	50 Lys Thr Val Lys Arg 130	35 Ser Gln Leu Lys Gln 115	Thr Phe Lys Glu 100 Lys Ser	Asn Ala Asn 85 Leu Asn Gln	Gln Pro 70 Gly Ile Gly Arg	Gly 55 Ser Val Lys Lys Ser 135	40 Thr Pro Gln Lys 120 Arg	Val Ile Ser Thr Trp 105 His Gln	Val His Cys 90 Glu Lys	Arg Leu Glu 75 Leu Lys Lys	Lys Gln 60 Lys Asn Gln Lys Thr 140	Gly 45 Ser Ile Pro Val Lys 125 Thr	30 Arg Leu Glu Asp Ser 110 Val Gly	Cys Lys Ile Ser 95 Gln Leu Gly	Ser Asp Ile 80 Ala Lys Lys Gly
65 Ala Asp Lys Val Glu 145	50 Lys Thr Val Lys Arg 130 Gln	35 Ser Gln Leu Lys Gln 115 Lys	Thr Phe Lys Glu 100 Lys Ser Leu	Asn Ala Asn 85 Leu Asn Gln Ile	Gln Pro 70 Gly Ile Gly Arg Ser 150	Gly 55 Ser Val Lys Lys Ser 135 Glu	40 Thr Pro Gln Lys Lys Lys Arg Glu	Val Ile Ser Thr Trp 105 His Gln Asp	Val His Cys 90 Glu Lys Leu	Arg Leu Glu 75 Leu Lys Lys Lys Gln 155	Lys Gln 60 Lys Asn Gln Lys Thr 140 Glu	Gly 45 Ser Ile Pro Val Lys 125 Thr Leu	30 Arg Leu Glu Asp Ser 110 Val Gly Thr	Cys Lys Ile Ser 95 Gln Leu Gly Thr	Ser Asp Ile 80 Ala Lys Lys Gly Ile 160

-continued

Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe <210> SEQ ID NO 136 <211> LENGTH: 197 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL1022-98-G3-c-myc-Aga2 <400> SEQUENCE: 136 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu 2.0 Gly Ser Leu Asp Lys Arg Val Pro Leu Ser Arg Thr Val Arg Cys Thr Cys Ile Ser Ile Ser Asn Gln Pro Val Asn Pro Arg Ser Leu Glu Lys Leu Glu Ile Ile Pro Ala Ser Gln Phe Cys Pro Arg Val Glu Ile Ile Ala Thr Met Lys Lys Lys Gly Glu Lys Arg Cys Leu Asn Pro Glu Ser Lys Ala Ile Lys Asn Leu Leu Lys Ala Val Ser Lys Glu Arg Ser Lys Arg Ser Pro Gly Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile Cys Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser Thr Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser 165 170 Asn Cys Gly Ser His Pro Ser Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe <210> SEQ ID NO 137 <211> LENGTH: 193 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-hCXCL1122-94-G3-c-myc-Aga2 <400> SEQUENCE: 137 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Phe Pro Met Phe Lys Arg Gly Arg Cys Leu

											-	COIL	ιτΠ	uea	
Сув	Ile 50	Gly	Pro	Gly	Val	Lys 55	Ala	Val	Lys	Val	Ala 60	Asp	Ile	Glu	Lys
Ala 65	Ser	Ile	Met	Tyr	Pro 70	Ser	Asn	Asn	Cys	Asp 75	Lys	Ile	Glu	Val	Ile 80
Ile	Thr	Leu	Lys	Glu 85	Asn	Lys	Gly	Gln	Arg 90	Суз	Leu	Asn	Pro	Lys 95	Ser
Lys	Gln	Ala	Arg 100	Leu	Ile	Ile	Lys	Lys 105	Val	Glu	Arg	Lys	Asn 110	Phe	Gly
Gly	Gly	Glu 115	Gln	Lys	Leu	Ile	Ser 120	Glu	Glu	Asp	Leu	Gln 125	Glu	Leu	Thr
Thr	Ile 130	Cys	Glu	Gln	Ile	Pro 135	Ser	Pro	Thr	Leu	Glu 140	Ser	Thr	Pro	Tyr
Ser 145	Leu	Ser	Thr	Thr	Thr 150	Ile	Leu	Ala	Asn	Gly 155		Ala	Met	Gln	Gly 160
Val	Phe	Glu	Tyr	Tyr 165	Lys	Ser	Val	Thr	Phe 170	Val	Ser	Asn	Суз	Gly 175	Ser
His	Pro	Ser	Thr 180	Thr	Ser	Lys	Gly	Ser 185	Pro	Ile	Asn	Thr	Gln 190	Tyr	Val
Phe															
<213 <220 <223)> FH	RGANI EATUF THER	ISM: RE: INF(ORMA			Seque nthe		LS-1	mCXC	L128	-96-1	G3 - c	-myc	-Aga2
Met 1	Lys	Val	Leu	Ile 5	Val	Leu	Leu	Ala	Ile 10	Phe	Ala	Ala	Leu	Pro 15	Leu
Ala	Leu	Ala	Gln 20	Pro	Val	Ile	Ser	Thr 25	Thr	Val	Gly	Ser	Ala 30	Ala	Glu
Gly	Ser	Leu 35	Asp	Lys	Arg	Ala	Asn 40	Glu	Leu	Arg	Суз	Gln 45	Суз	Leu	Gln
Thr	Met 50	Ala	Gly	Ile	His	Leu 55	Lys	Asn	Ile	Gln	Ser 60	Leu	Lys	Val	Leu
Pro 65	Ser	Gly	Pro	His	Cys 70	Thr	Gln	Thr	Glu	Val 75	Ile	Ala	Thr	Leu	LУ2 80
Asn	Gly	Arg	Glu	Ala 85	Cys	Leu	Asp	Pro	Glu 90	Ala	Pro	Leu	Val	Gln 95	Lys
Ile	Val	Gln	Lys 100		Leu	ГЛа	Gly	Val 105		Lys	Gly	Gly	Gly 110	Glu	Gln
Lys	Leu	Ile 115	Ser	Glu	Glu	Asp	Leu 120		Glu	Leu	Thr	Thr 125	Ile	Сүз	Glu
Gln	Ile 130	Pro	Ser	Pro	Thr	Leu 135	Glu	Ser	Thr	Pro	Tyr 140	Ser	Leu	Ser	Thr
Thr 145	Thr	Ile	Leu	Ala	Asn 150	Gly	Lys	Ala	Met	Gln 155	Gly	Val	Phe	Glu	Tyr 160
Tyr	Lys	Ser	Val	Thr 165	Phe	Val	Ser	Asn	Cys 170	Gly	Ser	His	Pro	Ser 175	Thr
Thr	Ser	ràa	Gly 180	Ser	Pro	Ile	Asn	Thr 185	Gln	Tyr	Val	Phe			

```
-continued
```

<210> SEQ ID NO 139 <211> LENGTH: 190 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL231-100-G3-c-myc-Aga2 <400> SEQUENCE: 139 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 10 Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu 25 Gly Ser Leu Asp Lys Arg Ala Ser Glu Leu Arg Cys Gln Cys Leu Lys 40 45 Thr Leu Pro Arg Val Asp Phe Lys Asn Ile Gln Ser Leu Ser Val Thr 50 55 60 Pro Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys 65 70 75 80 Gly Gly Gln Lys Val Cys Leu Asp Pro Glu Ala Pro Leu Val Gln Lys 85 90 95 Ile Ile Gln Lys Ile Leu Asn Lys Gly Lys Ala Asn Gly Gly Gly Glu 100 105 110 Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile Cys 115 120 125 Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser 140 130 135 Thr Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu 145 150 155 160 Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser 165 170 175 Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe 180 185 190 <210> SEQ ID NO 140 <211> LENGTH: 190 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL331-100-G3-c-myc-Aga2 <400> SEQUENCE: 140 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 5 10 1 Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu 25 20 30 Gly Ser Leu Asp Lys Arg Ala Ser Glu Leu Arg Cys Gln Cys Leu Asn 35 40 45 Thr Leu Pro Arg Val Asp Phe Glu Thr Ile Gln Ser Leu Thr Val Thr 55 60 Pro Pro Gly Pro His Cys Thr Gln Thr Glu Val Ile Ala Thr Leu Lys 65 70 75 80 Asp Gly Gln Glu Val Cys Leu Asn Pro Gln Gly Pro Arg Leu Gln Ile 85 90 95 Ile Ile Lys Lys Ile Leu Lys Ser Gly Lys Ser Ser Gly Gly Gly Glu 105 100 110

CC			

Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile Cys 115 120 125 Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser 135 140 130 Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu 145 150 155 160 Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser 170 165 175 Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe 180 185 <210> SEQ ID NO 141 <211> LENGTH: 196 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL430-105-G3-c-myc-Aga2 <400> SEOUENCE: 141 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 1 5 10 15 Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu 20 25 30 Gly Ser Leu Asp Lys Arg Val Thr Ser Ala Gly Pro Glu Glu Ser Asp 35 40 45 Gly Asp Leu Ser Cys Val Cys Val Lys Thr Ile Ser Ser Gly Ile His 50 55 60 Leu Lys His Ile Thr Ser Leu Glu Val Ile Lys Ala Gly Arg His Cys 65 70 80 Ala Val Pro Gln Leu Ile Ala Thr Leu Lys Asn Gly Arg Lys Ile Cys 85 90 95 Leu Asp Arg Gln Ala Pro Leu Tyr Lys Lys Val Ile Lys Lys Ile Leu 100 105 110 Glu Ser Gly Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln 120 115 125 Glu Leu Thr Thr Ile Cys Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser 135 130 140 Thr Pro Tyr Ser Leu Ser Thr Thr Thr Ile Leu Ala Asn Gly Lys Ala 145 150 155 160 Met Gln Gly Val Phe Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn 165 170 175 Cys Gly Ser His Pro Ser Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr 180 185 190 Gln Tyr Val Phe 195 <210> SEQ ID NO 142 <211> LENGTH: 191 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL548-118-G3-c-myc-Aga2 <400> SEQUENCE: 142 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 1 5 10 15

-	CO	nt	ir	ιu	ed

Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Ala Thr Glu Leu Arg Cys Val Cys Leu Thr Val Thr Pro Lys Ile Asn Pro Lys Leu Ile Ala Asn Leu Glu Val Ile Pro Ala Gly Pro Gln Cys Pro Thr Val Glu Val Ile Ala Lys Leu Lys Asn Gln Lys Glu Val Cys Leu Asp Pro Glu Ala Pro Val Ile Lys Lys Ile Ile Gln Lys Ile Leu Gly Ser Asp Lys Lys Lys Ala Gly Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile 115 120 Cys Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe <210> SEQ ID NO 143 <211> LENGTH: 186 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL748-113-G3-c-myc-Aga2 <400> SEQUENCE: 143 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Ile Glu Leu Arg Cys Arg Cys Thr Asn Thr Ile Ser Gly Ile Pro Phe Asn Ser Ile Ser Leu Val Asn Val Tyr Arg Pro Gly Val His Cys Ala Asp Val Glu Val Ile Ala Thr Leu Lys Asn Gly Gln Lys Thr Cys Leu Asp Pro Asn Ala Pro Gly Val Lys Arg Ile Val Met Lys Ile Leu Glu Gly Tyr Gly Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile Cys Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser Thr Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser Thr Thr Ser Lys

Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe <210> SEQ ID NO 144 <211> LENGTH: 225 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL922-126-G3-c-myc-Aga2 <400> SEQUENCE: 144 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Thr Leu Val Ile Arg Asn Ala Arg Cys Ser Cys Ile Ser Thr Ser Arg Gly Thr Ile His Tyr Lys Ser Leu Lys Asp Leu Lys Gln Phe Ala Pro Ser Pro Asn Cys Asn Lys Thr Glu Ile Ile Ala Thr Leu Lys Asn Gly Asp Gln Thr Cys Leu Asp Pro Asp Ser Ala Asn Val Lys Lys Leu Met Lys Glu Trp Glu Lys Lys Ile Ser Gln Lys Lys Lys Gln Lys Arg Gly Lys Lys His Gln Lys Asn Met Lys Asn Arg Lys Pro Lys Thr Pro Gln Ser Arg Arg Arg Ser Arg Lys Thr Thr Gly Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln Glu Leu Thr Thr Ile Cys Glu Gln Ile Pro Ser Pro Thr Leu Glu Ser Thr Pro Tyr Ser Leu Ser Thr Thr Thr Ile Leu Ala Asn Gly Lys Ala Met Gln Gly Val Phe Glu Tyr Tyr Lys Ser Val Thr Phe Val Ser Asn Cys Gly Ser His Pro Ser Thr Thr Ser Lys Gly Ser Pro Ile Asn Thr Gln Tyr Val Phe <210> SEQ ID NO 145 <211> LENGTH: 197 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: LS-mCXCL1022-98-G3-c-myc-Aga2 <400> SEQUENCE: 145 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu Gly Ser Leu Asp Lys Arg Ile Pro Leu Ala Arg Thr Val Arg Cys Asn

-continued

		35					40					45			
Сүз	Ile 50	His	Ile	Asp	Asp	Gly 55	Pro	Val	Arg	Met	Arg 60	Ala	Ile	Gly	Lys
Leu 65	Glu	Ile	Ile	Pro	Ala 70	Ser	Leu	Ser	Суз	Pro 75	Arg	Val	Glu	Ile	Ile 80
Ala	Thr	Met	Lys	Lys 85	Asn	Asp	Glu	Gln	Arg 90	Cys	Leu	Asn	Pro	Glu 95	Ser
ГЛа	Thr	Ile	Lys 100	Asn	Leu	Met	Lys	Ala 105	Phe	Ser	Gln	ГЛа	Arg 110	Ser	Lys
Arg	Ala	Pro 115	Gly	Gly	Gly	Glu	Gln 120	Lys	Leu	Ile	Ser	Glu 125	Glu	Aab	Leu
Gln	Glu 130	Leu	Thr	Thr	Ile	Cys 135	Glu	Gln	Ile	Pro	Ser 140	Pro	Thr	Leu	Glu
Ser 145	Thr	Pro	Tyr	Ser	Leu 150		Thr	Thr	Thr	Ile 155		Ala	Asn	Gly	Lys 160
	Met	Gln	Gly	Val 165		Glu	Tyr	Tyr	Lys 170		Val	Thr	Phe	Val 175	
Asn	Cys	Gly	Ser 180		Pro	Ser	Thr	Thr 185		Lys	Gly	Ser	Pro 190		Asn
Thr	Gln	Tyr 195		Phe				100					190		
<21 <21	1> LH 2> TY 3> OH 0> FH	(PE : RGANI EATUR	PRT ISM: RE:	Art:	ific:	ial :	Seque	ence							
<22	3 > 01	THER	INFO	DRMA'	FION	: Syı	nthet	ic:	LS-r	nCXCI	1122	2-100)-G3-	- c - mչ	/c-Aga2
	3 > 0				FION	: Syı	nthet	ic:	LS-T	nCXCI	51122	2-100)-G3-	- C - MJ	/c-Aga2
<40		equen	ICE :	146		-								_	-
<40 Met 1	0> SI	EQUEN Val	ICE : Leu	146 Ile 5	Val	Leu	Leu	Ala	Ile 10	Phe	Ala	Ala	Leu	Pro 15	Leu
<40 Met 1 Ala	0> SI Lys	EQUEN Val Ala	ICE: Leu Gln 20	146 Ile 5 Pro	Val Val	Leu Ile	Leu Ser	Ala Thr 25	Ile 10 Thr	Phe Val	Ala Gly	Ala Ser	Leu Ala 30	Pro 15 Ala	Leu Glu
<40 Met 1 Ala Gly	D> SI Lys Leu	EQUEN Val Ala Leu 35	JCE : Leu Gln 20 Asp	146 Ile 5 Pro Lys	Val Val Arg	Leu Ile Phe	Leu Ser Leu 40	Ala Thr 25 Met	Ile 10 Thr Phe	Phe Val Lys	Ala Gly Gln	Ala Ser Gly 45	Leu Ala 30 Arg	Pro 15 Ala Cys	Leu Glu Leu
<40 Met 1 Ala Gly Cys	D> SI Lys Leu Ser Ile	Val Ala Leu 35 Gly	ICE: Leu Gln 20 Asp Pro	146 Jle 5 Pro Lys Gly Tyr	Val Val Arg Met	Leu Ile Phe Lys 55	Leu Ser Leu 40 Ala	Ala Thr 25 Met Val	Ile 10 Thr Phe Lys Cys	Phe Val Lys Met	Ala Gly Gln Ala 60	Ala Ser Gly 45 Glu	Leu Ala 30 Arg Ile	Pro 15 Ala Cys Glu	Leu Glu Leu Lys
<40 Met 1 Ala Gly Cys Ala 65	D> SI Lys Leu Ser Ile 50	Val Ala Leu 35 Gly Val	JCE: Leu Gln 20 Asp Pro Ile	146 Ile 5 Pro Lys Gly Tyr	Val Val Arg Met Pro 70	Leu Ile Phe Lys 55 Ser	Leu Ser Leu 40 Ala Asn	Ala Thr 25 Met Val Gly	Ile 10 Thr Phe Lys Cys	Phe Val Lys Met Asp 75	Ala Gly Gln Ala 60 Lys	Ala Ser Gly 45 Glu Val	Leu Ala 30 Arg Ile Glu	Pro 15 Ala Cys Glu Val	Leu Glu Leu Lys Ile 80
<40 Met 1 Ala Gly Cys Ala 65 Val	D> SI Lys Leu Ser Ile 50 Ser	CQUEN Val Ala Leu 35 Gly Val Met	JCE: Leu Gln 20 Asp Pro Ile Lys	146 Ile 5 Pro Lys Gly Tyr Ala 85	Val Val Arg Met Pro 70 His	Leu Ile Phe Lys 55 Ser Lys	Leu Ser Leu 40 Ala Asn Arg	Ala Thr 25 Met Val Gly Gln	Ile 10 Thr Phe Lys Cys Arg 90	Phe Val Lys Met Asp 75 Cys	Ala Gly Gln Ala 60 Lys Leu	Ala Ser Gly 45 Glu Val Asp	Leu Ala 30 Arg Ile Glu Pro	Pro 15 Ala Cys Glu Val Arg 95	Leu Glu Leu Lys Ile 80 Ser
<40 Met 1 Ala Gly Cys Ala 65 Val Lys	D> SF Lys Leu Ser Ile 50 Ser Thr	CQUEN Val Ala Leu 35 Gly Val Met Ala	ACE: Leu Gln 20 Asp Pro Ile Lys Arg 100	146 Ile 5 Pro Lys Gly Tyr Ala 85 Leu	Val Val Arg Met Pro 70 His Ile	Leu Ile Phe Lys 55 Ser Lys Met	Leu Ser Leu 40 Ala Asn Arg Gln	Ala Thr 25 Met Val Gly Gln Ala 105	Ile 10 Thr Phe Lys Cys Arg 90 Ile	Phe Val Lys Met Asp 75 Cys Glu	Ala Gly Gln Ala 60 Lys Leu Lys	Ala Ser Gly 45 Glu Val Asp Lys	Leu Ala 30 Arg Ile Glu Pro Asn 110	Pro 15 Ala Cys Glu Val Arg 95 Phe	Leu Glu Leu Lys Ile Ser Leu
<40 Met 1 Ala Gly Cys Ala 65 Val Lys Arg	<pre>D> SF Lys Leu Ser Ile Ser Thr Gln</pre>	EQUEN Val Ala Leu 35 Gly Val Met Ala Gln 115	ICE: Leu Gln 20 Asp Pro Ile Lys Arg 100 Asn	146 Ile 5 Pro Lys Gly Tyr Ala 85 Leu Met	Val Val Arg Met Pro 70 His Ile Gly	Leu Ile Phe Lys Ser Lys Met Gly	Leu Ser Leu 40 Ala Asn Arg Gln Gly 120	Ala Thr 25 Met Val Gly Gln Ala 105 Glu	Ile 10 Thr Phe Lys Cys Arg 90 Ile Gln	Phe Val Lys Met Asp 75 Cys Glu Lys	Ala Gly Gln Ala 60 Lys Leu Lys Leu	Ala Ser Gly 45 Glu Val Asp Lys Ile 125	Leu Ala 30 Arg Glu Pro Asn 110 Ser	Pro 15 Ala Cys Glu Val Arg 95 Phe Glu	Leu Glu Leu Lys Ile 80 Ser Leu Glu
<40 Met 1 Gly Cys Ala 65 Val Lys Arg Asp	D> SE Lys Leu Ser Ile Ser Thr Gln Arg Leu	QUEN Val Ala Leu 35 Gly Val Met Ala Gln 115 Gln	NCE: Leu Gln 20 Asp Pro Ile Lys Lys Arg 100 Asn Glu	146 Ile 5 Pro Lys Gly Tyr Ala 85 Leu Met Leu	Val Val Arg Met Pro 70 His Ile Gly Thr	Leu Ile Phe Lys 55 Ser Lys Met Gly Thr 135	Leu Ser Leu 40 Ala Asn Arg Gln Gly 120 Ile	Ala Thr 25 Met Val Gly Gln Ala 105 Glu Cys	Ile 10 Thr Phe Lys Cys Arg 90 Ile Gln Glu	Phe Val Lys Met Asp 75 Cys Glu Lys Gln	Ala Gly Gln Ala 60 Lys Leu Lys Leu Leu 140	Ala Ser Gly 45 Glu Val Asp Lys Ile 125 Pro	Leu Ala 30 Arg Glu Pro Asn 110 Ser Ser	Pro 15 Ala Cys Glu Val Arg 95 Phe Glu Pro	Leu Glu Leu Lys Ser Leu Glu Thr
<40 Met 1 Gly Cys Ala 65 Val Lys Arg Asp Leu 145	<pre>D> SE Lys Leu Ser Ile 50 Ser Thr Gln Arg Leu 130</pre>	QUEN Val Ala Leu 35 Gly Val Met Ala Gln 115 Gln Ser	NCE: Leu Gln 20 Asp Pro Ile Lys Arg 100 Asn Glu Thr	146 Ile 5 Pro Lys Gly Tyr Ala 85 Leu Met Leu Pro	Val Val Arg Met Pro 70 His Ile Gly Thr Tyr 150	Leu Ile Phe Lys Ser Lys Met Gly Thr 135 Ser	Leu Ser Leu 40 Ala Asn Arg Gln 120 Ile Leu	Ala Thr 25 Met Val Gly Gln Ala 105 Glu Cys Ser	Ile 10 Thr Phe Lys Cys Arg 90 Ile Gln Glu Thr	Phe Val Lys Met Asp 75 Cys Glu Lys Glu Lys Gln Thr 155	Ala Gly Gln Ala 60 Lys Leu Lys Leu Ile 140 Thr	Ala Ser Gly 45 Glu Val Lys Ile 125 Pro Ile	Leu Ala 30 Arg Glu Pro Asn 110 Ser Ser Leu	Pro 15 Ala Cys Glu Val Arg 95 Phe Glu Pro Ala	Leu Glu Leu Lys Ser Leu Glu Thr Asn 160

										-	con	tin	ued						
		180					185					190							
Ile Asn	Thr 195	Gln	Tyr	Val	Phe														
<210> S <211> L <212> T <213> O <220> F <223> O	ENGTH YPE : RGANJ EATUF	H: 5' DNA [SM: RE:	73 Art:			-		рсни	A-LS	-hCX0	CL1-(33-c·	-myc	-Aga2					
<400> S	EQUEI	ICE :	147																
atgaagg	ttt t	gatt	tgtci	tt g1	ttgg	ctato	c tto	cgcto	gett	tgc	catt	ggc (cttaq	gctcaa	6	0			
ccggtta	ttt d	ctact	tacco	gt co	ggtt	ccgct	c gea	agaaq	ggct	ctt	tgga	caa g	gaga	gccacc	12	0			
gagctga	gat g	gccaç	gtgco	ct go	caga	ccct	g caq	gggca	atcc	acco	ccaa	gaa d	catco	cagagc	18	0			
gtgaacg	tga a	agtco	ccct	gg co	cccca	actgo	c gco	ccaga	accg	aagi	tgat	cgc (cacco	ctgaag	24	0			
aacggcc	gga a	aggco	ctgc	ct ga	aacco	ccgco	c ago	cccca	atcg	tgaa	agaa	aat d	catco	gagaag	30	0			
atgctga	aca ç	gcga	caaga	ag ca	aacgo	gcgga	a ggo	cgaad	caaa	agci	ttat	ctc d	cgaa	gaagac	36	0			
ttgcagg	aac t	gaca	aacta	at ai	tgcga	agcaa	a ato	cccct	ccac	caa	cttt	aga a	atcga	acgccg	42	0			
tactctt	tgt d	caaco	gacta	ac ta	attt	tggco	c aad	cggga	aagg	caat	tgca	agg a	agtti	ttgaa	48	0			
tattaca	aat d	cagta	aacgi	tt tç	gtcaq	gtaat	t tg	cggtt	cctc	acco	cctc	aac a	aacta	agcaaa	54	0			
ggcagcc	cca t	aaad	caca	ca gi	tatgi	tttt	t taa	a							57	3			
<220> F <223> O <400> S Met Lys	THER EQUEN	INF(ICE :	148		-							-	-	Leu					
мес шуз 1	var	Цец	5	Vai	цец	пеа	лта	10	rne	лта	пта	цец	15	Ded					
Ala Leu	Ala	Gln 20	Pro	Val	Ile	Ser	Thr 25	Thr	Val	Gly	Ser	Ala 30	Ala	Glu					
Gly Ser	Leu 35	Asp	ГЛа	Arg	Ala	Thr 40	Glu	Leu	Arg	Сүз	Gln 45	Суз	Leu	Gln					
Thr Leu 50	Gln	Gly	Ile	His	Pro 55	Lys	Asn	Ile	Gln	Ser 60	Val	Asn	Val	Lys					
Ser Pro 65	Gly	Pro	His	Cys 70	Ala	Gln	Thr	Glu	Val 75	Ile	Ala	Thr	Leu	LYa 80					
Asn Gly	Arg	Lys	Ala 85	Сүз	Leu	Asn	Pro	Ala 90	Ser	Pro	Ile	Val	Lys 95	Lys					
Ile Ile	Glu	Lys 100	Met	Leu	Asn	Ser	Asp 105	Lys	Ser	Asn	Gly	Gly 110	Gly	Glu					
Gln Lys	Leu 115	Ile	Ser	Glu	Glu	Asp 120	Leu	Gln	Glu	Leu	Thr 125	Thr	Ile	Сүз					
Glu Gln 130		Pro	Ser	Pro	Thr 135	Leu	Glu	Ser	Thr	Pro 140	Tyr	Ser	Leu	Ser					
Thr Thr 145	Thr	Ile	Leu	Ala 150	Asn	Gly	Lys	Ala	Met 155	Gln	Gly	Val	Phe	Glu 160					
Tyr Tyr	Lys	Ser	Val	Thr	Phe	Val	Ser	Asn	Суз	Gly	Ser	His	Pro	Ser					

-continued

		- conc 11	lucu		
165	170		175		
Thr Thr Ser Lys Gly Se 180	er Pro Ile Asn Thr Gln 185	Tyr Val Phe 190			
100	105	150	<u>,</u>		
<210> SEQ ID NO 149 <211> LENGTH: 2556 <212> TYPE: DNA <213> ORGANISM: Artif: <220> FEATURE: <223> OTHER INFORMATIC CK138	icial Sequence DN: Synthetic: mouse S	A-(Gly4Ser)3	3-scFv (VL-V	H)	
<400> SEQUENCE: 149					
atggaagcac acaagagtga	gatcgcccat cggtataatg	atttgggaga	acaacatttc	60	
aaaggeetag teetgattge	cttttcccag tatctccaga	aatgctcata	cgatgagcat	120	
gccaaattag tgcaggaagt	aacagacttt gcaaagacgt	gtgttgccga	tgagtetgee	180	
gccaactgtg acaaatccct	tcacactctt tttggagata	agttgtgtgc	cattccaaac	240	
ctccgtgaaa actatggtga	actggctgac tgctgtacaa	aacaagagcc	cgaaagaaac	300	
gaatgtttcc tgcaacacaa	agatgacaac cccagcctac	caccatttga	aaggccagag	360	
getgaggeea tgtgeacete	ctttaaggaa aacccaacca	cctttatggg	acactatttg	420	
catgaagttg ccagaagaca	tccttatttc tatgccccag	aacttcttta	ctatgctgag	480	
cagtacaatg agattctgac	ccagtgttgt gcagaggctg	acaaggaaag	ctgcctgacc	540	
ccgaagcttg atggtgtgaa	ggagaaagca ttggtctcat	ctgtccgtca	gagaatgaag	600	
tgctccagta tgcagaagtt	tggagagaga gcttttaaag	catgggcagt	agctcgtctg	660	
agccagacat tccccaatgc	tgactttgca gaaatcacca	aattggcaac	agacctgacc	720	
aaagtcaaca aggagtgctg	ccatggtgac ctgctggaat	gcgcagatga	cagggcggaa	780	
cttgccaagt acatgtgtga	aaaccaggcg actatctcca	gcaaactgca	gacttgctgc	840	
gataaaccac tgttgaagaa	agcccactgt cttagtgagg	tggagcatga	caccatgcct	900	
gctgatctgc ctgccattgc	tgctgatttt gttgaggacc	aggaagtgtg	caagaactat	960	
gctgaggcca aggatgtctt	cctgggcacg ttcttgtatg	aatattcaag	aagacaccct	1020	
gattactctg tatccctgtt	gctgagactt gctaagaaat	atgaagccac	tctggaaaag	1080	
tgctgcgctg aagccaatcc	teeegeatge taeggeacag	tgcttgctga	atttcagcct	1140	
cttgtagaag agcctaagaa	cttggtcaaa accaactgtg	atctttacga	gaagettgga	1200	
gaatatggat tecaaaatge	cattctagtt cgctacaccc	agaaagcacc	tcaggtgtca	1260	
accccaactc tcgtggaggc	tgcaagaaac ctaggaagag	tgggcaccaa	gtgttgtaca	1320	
cttcctgaag atcagagact	gccttgtgtg gaagactatc	tgtctgcaat	cctgaaccgt	1380	
gtgtgtctgc tgcatgagaa	gaccccagtg agtgagcatg	ttaccaagtg	ctgtagtgga	1440	
teeetggtgg aaaggeggee	atgettetet getetgaeag	ttgatgaaac	atatgtcccc	1500	
aaagagttta aagctgagac	cttcaccttc cactctgata	tctgcacact	tccagagaag	1560	
gagaagcaga ttaagaaaca	aacggctctt gctgagctgg	tgaagcacaa	gcccaaggct	1620	
acagcggagc aactgaagac	tgtcatggat gactttgcac	agttcctgga	tacatgttgc	1680	
aaggctgctg acaaggacac	ctgcttctcg actgagggtc	caaaccttgt	cactagatgc	1740	
aaagacgcct tagccggtgg	aggaggctct ggtggaggcg	gtagcggagg	cggagggtcg	1800	

-continued	
gctatccaga tgacccggtc cccgagctcc ctgtccgcct ctgtgggcga tagggtcacc	1860
atcacctgcc gtgccagtca gtaccacgac ggttctgcag cctggtatca acagaaacca	1920
ggaaaagctc cgaagcttct gatttacggt gcatcctacc tctactctgg agtcccttcc	1980
cgcttctctg gtagccgttc cgggacggat ttcactctga ccatcagcag tctgcagccg	2040
gaagacttcg caacttatta ctgtcagcaa tcttcttatt ctctgatcac gttcggacag	2100
ggtaccaagg tggagatcaa aggtactact gccgctagtg gtagtagtgg tggcagtagc	2160
agtggtgccg aggttcagct ggtggagtct gacggtggcc tggtgcagcc aggggggctca	2220
ctccgtttgt cctgtgcagc ttctggcttc aacctctctt actacggtat gcactgggtg	2280
cgtcaggccc cgggtaaggg cctggaatgg gttgcataca ttgcttctta ccctggctac	2340
acttettatg eegatagegt caagggeegt tteactataa gegeagaeae ateeaaaae	2400
acageetace tacaaatgaa cagettaaga getgaggaca etgeegteta etattgtget	2460
cgctctggtt acagttactc tccgtattat tcttggttct ctgctggtat gaactactgg	2520
ggtcaaggag ccctggtcac cgtctcctcg tgatag	2556
<211> LENGTH: 2530 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VL- CK157 <400> SEQUENCE: 150	VH)
atgogaagca cacaagagtg agatogooca toggtataat gatttgggag aacaacattt	60
caaaggeeta gteetgattg cetttteeca gtateteeag aaatgeteat acgatgagea	
tgccaaatta gtgcaggaag taacagactt tgcaaagacg tgtgttgccg atgagtctgc	
cgccaactgt gacaaatccc ttcacactct ttttggagat aagttgtgtg ccattccaaa	240
cctccgtgaa aactatggtg aactggctga ctgctgtaca aaacaagagc ccgaaagaaa	300
cgaatgtttc ctgcaacaca aagatgacaa ccccagccta ccaccatttg aaaggccaga	360
ggctgaggcc atgtgcacct cctttaagga aaacccaacc acctttatgg gacactattt	420
gcatgaagtt gccagaagac atccttattt ctatgcccca gaacttcttt actatgctga	480
gcagtacaat gagattetga eccagtgttg tgeagagget gaeaaggaaa getgeetgae	540
cccgaagctt gatggtgtga aggagaaagc attggtctca tctgtccgtc agagaatgaa	600
gtgctccagt atgcagaagt ttggagagag agcttttaaa gcatgggcag tagctcgtct	660
gagccagaca ttccccaatg ctgactttgc agaaatcacc aaattggcaa cagacctgac	720
caaagtcaac aaggagtgct gccatggtga cctgctggaa tgcgcagatg acagggcgga	780
acttgccaag tacatgtgtg aaaaccaggc gactatetee agcaaactge agacttgetg	840
cgataaacca ctgttgaaga aagcccactg tcttagtgag gtggagcatg acaccatgcc	900
tgctgatctg cctgccattg ctgctgattt tgttgaggac caggaagtgt gcaagaacta	
tgetgaggee aaggatgtet teetgggeae gttettgtat gaatatteaa gaagacaeee	
tgattactct gtatccctgt tgctgagact tgctaagaaa tatgaagcca ctctggaaaa	
	1140
gtgctgcgct gaagccaatc ctcccgcatg ctacggcaca gtgcttgctg aatttcagcc	1140
tettgtagaa gageetaaga aettggteaa aaceaaetgt gatetttaeg agaagettgg	1200

agaatatgga ttccaaaatg ccattctagt tcgctacacc cagaaagcac ctca	ggtgtc 1260
aaccccaact ctcgtggagg ctgcaagaaa cctaggaaga gtggggcacca agtgt	ttgtac 1320
actteetgaa gateagagae tgeettgtgt ggaagaetat etgtetgeaa teetg	gaaccg 1380
tgtgtgtctg ctgcatgaga agaccccagt gagtgagcat gttaccaagt gctgt	tagtgg 1440
atccctggtg gaaaggcggc catgcttctc tgctctgaca gttgatgaaa catat	tgtccc 1500
caaagagttt aaagctgaga cetteacett ceactetgat atetgeacae tteea	agagaa 1560
ggagaagcag attaagaaac aaacggctct tgctgagctg gtgaagcaca agcco	caaggc 1620
tacagoggag caactgaaga ctgtcatgga tgactttgca cagtteetgg ataca	atgttg 1680
caaggetget gacaaggaca cetgettete gaetgagggt ceaaacettg teact	tagatg 1740
caaagacgcc ttagccggtg gaggaggctc tggtggaggc ggtagcggag gcgga	agggtc 1800
ggatatecag atgacecagt eccegagete eetgteegee tetgtgggeg atage	ggtcac 1860
catcacctgc cgtgccagtc agtcttacgg tggtgtagcc tggtatcaac agaaa	accagg 1920
aaaageeeeg aagettetga tttaetetge ateetaeete taetetggag teeet	tteteg 1980
cttetetggt ageogtteeg ggaeggattt eactetgaee ateageagte tgeag	gccgga 2040
agaettegea aettattaet gteageaace ateteatetg ateaegtteg gaeag	gggtac 2100
cgaggtggag atcaaaggta ctactgccgc tagtggtagt agtggtggca gtage	cagtgg 2160
tgeegaggtt cagetggtgg agtetggegg tggeetggtg cageeagggg getea	actccg 2220
tttgtcctgt gcagcttctg gctccaaccc ctactactac ggtggtacgc actg	ggtgcg 2280
tcaggccccg ggtgaggagc tggaatgggt tgcatctatt ggttcttacc ctgg	ctacac 2340
tgactatgcc gatagcgtca agggccgttt cactataagc gcagacacat ccaaa	aaacac 2400
agootacota caaatgaaca gottaagago tgaggacaot googtotatt attg	tgeteg 2460
ccattactac tggtacgatg ctactgacta ctggggtcaa ggaaccetgg teacc	egtete 2520
ctcgtgatag	2530
<210> SEQ ID NO 151 <211> LENGTH: 2550 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFu CK129	v (VL-VH)
<400> SEQUENCE: 151	
atggaagcac acaagagtga gatcgcccat cggtataatg atttgggaga acaac	catttc 60
aaaggeetag teetgattge etttteeeag tateteeaga aatgeteata egate	gagcat 120
gccaaattag tgcaggaagt aacagacttt gcaaagacgt gtgttgccga tgagt	tetgee 180
gccaactgtg acaaatccct tcacactctt tttggagata agttgtgtgc catte	ccaaac 240
ctccgtgaaa actatggtga actggctgac tgctgtacaa aacaagagcc cgaaa	agaaac 300
gaatgtttcc tgcaacacaa agatgacaac cccagcctac caccatttga aagg	ccagag 360
gctgaggcca tgtgcacctc ctttaaggaa aacccaacca cctttatggg acact	tatttg 420
catgaagttg ccagaagaca tccttatttc tatgccccag aacttcttta ctatg	gctgag 480
cagtacaatg agattetgae ceagtgttgt geagaggetg acaaggaaag etge	ctgacc 540

-continued

				-contir	iuea		
ccgaagcttg	atggtgtgaa	ggagaaagca	ttggtctcat	ctgtccgtca	gagaatgaag	600	
tgctccagta	tgcagaagtt	tggagagaga	gcttttaaag	catgggcagt	agctcgtctg	660	
agccagacat	tccccaatgc	tgactttgca	gaaatcacca	aattggcaac	agacctgacc	720	
aaagtcaaca	aggagtgctg	ccatggtgac	ctgctggaat	gcgcagatga	cagggcggaa	780	
cttgccaagt	acatgtgtga	aaaccaggcg	actatctcca	gcaaactgca	gacttgctgc	840	
gataaaccac	tgttgaagaa	agcccactgt	cttagtgagg	tggagcatga	caccatgcct	900	
gctgatctgc	ctgccattgc	tgctgatttt	gttgaggacc	aggaagtgtg	caagaactat	960	
gctgaggcca	aggatgtctt	cctgggcacg	ttcttgtatg	aatattcaag	aagacaccct	1020	
gattactctg	tatccctgtt	gctgagactt	gctaagaaat	atgaagccac	tctggaaaag	1080	
tgctgcgctg	aagccaatcc	tcccgcatgc	tacggcacag	tgcttgctga	atttcagcct	1140	
cttgtagaag	agcctaagaa	cttggtcaaa	accaactgtg	atctttacga	gaagettgga	1200	
gaatatggat	tccaaaatgc	cattctagtt	cgctacaccc	agaaagcacc	tcaggtgtca	1260	
accccaactc	tcgtggaggc	tgcaagaaac	ctaggaagag	tgggcaccaa	gtgttgtaca	1320	
cttcctgaag	atcagagact	gccttgtgtg	gaagactatc	tgtctgcaat	cctgaaccgt	1380	
gtgtgtctgc	tgcatgagaa	gaccccagtg	agtgagcatg	ttaccaagtg	ctgtagtgga	1440	
tccctggtgg	aaaggcggcc	atgcttctct	gctctgacag	ttgatgaaac	atatgtcccc	1500	
aaagagttta	aagctgagac	cttcaccttc	cactctgata	tctgcacact	tccagagaag	1560	
gagaagcaga	ttaagaaaca	aacggctctt	gctgagctgg	tgaagcacaa	gcccaaggct	1620	
acagcggagc	aactgaagac	tgtcatggat	gactttgcac	agttcctgga	tacatgttgc	1680	
aaggctgctg	acaaggacac	ctgcttctcg	actgagggtc	caaaccttgt	cactagatgc	1740	
aaagacgcct	tagccggtgg	aggaggctct	ggtggaggcg	gtagcggagg	cggagggtcg	1800	
gctagcgata	tccagatgac	ccagtccccg	agccccctgt	ccgcctctgt	gggcgatagg	1860	
gtcaccatca	cctgccgtgc	cagtcagtac	ggtggttacg	tagcctggta	tcaacagaaa	1920	
ccaggaaaag	ctccgaagct	tctgatttac	ggtgcatccc	ttctctactc	tggagtccct	1980	
tctcgcttct	ctggtggccg	ttccgggacg	gatttcactc	tgaccatcag	cagtctgcag	2040	
ccggaagact	tcgcaactta	ttactgtcag	cgaggtcatg	ctctgatcac	gttcggacag	2100	
ggtaccaagg	tggagatcga	aggtactact	gccgctagtg	gtagtagtgg	tggcagtagc	2160	
agtggtgccg	aggttcagct	ggtggagtct	ggcggtggcc	tggtgcagcc	aggggggttca	2220	
ctccgtttat	cctgtgcagc	ttetggette	aacatctctt	cttacggttc	tatgcactgg	2280	
gtgcgtcagg	ccccgggtaa	gggcctggaa	tgggttgcat	ctatttaccc	ttactctagc	2340	
tctacttact	atgccgatag	cgtcaagggc	cgtttcacta	taagcgcaga	cacatccaaa	2400	
aacacagcct	acctacaaat	gaacagctta	agagctgagg	acactgccgt	ctattattgt	2460	
gctcgtggtt	acggtccgtg	gtacgcttac	tcttacttcg	ctttggacta	ctggggtcaa	2520	
ggaaccctgg	tcaccgtctc	ctcgtgatag				2550	
<210> SEQ 3 <211> LENG <212> TYPE	IH: 2556 : DNA	icial Comu					

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VL-VH) CK138-ds1 (VL100Q>C / VH44G>C)

<400> SEQUENCE: 152					
atggaagcac acaagagtga g	atcgcccat	cggtataatg	atttgggaga	acaacatttc	60
aaaggeetag teetgattge e	ttttcccag	tatctccaga	aatgctcata	cgatgagcat	120
gccaaattag tgcaggaagt a	lacagacttt	gcaaagacgt	gtgttgccga	tgagtctgcc	180
gccaactgtg acaaatccct t	cacactctt	tttggagata	agttgtgtgc	cattccaaac	240
ctccgtgaaa actatggtga a	letggetgae	tgctgtacaa	aacaagagcc	cgaaagaaac	300
gaatgtttcc tgcaacacaa a	Igatgacaac	cccagcctac	caccatttga	aaggccagag	360
gctgaggcca tgtgcacctc c	tttaaggaa	aacccaacca	cctttatggg	acactatttg	420
catgaagttg ccagaagaca t	ccttatttc	tatgccccag	aacttcttta	ctatgctgag	480
cagtacaatg agattctgac c	cagtgttgt	gcagaggctg	acaaggaaag	ctgcctgacc	540
ccgaagcttg atggtgtgaa g	ıgagaaagca	ttggtctcat	ctgtccgtca	gagaatgaag	600
tgetecagta tgeagaagtt t	ggagagaga	gcttttaaag	catgggcagt	agctcgtctg	660
agccagacat tccccaatgc t	gactttgca	gaaatcacca	aattggcaac	agacctgacc	720
aaagtcaaca aggagtgctg c	catggtgac	ctgctggaat	gcgcagatga	cagggcggaa	780
cttgccaagt acatgtgtga a	aaccaggcg	actatctcca	gcaaactgca	gacttgctgc	840
gataaaccac tgttgaagaa a	igeceactgt	cttagtgagg	tggagcatga	caccatgcct	900
gctgatctgc ctgccattgc t	gctgatttt	gttgaggacc	aggaagtgtg	caagaactat	960
gctgaggcca aggatgtctt c	ctgggcacg	ttcttgtatg	aatattcaag	aagacaccct	1020
gattactctg tatccctgtt g	getgagaett	gctaagaaat	atgaagccac	tctggaaaag	1080
tgctgcgctg aagccaatcc t	cccgcatgc	tacggcacag	tgcttgctga	atttcagcct	1140
cttgtagaag agcctaagaa c	ttggtcaaa	accaactgtg	atctttacga	gaagcttgga	1200
gaatatggat tccaaaatgc c	attctagtt	cgctacaccc	agaaagcacc	tcaggtgtca	1260
accccaactc tcgtggaggc t	gcaagaaac	ctaggaagag	tgggcaccaa	gtgttgtaca	1320
cttcctgaag atcagagact g	leettätätä	gaagactatc	tgtctgcaat	cctgaaccgt	1380
gtgtgtctgc tgcatgagaa g	Jaccccagtg	agtgagcatg	ttaccaagtg	ctgtagtgga	1440
tccctggtgg aaaggcggcc a	itgettetet	gctctgacag	ttgatgaaac	atatgtcccc	1500
aaagagttta aagctgagac c	ttcaccttc	cactctgata	tctgcacact	tccagagaag	1560
gagaagcaga ttaagaaaca a	lacggetett	gctgagctgg	tgaagcacaa	gcccaaggct	1620
acagcggagc aactgaagac t	gtcatggat	gactttgcac	agttcctgga	tacatgttgc	1680
aaggctgctg acaaggacac c	tgetteteg	actgagggtc	caaaccttgt	cactagatgc	1740
aaagacgcct tagccggtgg a	Iggaggetet	ggtggaggcg	gtagcggagg	cggagggtcg	1800
gctatccaga tgacccggtc c	ccgagetee	ctgtccgcct	ctgtgggcga	tagggtcacc	1860
atcacctgcc gtgccagtca g	Itaccacgac	ggttctgcag	cctggtatca	acagaaacca	1920
ggaaaagctc cgaagcttct g	atttacggt	gcatcctacc	tctactctgg	agtcccttcc	1980
cgcttctctg gtagccgttc c	gggacggat	ttcactctga	ccatcagcag	tctgcagccg	2040
gaagacttcg caacttatta c	tgtcagcaa	tcttcttatt	ctctgatcac	gttcggatgc	2100
ggtaccaagg tggagatcaa a	Iggtactact	gccgctagtg	gtagtagtgg	tggcagtagc	2160
agtggtgccg aggttcagct g	gtggagtct	gacggtggcc	tggtgcagcc	aggggggtca	2220
	-		-	-	

ctccgtttgt cctgtgcagc ttctggcttc aacctctctt actacggtat gcactgggtg	2280
cgtcaggccc cgggtaagtg cctggaatgg gttgcataca ttgcttctta ccctggctac	2340
acttettatg eegatagegt caagggeegt tteactataa gegeagaeae ateeaaaae	2400
acageetaee tacaaatgaa cagettaaga getgaggaea etgeegteta etattgtget	2460
cgctctggtt acagttactc tccgtattat tcttggttct ctgctggtat gaactactgg	2520
ggtcaaggag ccctggtcac cgtctcctcg tgatag	2556
<210> SEQ ID NO 153 <211> LENGTH: 2562 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VL-VH CK138-ds2 (VL43A>C / VH105Q>C)	()
<400> SEQUENCE: 153	
atggaagcac acaagagtga gatcgcccat cggtataatg atttgggaga acaacatttc	60
aaaggeetag teetgattge etttteeeag tateteeaga aatgeteata egatgageat	120
gccaaattag tgcaggaagt aacagacttt gcaaagacgt gtgttgccga tgagtctgcc	180
gccaactgtg acaaatccct tcacactctt tttggagata agttgtgtgc cattccaaac	240
ctccgtgaaa actatggtga actggctgac tgctgtacaa aacaagagcc cgaaagaaac	300
gaatgtttcc tgcaacacaa agatgacaac cccagcctac caccatttga aaggccagag	360
gctgaggcca tgtgcacctc ctttaaggaa aacccaacca cctttatggg acactatttg	420
catgaagttg ccagaagaca teettattte tatgeeccag aaettettta etatgetgag	480
cagtacaatg agattetgae ecagtgttgt geagaggetg acaaggaaag etgeetgaee	540
ccgaagcttg atggtgtgaa ggagaaagca ttggtctcat ctgtccgtca gagaatgaag	600
tgetecagta tgeagaagtt tggagagaga gettttaaag catgggeagt agetegtetg	660
agccagacat tccccaatgc tgactttgca gaaatcacca aattggcaac agacctgacc	720
aaagtcaaca aggagtgctg ccatggtgac ctgctggaat gcgcagatga cagggcggaa	780
cttgccaagt acatgtgtga aaaccaggcg actatctcca gcaaactgca gacttgctgc	840
gataaaccac tgttgaagaa agcccactgt cttagtgagg tggagcatga caccatgcct	900
gctgatctgc ctgccattgc tgctgatttt gttgaggacc aggaagtgtg caagaactat	960
gctgaggcca aggatgtctt cctgggcacg ttcttgtatg aatattcaag aagacaccct	1020
gattactctg tatccctgtt gctgagactt gctaagaaat atgaagccac tctggaaaag	1080
tgctgcgctg aagccaatcc tcccgcatgc tacggcacag tgcttgctga atttcagcct	1140
cttgtagaag agcctaagaa cttggtcaaa accaactgtg atctttacga gaagcttgga	1200
gaatatggat tocaaaatgo cattotagtt ogotacacoo agaaagcaco toaggtgtoa	1260
accccaactc tcgtggaggc tgcaagaaac ctaggaagag tgggcaccaa gtgttgtaca	1320
ctteetgaag ateagagaet geettgtgtg gaagaetate tgtetgeaat eetgaaeegt	1380
gtgtgtctgc tgcatgagaa gaccccagtg agtgagcatg ttaccaagtg ctgtagtgga	1440
tccctggtgg aaaggcggcc atgcttctct gctctgacag ttgatgaaac atatgtcccc	1500
aaagagttta aagctgagac cttcaccttc cactctgata tctgcacact tccagagaag	1560
aaagageeea aageegagae eeeaaeeeee eaeteegata teegeacaet teeagagaag	1000

-continued

				-contin			
gagaagcaga ttaa	gaaaca	aacggctctt	gctgagctgg	tgaagcacaa	gcccaaggct	1620	
acagcggagc aact	gaagac	tgtcatggat	gactttgcac	agttcctgga	tacatgttgc	1680	
aaggctgctg acaa	ggacac	ctgcttctcg	actgagggtc	caaaccttgt	cactagatgc	1740	
aaagacgcct tagc	cggtgg	aggaggctct	ggtggaggcg	gtagcggagg	cggagggtcg	1800	
gctagcgcta tcca	gatgac	ccggtccccg	agctccctgt	ccgcctctgt	gggcgatagg	1860	
gtcaccatca cctg	ccgtgc	cagtcagtac	cacgacggtt	ctgcagcctg	gtatcaacag	1920	
aaaccaggaa aatg	cccgaa	gcttctgatt	tacggtgcat	cctacctcta	ctctggagtc	1980	
cetteceget tete	tggtag	ccgttccggg	acggatttca	ctctgaccat	cagcagtetg	2040	
cageeggaag aett	cgcaac	ttattactgt	cagcaatctt	cttattctct	gatcacgttc	2100	
ggacagggta ccaa	ggtgga	gatcaaaggt	actactgccg	ctagtggtag	tagtggtggc	2160	
agtagcagtg gtgc	cgaggt	tcagctggtg	gagtctgacg	gtggcctggt	gcagccaggg	2220	
ggctcactcc gttt	gtcctg	tgcagcttct	ggcttcaacc	tctcttacta	cggtatgcac	2280	
tgggtgcgtc aggc	cccggg	taagggcctg	gaatgggttg	catacattgc	ttcttaccct	2340	
ggctacactt ctta	tgccga	tagcgtcaag	ggccgtttca	ctataagcgc	agacacatcc	2400	
aaaaacacag ccta	cctaca	aatgaacagc	ttaagagctg	aggacactgc	cgtctactat	2460	
tgtgctcgct ctgg	ttacag	ttactctccg	tattattctt	ggttetetge	tggtatgaac	2520	
tactggggtt gcgg	agccct	ggtcaccgtc	tcctcgtgat	ag		2562	
<pre><211> LENGTH: 2 <212> TYPE: DNA <213> ORGANISM: <220> FEATURE: <223> OTHER INF CK157-ds1</pre>	Artifi ORMATIO	_	.c: mouse SA	A-(Gly4Ser)3	3-scFv (VL-V	H)	
<400> SEQUENCE:	154						
atggaagcac acaa	gagtga	gatcgcccat	cggtataatg	atttgggaga	acaacatttc		
aaaggcctag tcct						60	
	gattgc	cttttcccag	tatctccaga	aatgctcata		60 120	
gccaaattag tgca					cgatgagcat		
gccaaattag tgca gccaactgtg acaa	ggaagt	aacagacttt	gcaaagacgt	gtgttgccga	cgatgagcat tgagtctgcc	120	
	ggaagt atccct	aacagacttt tcacactctt	gcaaagacgt tttggagata	gtgttgccga agttgtgtgc	cgatgagcat tgagtctgcc cattccaaac	120 180	
gccaactgtg acaa	ggaagt atccct tggtga	aacagacttt tcacactctt actggctgac	gcaaagacgt tttggagata tgctgtacaa	gtgttgccga agttgtgtgc aacaagagcc	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac	120 180 240	
gccaactgtg acaa ctccgtgaaa acta	ggaagt atccct tggtga acacaa	aacagacttt tcacactctt actggctgac agatgacaac	gcaaagacgt tttggagata tgctgtacaa cccagcctac	gtgttgccga agttgtgtgc aacaagagcc caccatttga	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac aaggccagag	120 180 240 300	
gccaactgtg acaa ctccgtgaaa acta gaatgtttcc tgca	ggaagt atccct tggtga acacaa cacctc	aacagacttt tcacactctt actggctgac agatgacaac ctttaaggaa	gcaaagacgt tttggagata tgctgtacaa cccagcctac aacccaacca	gtgttgccga agttgtgtgc aacaagagcc caccatttga cctttatggg	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac aaggccagag acactatttg	120 180 240 300 360	
gccaactgtg acaa ctccgtgaaa acta gaatgtttcc tgca gctgaggcca tgtg	ggaagt atccct tggtga acacaa cacctc aagaca	aacagacttt tcacactctt actggctgac agatgacaac ctttaaggaa tccttatttc	gcaaagacgt tttggagata tgctgtacaa cccagcctac aacccaacca tatgccccag	gtgttgccga agttgtgtgc aacaagagcc caccatttga cctttatggg aacttcttta	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac aaggccagag acactatttg ctatgctgag	120 180 240 300 360 420	
gccaactgtg acaa ctccgtgaaa acta gaatgtttcc tgca gctgaggcca tgtg catgaagttg ccag	ggaagt atccct tggtga acacaa cacctc aagaca tctgac	aacagacttt tcacactctt actggctgac agatgacaac ctttaaggaa tccttatttc ccagtgttgt	gcaaagacgt tttggagata tgctgtacaa cccagcctac aacccaacca tatgccccag gcagaggctg	gtgttgccga agttgtgtgc aacaagagcc caccatttga cctttatggg aacttcttta acaaggaaag	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac aaggccagag acactatttg ctatgctgag ctgcctgacc	120 180 240 300 360 420 480	
gccaactgtg acaa ctccgtgaaa acta gaatgtttcc tgca gctgaggcca tgtg catgaagttg ccag cagtacaatg agat	ggaagt atccct tggtga acacaa cacctc aagaca tctgac tgtgaa	aacagacttt tcacactctt actggctgac agatgacaac ctttaaggaa tccttatttc ccagtgttgt ggagaaagca	gcaaagacgt tttggagata tgctgtacaa cccagcctac aacccaacca tatgccccag gcagaggctg ttggtctcat	gtgttgccga agttgtgtgc aacaagagcc caccatttga cctttatggg aacttcttta acaaggaaag ctgtccgtca	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac aaggccagag acactatttg ctatgctgag ctgcctgacc gagaatgaag	120 180 240 300 360 420 480 540	
gccaactgtg acaa ctccgtgaaa acta gaatgtttcc tgca gctgaggcca tgtg catgaagttg ccag cagtacaatg agat ccgaagcttg atgg	ggaagt atccct tggtga acacaa cacctc aagaca tctgac tgtgaa gaagtt	aacagacttt tcacactctt actggctgac agatgacaac ctttaaggaa tccttatttc ccagtgttgt ggagaaagca tggagagagaga	gcaaagacgt tttggagata tgctgtacaa cccagcctac aacccaacca tatgccccag gcagaggctg ttggtctcat gcttttaaag	gtgttgccga agttgtgtgc aacaagagcc caccatttga cctttatggg aacttcttta acaaggaaag ctgtccgtca catgggcagt	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac aaggccagag acactatttg ctatgctgag ctgcctgacc gagaatgaag agctcgtctg	120 180 240 300 360 420 480 540 600	
gccaactgtg acaa ctccgtgaaa acta gaatgtttcc tgca gctgaggcca tgtg catgaagttg ccag cagtacaatg agat ccgaagcttg atgg tgctccagta tgca	ggaagt atccct tggtga acacaa cacctc aagaca tctgac tgtgaa gaagtt caatgc	aacagacttt tcacactctt actggctgac agatgacaac ctttaaggaa tccttatttc ccagtgttgt ggagaaagca tggagagaga tgactttgca	gcaaagacgt tttggagata tgctgtacaa cccagcctac aacccaacca tatgccccag gcagaggctg ttggtctcat gcttttaaag gaaatcacca	gtgttgccga agttgtgtgc aacaagagcc caccatttga cctttatggg aacttcttta acaaggaaag ctgtccgtca catgggcagt aattggcaac	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac aaggccagag acactatttg ctatgctgag ctgcctgacc gagaatgaag agctcgtctg agacctgacc	120 180 240 300 360 420 480 540 600 660	
gccaactgtg acaa ctccgtgaaa acta gaatgtttcc tgca gctgaggcca tgtg catgaagttg ccag cagtacaatg agat ccgaagcttg atgg tgctccagta tgca agccagacat tccc	ggaagt atccct tggtga acacaa cacctc aagaca tctgac tgtgaa gaagtt caatgc gtgctg	aacagacttt tcacactctt actggctgac agatgacaac ctttaaggaa tccttatttc ccagtgttgt ggagaaagca tggagagagaga tgactttgca ccatggtgac	gcaaagacgt tttggagata tgctgtacaa cccagcctac aacccaacca tatgccccag gcagaggctg ttggtctcat gcttttaaag gaaatcacca	gtgttgccga agttgtgtgc aacaagagcc caccatttga cctttatggg aacttcttta acaaggaaag ctgtccgtca catgggcagt aattggcaac gcgcagatga	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac aaggccagag acactatttg ctatgctgag ctgcctgacc gagaatgaag agctcgtctg agacctgacc cagggcggaa	120 180 240 300 420 480 540 600 660 720	
gccaactgtg acaa ctccgtgaaa acta gaatgtttcc tgca gctgaggcca tgtg catgaagttg ccag cagtacaatg agat ccgaagcttg atgg tgctccagta tgca agccagacat tccc aaagtcaaca agga	ggaagt atccct tggtga acacaa cacctc aagaca tctgac tgtgaa gaagtt caatgc gtgctg gtgtga	aacagacttt tcacactctt actggctgac agatgacaac ctttaaggaa tccttatttc ccagtgttgt ggagaaagca tggagagagaga tggactttgca ccatggtgac aaaccaggcg	gcaaagacgt tttggagata tgctgtacaa cccagcctac aacccaacca tatgccccag gcagaggctg ttggtctcat gcttttaaag gaaatcacca ctgctggaat actatctcca	gtgttgccga agttgtgtgc aacaagagcc caccatttga cctttatggg aacttcttta acaaggaaag ctgtccgtca catgggcagt aattggcaac gcgcagatga gcaaactgca	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac aaggccagag acactatttg ctatgctgag ctgcctgacc gagaatgaag agctcgtctg agacctgacc cagggcggaa gacttgctgc	120 180 240 300 420 480 540 600 660 720 780	
gccaactgtg acaa ctccgtgaaa acta gaatgtttcc tgca gctgaggcca tgtg catgaagttg ccag cagtacaatg agat ccgaagcttg atgg tgctccagta tgca agccagacat tccc aaagtcaaca agga cttgccaagt acat	ggaagt atccct tggtga acacaa cacctc aagaca tctgac tgtgaa gaagtt gtgctg gtgtga gaagaa	aacagacttt tcacactctt actggctgac agatgacaac ctttaaggaa tccttatttc ccagtgttgt ggagaaagca tggagagagaga tgactttgca ccatggtgac aaaccaggcg agcccactgt	gcaaagacgt tttggagata tgctgtacaa cccagcctac aacccaacca tatgccccag gcagaggctg ttggtctcat gcttttaaag gaaatcacca ctgctggaat actatctcca	gtgttgccga agttgtgtgc aacaagagcc caccatttga cctttatggg aacttcttta acaaggaaag ctgtccgtca catgggcagt aattggcaac gcgcagatga gcaaactgca tggagcatga	cgatgagcat tgagtctgcc cattccaaac cgaaagaaac aaggccagag acactatttg ctatgctgag dggaatgaag agctcgtctg cagggcggaa gacttgctgc caccatgcct	120 180 240 300 420 480 540 600 660 720 780 840	

gctgaggcca ag	ggatgtctt	cctgggcacg	ttcttgtatg	aatattcaag	aagacaccct	1020
gattactctg ta	atccctgtt	gctgagactt	gctaagaaat	atgaagccac	tctggaaaag	1080
tgctgcgctg a	agccaatcc	tcccgcatgc	tacggcacag	tgcttgctga	atttcagcct	1140
cttgtagaag ag	gcctaagaa	cttggtcaaa	accaactgtg	atctttacga	gaagettgga	1200
gaatatggat to	ccaaaatgc	cattctagtt	cgctacaccc	agaaagcacc	tcaggtgtca	1260
accccaactc to	cgtggaggc	tgcaagaaac	ctaggaagag	tgggcaccaa	gtgttgtaca	1320
cttcctgaag a	tcagagact	gccttgtgtg	gaagactatc	tgtctgcaat	cctgaaccgt	1380
gtgtgtctgc t	gcatgagaa	gaccccagtg	agtgagcatg	ttaccaagtg	ctgtagtgga	1440
tccctggtgg a	aaggcggcc	atgettetet	gctctgacag	ttgatgaaac	atatgtcccc	1500
aaagagttta aa	agctgagac	cttcaccttc	cactctgata	tctgcacact	tccagagaag	1560
gagaagcaga t	taagaaaca	aacggctctt	gctgagctgg	tgaagcacaa	gcccaaggct	1620
acagcggagc a	actgaagac	tgtcatggat	gactttgcac	agttcctgga	tacatgttgc	1680
aaggctgctg a	caaggacac	ctgcttctcg	actgagggtc	caaaccttgt	cactagatgc	1740
aaagacgcct ta	agccggtgg	aggaggctct	ggtggaggcg	gtagcggagg	cggagggtcg	1800
gatatccaga te	gacccagtc	cccgagctcc	ctgtccgcct	ctgtgggcga	tagggtcacc	1860
atcacctgcc g	tgccagtca	gtcttacggt	ggtgtagcct	ggtatcaaca	gaaaccagga	1920
aaagccccga ag	gcttctgat	ttactctgca	tcctacctct	actctggagt	cccttctcgc	1980
ttctctggta g	ccgttccgg	gacggatttc	actctgacca	tcagcagtct	gcagccggaa	2040
gacttogcaa c	ttattactg	tcagcaacca	tctcatctga	tcacgttcgg	atgcggtacc	2100
gaggtggaga t	caaaggtac	tactgccgct	agtggtagta	gtggtggcag	tagcagtggt	2160
gccgaggttc ag	gctggtgga	gtctggcggt	ggcctggtgc	agccaggggg	ctcactccgt	2220
ttgtcctgtg ca	agcttctgg	ctccaacccc	tactactacg	gtggtacgca	ctgggtgcgt	2280
caggeeeegg g	tgagtgcct	ggaatgggtt	gcatctattg	gttcttaccc	tggctacact	2340
gactatgeeg a	tagcgtcaa	gggccgtttc	actataagcg	cagacacatc	caaaaacaca	2400
geetacetae a	aatgaacag	cttaagagct	gaggacactg	ccgtctatta	ttgtgctcgc	2460
cattactact g	gtacgatgc	tactgactac	tggggtcaag	gaaccctggt	caccgtctcc	2520
tcgtgatag						2529
CK157-0	: 2529 DNA SM: Artifi E: INFORMATIC ds2 (VL43A	-	lc: mouse SA	A-(Gly4Ser)3	3-scFv (VL-VH)	
<400> SEQUEN	CE: 155					
atggaagcac a	caagagtga	gatcgcccat	cggtataatg	atttgggaga	acaacatttc	60
aaaggcctag to	cctgattgc	cttttcccag	tatctccaga	aatgctcata	cgatgagcat	120
gccaaattag t	gcaggaagt	aacagacttt	gcaaagacgt	gtgttgccga	tgagtctgcc	180
gccaactgtg a	caaatccct	tcacactctt	tttggagata	agttgtgtgc	cattccaaac	240
ctccgtgaaa a	ctatggtga	actggctgac	tgctgtacaa	aacaagagcc	cgaaagaaac	300

270

				-001011	Iueu		
gaatgtttcc	tgcaacacaa	agatgacaac	cccagcctac	caccatttga	aaggccagag	360	
gctgaggcca	tgtgcacctc	ctttaaggaa	aacccaacca	cctttatggg	acactatttg	420	
catgaagttg	ccagaagaca	tccttatttc	tatgccccag	aacttcttta	ctatgctgag	480	
cagtacaatg	agattctgac	ccagtgttgt	gcagaggctg	acaaggaaag	ctgcctgacc	540	
ccgaagcttg	atggtgtgaa	ggagaaagca	ttggtctcat	ctgtccgtca	gagaatgaag	600	
tgctccagta	tgcagaagtt	tggagagaga	gcttttaaag	catgggcagt	agctcgtctg	660	
agccagacat	tccccaatgc	tgactttgca	gaaatcacca	aattggcaac	agacctgacc	720	
aaagtcaaca	aggagtgctg	ccatggtgac	ctgctggaat	gcgcagatga	cagggcggaa	780	
cttgccaagt	acatgtgtga	aaaccaggcg	actatctcca	gcaaactgca	gacttgctgc	840	
gataaaccac	tgttgaagaa	agcccactgt	cttagtgagg	tggagcatga	caccatgcct	900	
gctgatctgc	ctgccattgc	tgctgatttt	gttgaggacc	aggaagtgtg	caagaactat	960	
gctgaggcca	aggatgtctt	cctgggcacg	ttcttgtatg	aatattcaag	aagacaccct	1020	
gattactctg	tatccctgtt	gctgagactt	gctaagaaat	atgaagccac	tctggaaaag	1080	
tgctgcgctg	aagccaatcc	tcccgcatgc	tacggcacag	tgcttgctga	atttcagcct	1140	
cttgtagaag	agcctaagaa	cttggtcaaa	accaactgtg	atctttacga	gaagcttgga	1200	
gaatatggat	tccaaaatgc	cattctagtt	cgctacaccc	agaaagcacc	tcaggtgtca	1260	
accccaactc	tcgtggaggc	tgcaagaaac	ctaggaagag	tgggcaccaa	gtgttgtaca	1320	
cttcctgaag	atcagagact	gccttgtgtg	gaagactatc	tgtctgcaat	cctgaaccgt	1380	
gtgtgtctgc	tgcatgagaa	gaccccagtg	agtgagcatg	ttaccaagtg	ctgtagtgga	1440	
tccctggtgg	aaaggcggcc	atgcttctct	gctctgacag	ttgatgaaac	atatgtcccc	1500	
aaagagttta	aagctgagac	cttcaccttc	cactctgata	tctgcacact	tccagagaag	1560	
gagaagcaga	ttaagaaaca	aacggctctt	gctgagctgg	tgaagcacaa	gcccaaggct	1620	
acagcggagc	aactgaagac	tgtcatggat	gactttgcac	agttcctgga	tacatgttgc	1680	
aaggetgetg	acaaggacac	ctgcttctcg	actgagggtc	caaaccttgt	cactagatgc	1740	
aaagacgcct	tagccggtgg	aggaggctct	ggtggaggcg	gtageggagg	cggagggtcg	1800	
gatatccaga	tgacccagtc	cccgagctcc	ctgtccgcct	ctgtgggcga	tagggtcacc	1860	
atcacctgcc	gtgccagtca	gtcttacggt	ggtgtagcct	ggtatcaaca	gaaaccagga	1920	
aaatgcccga	agcttctgat	ttactctgca	tectacetet	actctggagt	cccttctcgc	1980	
ttctctggta	gccgttccgg	gacggatttc	actctgacca	tcagcagtct	gcagccggaa	2040	
gacttcgcaa	cttattactg	tcagcaacca	tctcatctga	tcacgttcgg	acagggtacc	2100	
gaggtggaga	tcaaaggtac	tactgccgct	agtggtagta	gtggtggcag	tagcagtggt	2160	
gccgaggttc	agctggtgga	gtctggcggt	ggcctggtgc	agccaggggg	ctcactccgt	2220	
ttgtcctgtg	cagcttctgg	ctccaacccc	tactactacg	gtggtacgca	ctgggtgcgt	2280	
caggccccgg	gtgaggagct	ggaatgggtt	gcatctattg	gttcttaccc	tggctacact	2340	
gactatgccg	atagcgtcaa	gggccgtttc	actataagcg	cagacacatc	caaaaacaca	2400	
gcctacctac	aaatgaacag	cttaagagct	gaggacactg	ccgtctatta	ttgtgctcgc	2460	
cattactact	ggtacgatgc	tactgactac	tggggttgcg	gaaccctggt	caccgtctcc	2520	
tcgtgatag			-			2529	

<210> SEQ ID NO 156 <211> LENGTH: 2121 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)-VL CK157	
<400> SEQUENCE: 156	
atggaagcac acaagagtga gatcgcccat cggtataatg atttgggaga acaacatttc	60
aaaggeetag teetgattge etttteeeag tateteeaga aatgeteata egatgageat 1	120
gccaaattag tgcaggaagt aacagacttt gcaaagacgt gtgttgccga tgagtctgcc 1	180
gccaactgtg acaaatcoot toacactott tttggagata agttgtgtgo cattocaaac 2	240
ctccgtgaaa actatggtga actggctgac tgctgtacaa aacaagagcc cgaaagaaac 3	300
gaatgtttcc tgcaacacaa agatgacaac cccagcctac caccatttga aaggccagag 3	360
gctgaggcca tgtgcacctc ctttaaggaa aacccaacca cctttatggg acactatttg 4	420
catgaagttg ccagaagaca teettattte tatgeeccag aaettettta etatgetgag 4	480
cagtacaatg agattetgae ecagtgttgt geagaggetg acaaggaaag etgeetgaee 5	540
ccgaagcttg atggtgtgaa ggagaaagca ttggtctcat ctgtccgtca gagaatgaag 6	600
tgctccagta tgcagaagtt tggagagaga gcttttaaag catgggcagt agctcgtctg 6	660
agccagacat teeccaatge tgaetttgea gaaateacea aattggeaae agaeetgaee 7.	720
aaagtcaaca aggagtgctg ccatggtgac ctgctggaat gcgcagatga cagggcggaa 7	780
cttgccaagt acatgtgtga aaaccaggcg actatctcca gcaaactgca gacttgctgc 8	840
gataaaccac tgttgaagaa agcccactgt cttagtgagg tggagcatga caccatgcct 9	900
getgatetge etgecattge tgetgatttt gttgaggaee aggaagtgtg caagaaetat 9	960
getgaggeea aggatgtett eetgggeaeg ttettgtatg aatatteaag aagaeaeeet 10	020
gattactctg tatccctgtt gctgagactt gctaagaaat atgaagccac tctggaaaag 10	080
tgetgegetg aagecaatee teeegeatge taeggeacag tgettgetga attteageet 11	140
cttgtagaag agcctaagaa cttggtcaaa accaactgtg atctttacga gaagcttgga 12	200
gaatatggat tecaaaatge cattetagtt egetacaeee agaaageaee teaggtgtea 12	260
accccaactc tcgtggaggc tgcaagaaac ctaggaagag tgggcaccaa gtgttgtaca 13	320
ctteetgaag ateagagaet geettgtgtg gaagaetate tgtetgeaat eetgaaeegt 13	380
gtgtgtctgc tgcatgagaa gaccccagtg agtgagcatg ttaccaagtg ctgtagtgga 14	440
teeetggtgg aaaggeggee atgettetet getetgaeag ttgatgaaae atatgteeee 15	500
aaagagttta aagetgagae etteacette eactetgata tetgeacaet teeagagaag 15	560
gagaagcaga ttaagaaaca aacggctctt gctgagctgg tgaagcacaa gcccaaggct 16	620
acageggage aactgaagae tgteatggat gaetttgeae agtteetgga taeatgttge 16	680
aaggetgetg acaaggacae etgetteteg aetgagggte caaaeettgt caetagatge 17	740
aaagacgcct tagccggtgg aggaggctct ggtggaggcg gtagcggagg cggagggtcg 18	800
gatatecaga tgacecagte eeegagetee etgteegeet etgtgggega tagggteace 18	860
atcacctgcc gtgccagtca gtcttacggt ggtgtagcct ggtatcaaca gaaaccagga 19	920
aaagccccga agcttetgat ttaetetgea teetaeetet aetetggagt eeettetege 19	980

ttetetgga geegtteegg gaeggatte actetgaea teageagtet geageegga 2040 gaettegeaa ettattaetg teageaacea teteatetga teaegttegg aeagggtaee 2100 gaggggggaga teaaatgata g 2121 <210> SEQ ID NO 157 <211> LENGTH: 2169 <212> TPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> ORGANISM: Artificial Sequence <223> ORGANISM: Artificial Sequence <220> Sequence: 157 atggaageac aceasgagtg gategeccat cggaaggaa acaacatte 120 gecaattag tgeaggagat acceggetgat tgeaagaegg gaggagaa 120 gecaattag tgeaggagat acceggetga tggtgge atggaeggaa 300 gatagttee tgeaacaea agatgaeae cceacaeae acceatega gaageeagga 300 getgaggeca tgtgeaeeae agatgaeaa teettatte tatgeeeaga acceategga 360 ectgeaegaeat teeeeaaga teggaeggaegaeae teggeeaga acceategee 540 ecgaageetga tgeagaagt tggaagaagae ttggtetea etaggeaae gaaeetgaee 720 aaagteaaea agagatgetg ccatggtgae ctgeeggaa agaeeeaee 720 aaagteaaea agagatgeeg ccatggtgae ctgeeggaaea agaeeegae 780 ettgeeagaea acaeeggeg actateeea geaaaeeegae 780 ettgeeagaea acaeeggeg acaeeeeeg etaggaegae agaeeeeee 900 geegageea agaetgeetg eeeeeeeeeeeeeeeeeee
gaggtggaga tcaaatgata g 2121 <210> SEQ ID NO 157 <211> LENGTH: 2169 <212> TYPE: DNA <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)-VH CK157 <400> SEQUENCE: 157 atggaagcac acaagagtga gatcgcccat cggtataatg attgggaga acaacattc 60 aaaggcctag tcctgattgc ctttcccag tatctccaga aatgctcata cgatgagcat 120 gccaaattag tgcaggaagt aacagactt gcaaagacgt gtgttgccga tgagtctgcc 180 gccaactgg acaaatccct tcacactctt tttggagata agttgtgtgc cattccaaac 240 ctccgtgaaa actatggtga actggctgac tgctgtacaa aacagagcc cgaaagaaac 300 gatgtttcc tgcaacacaa agatgacaac cccagcctac caccatttga aaggccagg 360 gctgaggcca tgtgcactc ctttaagga aacccaaca cctttatggg acatatttg 420 catgaagttg ccagaagaca tccttattc tatgcccag aacttctta ctatgctgag 480 ccagtacaatg agattctgac ccagtgttg cgagggctg acaaggaag ctgcctgac 540 ccgaagcttg atggtgtga ggagaaagca ttggtctcat ctgtccgta gagattagg 600 tgctccagta tgcagaagtt tggaggaga gctttaaag catgggcaga agactggct 720 aaagtcaaca aggagtgcg ccatggtgac ctgctggaat gccgagaga 780 ctgccaagt acaatgcg gcattgc catgggag ctgcggaag acacattg 980 tgctccagta tgcagaagt tggaggaga agcccatgg ctgctggaa cagggcgga 780 cttgccaagt acatggtga agaccactg cttagtggg tgagcatga cacacatgc 900 gctgatcaca ctgttgaagaa agcccactg cttagtgag tgagactg cacacatgc 900 gctgatctgc ctgccattgc tgctgattt gttgaggac agaagtgg cagaactac 900 gctgadctgc ctgccattgc tgctgattt gttgaggac aggagtgtg caagaacta 900 gctgatctgc ctgccattgc tgctgattt gttgaggac aggagtgtg caagaacta 900 gctgagcca aggatgtctt cctgggcacg ttcttgtatg aatatcaag aagacaccct 1020 gctgatctgc tgccattgc tgctgattt gttgaggaca aggagtgtg caagaactac 1020
<pre><210> SEQ ID NO 157 <211> LENGTH: 2169 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)-VH CK157 <400> SEQUENCE: 157 atggaagcac acaagagtga gatcgcccat cggtataatg attgggaga acaacattcc 60 aaaggoctag toctgattgc cttttcccag tatctccag aatgctcata cgatgagcat 120 gccaaattag tgcaggaagt aacagactt gcaagaacgt gtgttgccga tgagtctgcc 180 gccaactgtg acaaatccct tcacactctt tttggagata agttgtgtgc cattccaaac 240 ctccgtgaaa actatggtga actggctgac tgctgtacaa aacaagagcc cgaaagaaac 300 gaatgtttcc tgcaacacaa agatgacaac cccagcctac caccatttga aaggccaga 360 gctgaggcca tgtgcactc ctttaaggaa aacccaacca ctttatggg acactatttg 420 catgaagttg ccagaagaca tccttattc tatgccccag aacttctta ctatgctgag 480 cagtacaatg agattctgac ccagtgttg gcagaggctg acaaggaaag ctgcctgacc 540 ccgaagcttg atgagagt tggagagaga gctttaaag catggcaga agactggtcg 660 agccagacat tccccaatgc tgacttgca gaaatcacca aattggcaac agactggcg 720 aaagtcaaca aggagtgctg ccatggtgac ctgctggaat gcgcagatga cagggcgga 780 cttgccaagt acatgtgtg aaaccaggcg actatcca gcaaactag agactgctg 840 gataaacca tgttgaagaa agcccactgt cttagtgagg tggagcatga caccatgcc 900 gctgatctgc ctgccattgc tgctgattt gttgagagac aggaagtgt caagaactat 960 gctgaggcca aggatgtctt cctgggcacg ttcttgtatg aatattcaag aagacacct 1020 gattactctg tatccctgtt gctgaact gctagaaat atgaagca tctggaaag 1080</pre>
<pre><211> LENGTH: 2169 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)-VH CK157 <400> SEQUENCE: 157 atggaagcac acaagagtga gatcgcccat cggtataatg attgggaga acaacatttc 60 aaaggoctag tootgattgc ottttoccag tatotocaga aatgotoata cgatgagcat 120 gccaaattag tgcaggaagt aacagactt gcaaagacgt gtgttgocga tgagtotgoc 180 gccaactgtg acaaatcoot tocacatott tttggagata agttgtgtgc cattocaaac 240 otocgtgaaa actatggtga actggotgac tgotgtacaa aacaagagce cgaaagaaac 300 gaatgtttoo tgcaacacaa agatgacaac occagoctac caccatttga aaggocagag gctgaggoca tgtgcacotc otttaatgaa aacccaacca cotttatggg acaatattg 420 catgaagttg ocagaagaca toottatto tatgoccag aacttotta ctatgotgag 480 cagtacaatg agattotgac ccagtgttg gcagaggetg acaaggaaag ctgootgaco 540 cccgaagottg atggtgtgaa ggagaaagca ttggtoccat ctgtcogtca gagaatgaag 600 tgotccagta tgcagaagt tggagagag gotttaaag catgggcag agctogtot 660 agccagacat tocccaatgo tgactttoca gcaaagtag agctogtot 720 aaagtcaaca aggagtgotg ocatggtgac ctgotggaat gcgcagatg acagggcgaa 780 cttgccaagt acatgtgtga aaccaggog actatocca gcaaactgca gacttgctg 840 gataaacca tgttgaagaa agcccactg ottaggaga tggagaatga 270 gataaccac tgttgaagaa agccactg ottattggag tggagcatg caccatgoco 900 gctgatctgo ctgccattgc tgotgattt gtgaggaca agaagtgg caagaactat 960 gctgaggcca aggatgtot cctgggacg ttottgtatg aattocag aagacatt 960 gctgaggcca aggatgtot cctgggacg ttottgtatg aattcaag aagacacct 1020 gctgatotgo ctgccattgc tgctgattt gtagagaat atgaagcac tctggaaaga 1080</pre>
atggaagcacacaagagtgagatcgcccatcggtataatgatttgggagaacaacatttc60aaaggcctagtcctgattgccttttcccagtatctccagaaatgctcatacgatgagcat120gccaaattagtgcaggaagtaacagactttgcaaagacgtgtgttgccgatgagtctgcc180gccaactgtgacaaatcccttcacactctttttggagataagttgtgtgccattccaaac240ctccgtgaaaactaggtgaactggctgactgctgtacaaaacagagcccgaaagaaac300gaatgtttcctgcaacacaaagatgacaaccccagcctaccaccatttgaaaggccagag360gctgaggccatgtgcacctcctttaaggaaaacccaaccaccttattggaaggccagag360gctgaggtgccagaagacatccttatttctatgccccagaacttttg420catgaagttgccagaagacatccttatttctatgccccagaacttctttactatgctgagcatgaagttgccagaagacatccttatttctatgccccagaactccttgcag540ccgaagcttgatggtgtgaaggagaaagcattggtccatctgccgtcagggaaatgaagcgcaagacttgcgaagatggcttttaagcatggcgag660agccagacattccccaatgctgagtggaggcttttaagagccgaagag720aaagtcaacaaggagtgggcatggtggacatggtggagagactgccg720aaagtcaacaaggagtggcttattccagcaaactggag780cttgccaagtcatggtggaagccactgtgtggagca900gctgatcagctgcattgtgtggaggggagatgggcaaactggataaccac
aaaggeetag teetgattge etttteetag tateteetaga aatgeteata egatgageat 120 geeaaattag tgeaggaagt aacagaett geaaagaegt gtgttgeega tgagtetgee 180 geeaaetgtg acaateeet teacaetett tttggagata agttgtgtge eatteeaaee 240 eteegtgaaa aetatggtga aetggetgae tgetgtaeaa aacaagagee egaaagaaae 300 gaatgtttee tgeaacaea agatgaeae eeeageetae eaceatttga aaggeeagag 360 getgaggeea tgtgeaeete ettaaggaa aaceeageetae eaceatttga aaggeeagag 360 getgaggeea tgtgeaeete ettaaggaa aaceeaaeea eettattgg aeaetatttg 420 eatgaagttg eeagaagaea teettatte tatgeeeag aaettetta etatgetgag 480 eagtaeaatg agattetgae eeagtgttg geagaggetg aeaaggaaag etgeetgaee 540 eegaagettg atgetggaag ggagaaagea ttggteteat etgeegaag ageetggeeg 660 tgeteeagta tgeeagagt tggaggaag gettttaaag eatgggeagt ageeegteg 660 ageeagaeat teeeeaage tgaetttgee gaaateeea aattggeaae agaeetgaee 720 aaagteeaae aggagtgetg eeatggtgae etgetggaat geegeagatga eaggeeggaa 780 ettgeeaagt aeatgtgtga agaeeagge actatetee geaaaetgee gaeetgeeg 840 gataaaeeae tgttgaagaa ageeeactg ettagtgagg tggageatga eaceeatgee 900 getgatetge etgeeattge tgetgattt gttgaggaee aggaagtgg eaagaaeta 960 geegageea aggatgett eetggeeg teettgtatg aaatteeag aagaeetgee 900 getgateege etgeeattge tgetgattt gttgaggaee aggaagtgg eaagaaeta 960 geegageea aggatgett eetggaegt teettgtatg aatatteeag aagaeetgee 1020
gccaaattag tgcaggaagt aacagactt gcaaagacgt gtgttgccga tgagtctgcc 180 gccaactgtg acaaatcoct tcacactott tttggagata agttgtgtgc cattocaaac 240 ctocgtgaaa actatggtga actggctgac tgotgtacaa aacaagagcc cgaaagaaac 300 gaatgtttoc tgcaacacaa agatgacaac cccagoctac caccatttga aaggccagag 360 gctgaggcca tgtgcacctc otttaaggaa aacccaacca otttatggg acactatttg 420 catgaagttg ocagaagaca toottatto tatgoccag aacttotta otatgotgag 480 cagtacaatg agattotgac ocagtgttg gcagaggotg acaaggaaag otgootgaco 540 cogaagottg atggtgtgaa ggagaaagca ttggtotcat otgtoogta agaatgaag 600 tgotocagta tgcagaagtt tggagagag gottttaaag catgggcagt agotogtotg 660 agocagacat tooccaatge tgacttgca gaaatcacca aattggcaac agactgotog 720 aaagtcaaca aggagtgotg ocatggtga ctgotggaat gcgcagatga cagggoggaa 780 ottgoccaagt acatgtgtga agoccactgt ottagtgag tggagocatga caccatgoct 900 gctgatocac tgttgaagaa agoccactgt ottagtgagg tggagotga caccatgoct 900 gctgatotgo ctgocattge tgctgattt gttgaggac aggaagtgg caagaactat 960 gctgaggcca aggatgott cctgggcag ttottgatg aattocaag aagaccacct 1020 gattactotg tatcoctgtt gctgagatt gctaagaat atgaagcca totggaaag 1080
gccaactgtg acaaatcoct tooractett titggagata agttgtgtge cattocaaac 240 ctoogtgaaa actatggtga actggotgac tgotgtacaa aacaagagoo ogaaagaaac 300 gaatgtttoo tgoaacacaa agatgacaac occagootac caccatttga aaggooagag 360 gotgaggooa tgtgoacoto otttaaggaa aaccoaacca cotttatggg acactatttg 420 catgaagttg ocagaagaca toottattoo tatgooccag aacttotta otatgotgag 480 cagtacaatg agattotgac ocagtgttg goagaggotg acaaggaaag otgootgaco 540 cogaagottg atggtgtgaa ggagaaagoa togottota otggoogaa otgootgaco 540 cogaagottg atggtgtgaa ggagaaagoa ttggtotoa otgoocgaa ggaaatgaag 600 tgotocagta tgoogaagtt tggagagaa gottttaaag catgggoagt agotogtog 660 agocagacat tooccaatgo tgoottgac otgotgaa gaaatcacca aattggoaa agootgoocgaa 720 aaagtoaaca aggagtgotg ocatggtga otgoogaat googaatga cagggoogaa 780 ottgoocaagt acatgtgtga aaaccaggog actatotcoa goaaactgoa gaottgootg 840 gataaacca tgttgaagaa agoocactgt ottagtgagg tggagoatga caccatgoot 900 gotgatotgo ctgocattgo tgotgattt gttgaggac aggaagtgg caagaactat 960 gotgaggooa aggatgoot tootggoacg ttottgtatg aatattocag aagaaccact 1020 gattactotg tatcootgt gotgagact gotagaat atgaagooc totggaaaga 1080
ctccgtggaaactatggtgaactggctgactgctgtacaaaacaagagcccgaagagaaac300gaatgtttcctgcaacacaaagatgacaaccccagcctaccaccatttgaaaggccagag360gctgaggccatgtgcacctcctttaaggaaaacccaaccacacttattgaaaggccagag360catgaagttgccagaagacatccttatttctatgccccagaacttctttatatgctgagcagtacaatgagattctgacccagtgttgtgcagaggctgacaaggaaagctgcctgacccgaagcttgatggtgtgaaggagaaagcattggtctcatctgccgtcagagatcgtcgtgctccagtatgcagaagtttggagagagagcttttaaagcatgggcagtagcccgtcgagccagacattccccaatgctggatggacgaaatcaccaaattggcaacaggggggaaaaagtcaacaaggagtgctgccatggtgacctgctggaatgcg780cttgccaagtacatgtgtgaaaaccaggcgacatttccagcaaactgcc900gataaaccactgttgaagaaagccactgtctagtgaggtgtgaggaca960gctgaggccaaggatgtctcctgggccagttcttgtagaaattcaagaagaccctgctgaggccaaggatgtctcctgggccagttcttgtagaaattcaagaagaccctgctgaggccaaggatgtctcctgggccagttcttgtagaaattcaagaagaccctgctgaggccaaggatgtctcctgggccaggaagtgtgcacaatgcc1020gctgaggccaaggatgtctcctgggaactgctaagaaaatattcaagaagaccc1020gctgaggccaaggatgttcctgggaactgctaagaaaatattca
gaatgtttee tgeaacaaa agatgacaae eecageetae caccatttga aaggeeagag 360 getgaggeea tgtgeaeete ettaaggaa aaceeaacea eettatggg acaetatttg 420 catgaagttg eeagaagaea teettatte tatgeeeeag aaettetta etatgetgag 480 cagtacaatg agattetgae eeagtgttgt geagaggetg acaaggaaag etgeetgaee 540 eegaagettg atggtgtgaa ggagaaagea ttggteetae etgeegeag agaatgaag 600 tgeteeagta tgeagaagtt tggagagag getttaaag eatgggeag ageeegee 660 ageeagaeat teeeeaage tgaeettgea gaaateeea aattggeaae agaeetgee 720 aaagteaaea aggagtgetg eeatggtgae etgeetgaae gegeagatg eeggeeggaa 780 ettgeeaagt acatggtgga aaceeggeg actateteea geaaaetgea gaeetgeege 840 gataaaeeae tgttgaagaa ageeeaetg ettattgeaggaee aggaagtga eagaegeeg 840 geetgatetge etgeeattge tgeegattt gttgaggaee aggaagtgtg eaagaaetat 960 geetgatetge etgeeattge tgeeggeeg teettgeagaee aggaagtgtg eaagaaetat 960 geetgaggeea aggatgeet eeeggeeeg teettgeagaae aggaagtgtg eaagaaetat 960 geetgaggeea aggatgeet eeeggeeeg teettgeagaae agaaaeeeeg 1020 gattaeeeege tgeeegeegeegeegeegeegeegeegeegeegeegeege
gctgaggccatgtgcacctcctttaaggaaaacccaaccacctttatgggacactatttg420catgaagttgccagaagacatccttatttctatgccccagaacttcttactatgctgag480cagtacaatgagattctgacccagtgttgtgcagaggctgacaaggaaagctgctgacc540ccgaagcttgatggtgtgaaggagaaagcattggtctcatctgtccgtcagagaatgaag600tgctccagtatgcagaagtttggagagagagcttttaaagcatgggcagtagccgtctg660agccagacattccccaatgctggacttgcagaaatcaccaaattggcaacaggccggaa720aaagtcaacaaggagtgctgccatggtgacctgctggaatgcgcagatgacagggcggaa780cttgccaagtacatgtgtgaaaaccaggcgactatctccagcaaactgcagactgctg840gataaaccactgttgaagaaagcccatgtcttagtgaggtggagcatgacaccatgcc900gctgatctgcctgccattgctgctgatttgttgaggaccaggaagtgtgcaagaactat960gctgaggccaaggatgtcttcctgggcacgttcttgtatgaatattcaagaagacaccct1020gctgaggccaaggatgtcttcctgggaactgctaagaaaatattcaagaagacacct1080
catgaagttg ccagaagaca tccttattc tatgccccag aacttcttta ctatgctgag 480 cagtacaatg agattctgac ccagtgttgt gcagaggctg acaaggaaag ctgcctgacc 540 ccgaagcttg atggtgtgaa ggagaaagca ttggtctcat ctgtccgtca gagaatgaag 600 tgctccagta tgcagaagtt tggagagaga gcttttaaag catgggcagt agctcgtctg 660 agccagacat tccccaatgc tgactttgca gaaatcacca aattggcaac agacctgacc 720 aaagtcaaca aggagtgctg ccatggtgac ctgctggaat gcgcagatga cagggcggaa 780 cttgccaagt acatgtgtga aaaccaggcg actatctcca gcaaactgca gacttgctgc 840 gataaaccac tgttgaagaa agcccactgt cttagtgagg tggagcatga caccatgcct 900 gctgatctgc ctgccattgc tgctgattt gttgaggacc aggaagtgtg caagaactat 960 gctgaggcca aggatgtct cctgggcacg ttcttgtatg aatattcaag aagacaccct 1020 gattactctg tatccctgtt gctgagact gctaagaaat atgaagccac tctggaaaag
cagtacaatg agattetgae eeagagatg geagaggetg acaaggaaag etgeetgaee 540 cegaagettg atggtgtgaa ggagaaagea ttggteteat etgteegtea gagaatgaag 600 tgeteeagta tgeagaagtt tggagagaga gettttaaag eatgggeagt agetegtetg 660 ageeagaeat teeeeaatge tgaetttgea gaaateacea aattggeaae agaeetgaee 720 aaagteaaca aggagtgetg eeatggtgae etgetggaat gegeagatga eagggeggaa 780 ettgeeaagt acatgtgtga aaaceaggeg actateteea geaaaetgea gaettgetge 840 gataaaeeae tgttgaagaa ageeeatg ettagtgagg tggageatga eacatgeet 900 getgatetge etgeeattge tgetgattt gttgaggaee aggaagtgtg eaagaaetat 960 getgaggeea aggatgtet eetgggeaeg ttettgtatg aatatteaag aagaeeeet 1020 gattaeeetg tateeetgt getgagaett getaagaaat atgaageeae tetggaaaag 1080
ccgaagcttg atggtgtgaa ggagaaagca ttggtctcat ctgtccgtca gagaatgaag 600 tgctccagta tgcagaagtt tggagagaga gcttttaaag catgggcagt agctcgtctg 660 agccagacat tccccaatgc tgactttgca gaaatcacca aattggcaac agacctgacc 720 aaagtcaaca aggagtgctg ccatggtgac ctgctggaat gcgcagatga cagggcggaa 780 cttgccaagt acatgtgtga aaaccaggcg actatctcca gcaaactgca gacttgctgc 840 gataaaccac tgttgaagaa agcccactgt cttagtgagg tggagcatga caccatgcct 900 gctgatctgc ctgccattgc tgctgattt gttgaggacc aggaagtgtg caagaactat 960 gctgaggcca aggatgtct cctgggcacg ttcttgtatg aatattcaag aagacaccct 1020 gattactctg tatccctgtt gctgagact gctaagaaat atgaagccac tctggaaaag 1080
tgctccagta tgcagaagtt tggagagaga gcttttaaag catgggcagt agctcgtctg 660 agccagacat tccccaatge tgactttgca gaaatcacca aattggcaac agacctgace 720 aaagtcaaca aggagtgctg ccatggtgac ctgctggaat gcgcagatga caggggggaa 780 cttgccaagt acatgtgtga aaaccaggeg actateteca gcaaactgca gacttgetge 840 gataaaccae tgttgaagaa ageceaetgt ettagtgagg tggageatga caccatgeet 900 getgatete etgecattge tgetgattt gttgaggace aggaagtgtg caagaactat 960 getgaggeca aggatgtett eetgggeaeg ttettgtatg aatatteaag aagaeaeeet 1020 gattaeteetg tateeetgtt getgagaett getaagaaat atgaageeae tetggaaaag 1080
agccagacat teeccaatge tgaetttgea gaaateacea aattggeaae agaeetgaee 720 aaagteaaea aggagtgetg eeatggtgae etgetggaat gegeagatga eagggeggaa 780 ettgeeaagt acatgtgtga aaaceaggeg actateteea geaaaetgea gaettgetge 840 gataaaeeae tgttgaagaa ageeeaetgt ettagtgagg tggageatga eaceatgeet 900 getgatetge etgeeattge tgetgattt gttgaggaee aggaagtgtg eaagaaetat 960 getgaggeea aggatgeet eetgggaeet getaagaaat atgaageeae tetggaaaag 1080
aaagtcaaca aggagtgctg ccatggtgac ctgctggaat gcgcagatga cagggcggaa 780 cttgccaagt acatgtgtga aaaccaggcg actatctcca gcaaactgca gacttgctgc 840 gataaaccac tgttgaagaa agcccactgt cttagtgagg tggagcatga caccatgcct 900 gctgatctgc ctgccattgc tgctgattt gttgaggacc aggaagtgtg caagaactat 960 gctgaggcca aggatgtctt cctgggcacg ttcttgtatg aatattcaag aagacaccct 1020 gattactctg tatccctgtt gctgagatt gctaagaaat atgaagccac tctggaaaag 1080
cttgccaagt acatgtgtga aaaccaggeg actateteea geaaactgea gaettgetge 840 gataaaccae tgttgaagaa ageeeactgt ettagtgagg tggageatga eaceatgeet 900 getgatetge etgeeattge tgetgattt gttgaggaee aggaagtgtg eaagaaetat 960 getgaggeea aggatgtett eetgggeaeg ttettgtatg aatatteaag aagaeaeeet 1020 gattaeeetg tateeetgtt getgagaett getaagaaat atgaageeae tetggaaaag 1080
gataaaccac tgttgaagaa agcccactgt cttagtgagg tggagcatga caccatgcct 900 gctgatctgc ctgccattgc tgctgattt gttgaggacc aggaagtgtg caagaactat 960 gctgaggcca aggatgtctt cctgggcacg ttcttgtatg aatattcaag aagacaccct 1020 gattactctg tatccctgtt gctgagactt gctaagaaat atgaagccac tctggaaaag 1080
getgaggeea aggatgtett eetgggeaeg ttettgtatg aatatteaag aagaeaeeet 1020 gattaetetg tateeetgtt getgagaett getaagaaat atgaageeae tetggaaaag 1080
gctgaggcca aggatgtctt cctgggcacg ttcttgtatg aatattcaag aagacaccct 1020 gattactctg tatccctgtt gctgagactt gctaagaaat atgaagccac tctggaaaag 1080
gattactctg tatccctgtt gctgagactt gctaagaaat atgaagccac tctggaaaag 1080
tactacacta agarcaatee teccacatae tacaacacaa tacttactaa attteacact 1140
egoegoegoeg aageeaacee coorgearge racgycacay rycrigerya arrivageet 1140
cttgtagaag agcctaagaa cttggtcaaa accaactgtg atctttacga gaagcttgga 1200
gaatatggat teeaaaatge cattetagtt egetacaeee agaaageaee teaggtgtea 1260
accccaactc tcgtggaggc tgcaagaaac ctaggaagag tgggcaccaa gtgttgtaca 1320
cttcctgaag atcagagact gccttgtgtg gaagactatc tgtctgcaat cctgaaccgt 1380
gtgtgtctgc tgcatgagaa gaccccagtg agtgagcatg ttaccaagtg ctgtagtgga 1440
tccctggtgg aaaggeggee atgettetet getetgacag ttgatgaaac atatgteece 1500
aaagagttta aagetgagae etteacette eaetetgata tetgeacaet teeagagaag 1560
gagaagcaga ttaagaaaca aacggctctt gctgagctgg tgaagcacaa gcccaaggct 1620
acageggage aactgaagae tgteatggat gaetttgeae agtteetgga taeatgttge 1680
aaggetgetg acaaggacae etgetteteg aetgagggte caaacettgt caetagatge 1740
aaagacgcct tagccggtgg aggaggctct ggtggaggcg gtagcggagg cggagggtcg 1800

			-contir	nued		
gccgaggttc agctggtgga	gtctggcggt	ggcctggtgc	agccaggggg	ctcactccgt	1860	-
ttgtcctgtg cagcttctgg	ctccaacccc	tactactacg	gtggtacgca	ctgggtgcgt	1920	
caggccccgg gtgaggagct	ggaatgggtt	gcatctattg	gttcttaccc	tggctacact	1980	
gactatgccg atagcgtcaa	gggccgtttc	actataagcg	cagacacatc	caaaaacaca	2040	
gcctacctac aaatgaacag	cttaagagct	gaggacactg	ccgtctatta	ttgtgctcgc	2100	
cattactact ggtacgatgc	tactgactac	tggggtcaag	gaaccctggt	caccgtctcc	2160	
tcgtgatag					2169	
<pre><210> SEQ ID NO 158 <211> LENGTH: 2544 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI.</pre>	ON: Synthet:	ic: mouse SA	A-(Gly4Ser))	3-scFv (VL-V	H)	
atggaagcac acaagagtga	gatcgcccat	cootataato	atttqqqaqa	acaacatttc	60	
aaaggeetag teetgattge					120	
gccaaattag tgcaggaagt	_	_	-		180	
gccaactgtg acaaatccct					240	
ctccgtgaaa actatggtga					300	
gaatgtttcc tgcaacacaa					360	
gctgaggcca tgtgcacctc					420	
catgaagttg ccagaagaca					480	
cagtacaatg agattctgac	ccagtgttgt	gcagaggctg	acaaggaaag	ctgcctgacc	540	
ccgaagcttg atggtgtgaa	ggagaaagca	ttggtctcat	ctgtccgtca	gagaatgaag	600	
tgctccagta tgcagaagtt	tggagagaga	gcttttaaag	catgggcagt	agctcgtctg	660	
agccagacat tccccaatgc	tgactttgca	gaaatcacca	aattggcaac	agacctgacc	720	
aaagtcaaca aggagtgctg	ccatggtgac	ctgctggaat	gcgcagatga	cagggcggaa	780	
cttgccaagt acatgtgtga	aaaccaggcg	actatctcca	gcaaactgca	gacttgctgc	840	
gataaaccac tgttgaagaa	agcccactgt	cttagtgagg	tggagcatga	caccatgcct	900	
gctgatctgc ctgccattgc	tgctgatttt	gttgaggacc	aggaagtgtg	caagaactat	960	
gctgaggcca aggatgtctt	cctgggcacg	ttcttgtatg	aatattcaag	aagacaccct	1020	
gattactctg tatccctgtt	gctgagactt	gctaagaaat	atgaagccac	tctggaaaag	1080	
tgctgcgctg aagccaatcc	tcccgcatgc	tacggcacag	tgcttgctga	atttcagcct	1140	
cttgtagaag agcctaagaa	cttggtcaaa	accaactgtg	atctttacga	gaagcttgga	1200	
gaatatggat tccaaaatgc	cattctagtt	cgctacaccc	agaaagcacc	tcaggtgtca	1260	
accccaactc tcgtggaggc	tgcaagaaac	ctaggaagag	tgggcaccaa	gtgttgtaca	1320	
cttcctgaag atcagagact					1380	
gtgtgtctgc tgcatgagaa					1440	
tccctggtgg aaaggcggcc					1500	
					1560	
aaagagttta aagctgagac	GLUGACCEEC	Gactotgata	leigeacadt	Lecayagaag	T200	

gagaagcaga ttaagaaaca aacggctctt gctgagctgg tgaagcacaa gcccaagg	ct 1620
acagoggago aactgaagac tgtcatggat gactttgcac agttootgga tacatgtt	gc 1680
aaggetgetg acaaggacae etgetteteg aetgagggte caaacettgt caetagat	gc 1740
aaagacgcct tagccggtgg aggaggctct ggtggaggcg gtagcggagg cggagggt	cg 1800
gatatecaga tgacecagte eeegageeee etgteegeet etgtgggega tagggtea	cc 1860
atcacctgcc gtgccagtca gtacggtggt tacgtagcct ggtatcaaca gaaaccag	ga 1920
aaageteega agettetgat ttaeggtgea teeettetet aetetggagt eeettete	gc 1980
ttetetggtg geogtteogg gaoggattte actetgaeea teageagtet geageogg.	aa 2040
gacttegeaa ettattaetg teagegaggt eatgetetga teaegttegg atgeggta	cc 2100
aaggtggaga togaaggtao taotgoogot agtggtagta gtggtggoag tagoagtg	gt 2160
geegaggtte agetggtgga gtetggeggt ggeetggtge ageeaggggg eteactee	gt 2220
ttateetgtg cagettetgg etteaacate tettettaeg gttetatgea etgggtge	gt 2280
caggccccgg gtaagtgcct ggaatgggtt gcatctattt acccttactc tagctcta	ct 2340
tactatgccg atagcgtcaa gggccgtttc actataagcg cagacacatc caaaaaca	ca 2400
geetaeetae aaatgaacag ettaagaget gaggacaetg eegtetatta ttgtgete	gt 2460
ggttacggtc cgtggtacgc ttactcttac ttcgctttgg actactgggg tcaaggaa	cc 2520
ctggtcaccg tctcctcgtg atag	2544
<pre><210> SEQ ID NO 159 <211> LENGTH: 2544 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VI</pre>	L-VH)
atggaagcac acaagagtga gatcgcccat cggtataatg atttgggaga acaacatt	tc 60
aaaggeetag teetgattge etttteeeag tateteeaga aatgeteata egatgage	at 120
gccaaattag tgcaggaagt aacagacttt gcaaagacgt gtgttgccga tgagtctg	cc 180
gccaactgtg acaaatccct tcacactctt tttggagata agttgtgtgc cattccaa	ac 240
ctccgtgaaa actatggtga actggctgac tgctgtacaa aacaagagcc cgaaagaa	ac 300
gaatgtttcc tgcaacacaa agatgacaac cccagcctac caccatttga aaggccag	ag 360
gctgaggcca tgtgcacctc ctttaaggaa aacccaacca cctttatggg acactatt	tg 420
catgaagttg ccagaagaca teettattte tatgeeccag aaettettta etatgetg.	ag 480
cagtacaatg agattetgae ceagtgttgt geagaggetg acaaggaaag etgeetga	cc 540
ccgaagettg atggtgtgaa ggagaaagea ttggteteat etgteegtea gagaatga	
	ag 600
ccgaagcttg atggtgtgaa ggagaaagca ttggtctcat ctgtccgtca gagaatga	ag 600 tg 660
ccgaagettg atggtgtgaa ggagaaagea ttggteteat etgteegtea gagaatga tgeteeagta tgeagaagtt tggagagaga gettttaaag eatgggeagt agetegte	ag 600 tg 660 cc 720
ccgaagettg atggtgtgaa ggagaaagea ttggteteat etgteegtea gagaatga tgeteeagta tgeagaagtt tggagagaga gettttaaag eatgggeagt agetegte ageeagaeat teeceaatge tgaetttgea gaaateacea aattggeaae agaeetga	ag 600 tg 660 cc 720 aa 780
ccgaagettg atggtgtgaa ggagaaagea ttggteteat etgteegtea gagaatga tgeteeagta tgeagaagtt tggagagaga gettttaaag eatgggeagt agetegte ageeagaeat teeceaatge tgaetttgea gaaateacea aattggeaae agaeetga aaagteaaca aggagtgetg eeatggtgae etgetggaat gegeagatga eagggegg	ag 600 tg 660 cc 720 aa 780 gc 840

-continued	
gctgatctgc ctgccattgc tgctgatttt gttgaggacc aggaagtgtg caagaactat	960
gctgaggcca aggatgtctt cctgggcacg ttcttgtatg aatattcaag aagacaccct	1020
gattactctg tatccctgtt gctgagactt gctaagaaat atgaagccac tctggaaaag	1080
tgctgcgctg aagccaatcc tcccgcatgc tacggcacag tgcttgctga atttcagcct	1140
cttgtagaag agcctaagaa cttggtcaaa accaactgtg atctttacga gaagcttgga	1200
gaatatggat tecaaaatge cattetagtt egetacaeee agaaageaee teaggtgtea	1260
accccaactc tcgtggaggc tgcaagaaac ctaggaagag tgggcaccaa gtgttgtaca	1320
cttcctgaag atcagagact gccttgtgtg gaagactatc tgtctgcaat cctgaaccgt	1380
gtgtgtctgc tgcatgagaa gaccccagtg agtgagcatg ttaccaagtg ctgtagtgga	1440
tccctggtgg aaaggcggcc atgcttctct gctctgacag ttgatgaaac atatgtcccc	1500
aaagagttta aagctgagac cttcaccttc cactctgata tctgcacact tccagagaag	1560
gagaagcaga ttaagaaaca aacggctctt gctgagctgg tgaagcacaa gcccaaggct	1620
acageggage aactgaagae tgteatggat gaetttgeae agtteetgga taeatgttge	1680
aaggetgetg acaaggacae etgetteteg aetgagggte caaacettgt caetagatge	1740
aaagacgcct tagccggtgg aggaggctct ggtggaggcg gtagcggagg cggagggtcg	1800
gatatecaga tgacccagte eeegageeee etgteegeet etgtgggega tagggteace	1860
atcacctgcc gtgccagtca gtacggtggt tacgtagcct ggtatcaaca gaaaccagga	1920
aaatgoooga agottotgat ttaoggtgoa tooottotot actotggagt coottotogo	1980
ttetetggtg geegtteegg gaeggattte actetgaeea teageagtet geageeggaa	2040
gacttegeaa ettattaetg teagegaggt eatgetetga teaegttegg acagggtaee	2100
aaggtggaga tcgaaggtac tactgccgct agtggtagta gtggtggcag tagcagtggt	2160
geegaggtte agetggtgga gtetggeggt ggeetggtge ageeaggggg eteacteegt	2220
ttatectgtg cagettetgg etteaacate tettettaeg gttetatgea etgggtgegt	2280
caggccccgg gtaagggcct ggaatgggtt gcatctattt acccttactc tagctctact	2340
tactatgccg atagcgtcaa gggccgtttc actataagcg cagacacatc caaaaacaca	2400
gcctacctac aaatgaacag cttaagagct gaggacactg ccgtctatta ttgtgctcgt	2460
ggttacggtc cgtggtacgc ttactcttac ttcgctttgg actactgggg ttgcggaacc	2520
ctggtcaccg tctcctcgtg atag	2544
<210> SEQ ID NO 160 <211> LENGTH: 851 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VL-VH CK138	H)
<400> SEQUENCE: 160	
Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu 1 5 10 15	
Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln 20 25 30	
Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp 35 40 45	

											-	con	tin	ued			
Phe	Ala 50	Lys	Thr	СЛа	Val	Ala 55	Asp	Glu	Ser	Ala	Ala 60	Asn	СЛа	Asp	Lys	 	
Ser 65	Leu	His	Thr	Leu	Phe 70	Gly	Asp	Lys	Leu	Cys 75	Ala	Ile	Pro	Asn	Leu 80		
Arg	Glu	Asn	Tyr	Gly 85	Glu	Leu	Ala	Asp	Cys 90	Суз	Thr	ГЛа	Gln	Glu 95	Pro		
Glu	Arg	Asn	Glu 100	-	Phe	Leu	Gln	His 105	ГЛа	Asp	Asp	Asn	Pro 110	Ser	Leu		
Pro	Pro	Phe 115	Glu	Arg	Pro	Glu	Ala 120	Glu	Ala	Met	Суз	Thr 125	Ser	Phe	Lys		
Glu	Asn 130	Pro	Thr	Thr	Phe	Met 135	Gly	His	Tyr	Leu	His 140	Glu	Val	Ala	Arg		
Arg 145	His	Pro	Tyr	Phe	Tyr 150	Ala	Pro	Glu	Leu	Leu 155	Tyr	Tyr	Ala	Glu	Gln 160		
Tyr	Asn	Glu	Ile	Leu 165	Thr	Gln	Суз	Суз	Ala 170	Glu	Ala	Asp	Lys	Glu 175	Ser		
Суа	Leu	Thr	Pro 180	ГЛа	Leu	Asp	Gly	Val 185	ГЛа	Glu	ГЛа	Ala	Leu 190	Val	Ser		
Ser	Val	Arg 195	Gln	Arg	Met	ГЛа	Cys 200	Ser	Ser	Met	Gln	Lуя 205	Phe	Gly	Glu		
Arg	Ala 210		Lys	Ala	Trp	Ala 215	Val	Ala	Arg	Leu	Ser 220	Gln	Thr	Phe	Pro		
Asn 225	Ala	Asp	Phe	Ala	Glu 230	Ile	Thr	Lys	Leu	Ala 235	Thr	Asp	Leu	Thr	Lys 240		
Val	Asn	Lys	Glu	Cys 245		His	Gly	Asp	Leu 250	Leu	Glu	Сүз	Ala	Asp 255	Asp		
Arg	Ala	Glu	Leu 260	Ala	Lys	Tyr	Met	Cys 265	Glu	Asn	Gln	Ala	Thr 270	Ile	Ser		
Ser	Lys	Leu 275	Gln	Thr	Сүз	Суз	Asp 280	Lys	Pro	Leu	Leu	Lys 285	Lys	Ala	His		
Суз	Leu 290		Glu	Val	Glu	His 295		Thr	Met	Pro	Ala 300	Asp	Leu	Pro	Ala		
Ile 305	Ala	Ala	Asp	Phe	Val 310	Glu	Asp	Gln	Glu	Val 315	Суз	ГЛа	Asn	Tyr	Ala 320		
Glu	Ala	Lys	Asp	Val 325	Phe	Leu	Gly	Thr	Phe 330	Leu	Tyr	Glu	Tyr	Ser 335	Arg		
Arg	His	Pro	Asp 340	Tyr	Ser	Val	Ser	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Lys		
Tyr	Glu	Ala 355	Thr	Leu	Glu	Lys	Суз 360	Суз	Ala	Glu	Ala	Asn 365	Pro	Pro	Ala		
Суз	Tyr 370	Gly	Thr	Val	Leu	Ala 375	Glu	Phe	Gln	Pro	Leu 380	Val	Glu	Glu	Pro		
Lys 385	Asn	Leu	Val	Lys	Thr 390	Asn	Сүз	Asp	Leu	Tyr 395	Glu	Lys	Leu	Gly	Glu 400		
Tyr	Gly	Phe	Gln	Asn 405	Ala	Ile	Leu	Val	Arg 410	Tyr	Thr	Gln	Lys	Ala 415	Pro		
Gln	Val	Ser	Thr 420	Pro	Thr	Leu	Val	Glu 425	Ala	Ala	Arg	Asn	Leu 430	Gly	Arg		
Val	Gly	Thr 435	Lys	Суз	Сүз	Thr	Leu 440	Pro	Glu	Asp	Gln	Arg 445	Leu	Pro	Сүз		
Val	Glu	Aab	Tyr	Leu	Ser	Ala	Ile	Leu	Asn	Arg	Val	Сув	Leu	Leu	His		

	450					455					460				
Glu 465	Lys	Thr	Pro	Val	Ser 470	Glu	His	Val	Thr	Lys 475	Сүз	Сүз	Ser	Gly	Ser 480
Leu	Val	Glu	Arg	Arg 485	Pro	Суз	Phe	Ser	Ala 490	Leu	Thr	Val	Asp	Glu 495	Thr
Tyr	Val	Pro	Lys 500	Glu	Phe	Lys	Ala	Glu 505	Thr	Phe	Thr	Phe	His 510	Ser	Asp
Ile	Cys	Thr 515	Leu	Pro	Glu	Lys	Glu 520	Lys	Gln	Ile	Lys	Lys 525	Gln	Thr	Ala
Leu	Ala 530	Glu	Leu	Val	Lys	His 535	Lys	Pro	Lys	Ala	Thr 540	Ala	Glu	Gln	Leu
Lys 545	Thr	Val	Met	Asp	Asp 550	Phe	Ala	Gln	Phe	Leu 555	Asp	Thr	Cys	Cys	Lys 560
Ala	Ala	Asp	Lys	Asp 565	Thr	Суз	Phe	Ser	Thr 570	Glu	Gly	Pro	Asn	Leu 575	Val
Thr	Arg	Cys	Lys 580	Asp	Ala	Leu	Ala	Gly 585	Gly	Gly	Gly	Ser	Gly 590	Gly	Gly
Gly	Ser	Gly 595	Gly	Gly	Gly	Ser	Ala 600	Ser	Ala	Ile	Gln	Met 605	Thr	Arg	Ser
Pro	Ser 610	Ser	Leu	Ser	Ala	Ser 615	Val	Gly	Asb	Arg	Val 620	Thr	Ile	Thr	Сув
Arg 625	Ala	Ser	Gln	Tyr	His 630	Asp	Gly	Ser	Ala	Ala 635	Trp	Tyr	Gln	Gln	Lys 640
Pro	Gly	Lys	Ala	Pro 645	Lys	Leu	Leu	Ile	Tyr 650	Gly	Ala	Ser	Tyr	Leu 655	Tyr
Ser	Gly	Val	Pro 660	Ser	Arg	Phe	Ser	Gly 665	Ser	Arg	Ser	Gly	Thr 670	Asp	Phe
Thr	Leu	Thr 675	Ile	Ser	Ser	Leu	Gln 680	Pro	Glu	Asp	Phe	Ala 685	Thr	Tyr	Tyr
САа	Gln 690	Gln	Ser	Ser	Tyr	Ser 695	Leu	Ile	Thr	Phe	Gly 700	Gln	Gly	Thr	Lys
Val 705	Glu	Ile	Lys	Gly	Thr 710	Thr	Ala	Ala	Ser	Gly 715	Ser	Ser	Gly	Gly	Ser 720
Ser	Ser	Gly	Ala	Glu 725	Val	Gln	Leu	Val	Glu 730	Ser	Asp	Gly	Gly	Leu 735	Val
Gln	Pro	Gly	Gly 740	Ser	Leu	Arg	Leu	Ser 745	Суз	Ala	Ala	Ser	Gly 750	Phe	Asn
Leu	Ser	Tyr 755	Tyr	Gly	Met	His	Trp 760	Val	Arg	Gln	Ala	Pro 765	Gly	Lys	Gly
Leu	Glu 770	Trp	Val	Ala	Tyr	Ile 775	Ala	Ser	Tyr	Pro	Gly 780	Tyr	Thr	Ser	Tyr
Ala 785	Asp	Ser	Val	Гла	Gly 790	Arg	Phe	Thr	Ile	Ser 795	Ala	Asp	Thr	Ser	Lys 800
Asn	Thr	Ala	Tyr	Leu 805	Gln	Met	Asn	Ser	Leu 810	Arg	Ala	Glu	Asp	Thr 815	Ala
Val	Tyr	Tyr	Cys 820	Ala	Arg	Ser	Gly	Tyr 825	Ser	Tyr	Ser	Pro	Tyr 830	Tyr	Ser
Trp	Phe	Ser 835	Ala	Gly	Met	Asn	Tyr 840	Trp	Gly	Gln	Gly	Ala 845	Leu	Val	Thr
Val	Ser 850	Ser													

<210> SEQ ID NO 161 <211> LENGTH: 842 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VL-VH) CK157 <400> SEQUENCE: 161 Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys 50 55 60 Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu 65 70 75 80 Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr Phe Leu Tyr Glu Tyr Ser Arg Arg His Pro Asp Tyr Ser Val Ser Leu Leu Leu Arg Leu Ala Lys Lys

-continued		

											-	con	tin	ued	
			340					345					350		
Tyr	Glu	Ala 355	Thr	Leu	Glu	Lys	Суз 360	Суз	Ala	Glu	Ala	Asn 365	Pro	Pro	Ala
Суз	Tyr 370	Gly	Thr	Val	Leu	Ala 375	Glu	Phe	Gln	Pro	Leu 380	Val	Glu	Glu	Pro
Lys 385	Asn	Leu	Val	Lys	Thr 390	Asn	Сүз	Asp	Leu	Tyr 395	Glu	Lys	Leu	Gly	Glu 400
Tyr	Gly	Phe	Gln	Asn 405	Ala	Ile	Leu	Val	Arg 410	Tyr	Thr	Gln	Lys	Ala 415	Pro
Gln	Val	Ser	Thr 420	Pro	Thr	Leu	Val	Glu 425	Ala	Ala	Arg	Asn	Leu 430	Gly	Arg
Val	Gly	Thr 435	Lys	Суа	Суа	Thr	Leu 440	Pro	Glu	Asp	Gln	Arg 445	Leu	Pro	Сүз
Val	Glu 450	Asp	Tyr	Leu	Ser	Ala 455	Ile	Leu	Asn	Arg	Val 460	САа	Leu	Leu	His
Glu 465	Lys	Thr	Pro	Val	Ser 470	Glu	His	Val	Thr	Lys 475	Суз	Суз	Ser	Gly	Ser 480
Leu	Val	Glu	Arg	Arg 485	Pro	Сүз	Phe	Ser	Ala 490	Leu	Thr	Val	Asp	Glu 495	Thr
Tyr	Val	Pro	Lys 500	Glu	Phe	ГЛа	Ala	Glu 505	Thr	Phe	Thr	Phe	His 510	Ser	Aap
Ile	Суз	Thr 515	Leu	Pro	Glu	ГЛа	Glu 520	ГЛа	Gln	Ile	ГЛа	Lys 525	Gln	Thr	Ala
Leu	Ala 530	Glu	Leu	Val	ГЛа	His 535	Lys	Pro	Lys	Ala	Thr 540	Ala	Glu	Gln	Leu
Lys 545	Thr	Val	Met	Asp	Asp 550	Phe	Ala	Gln	Phe	Leu 555	Asp	Thr	Cys	Суз	Lys 560
Ala	Ala	Asp	Lys	Asp 565	Thr	Сүз	Phe	Ser	Thr 570	Glu	Gly	Pro	Asn	Leu 575	Val
Thr	Arg	Суз	Lys 580	Asp	Ala	Leu	Ala	Gly 585	Gly	Gly	Gly	Ser	Gly 590	Gly	Gly
Gly	Ser	Gly 595	Gly	Gly	Gly	Ser	Ala 600	Ser	Asp	Ile	Gln	Met 605	Thr	Gln	Ser
Pro	Ser 610	Ser	Leu	Ser	Ala	Ser 615	Val	Gly	Asp	Arg	Val 620	Thr	Ile	Thr	Суз
Arg 625	Ala	Ser	Gln	Ser	Tyr 630	Gly	Gly	Val	Ala	Trp 635	Tyr	Gln	Gln	Lys	Pro 640
Gly	ГЛЗ	Ala	Pro	Lys 645	Leu	Leu	Ile	Tyr	Ser 650	Ala	Ser	Tyr	Leu	Tyr 655	Ser
Gly	Val	Pro	Ser 660	Arg	Phe	Ser	Gly	Ser 665	Arg	Ser	Gly	Thr	Asp 670	Phe	Thr
Leu	Thr	Ile 675	Ser	Ser	Leu	Gln	Pro 680	Glu	Asp	Phe	Ala	Thr 685	Tyr	Tyr	СЛа
Gln	Gln 690	Pro	Ser	His	Leu	Ile 695	Thr	Phe	Gly	Gln	Gly 700	Thr	Glu	Val	Glu
Ile 705	Гла	Gly	Thr	Thr	Ala 710	Ala	Ser	Gly	Ser	Ser 715	Gly	Gly	Ser	Ser	Ser 720
Gly	Ala	Glu	Val	Gln 725	Leu	Val	Glu	Ser	Gly 730	Gly	Gly	Leu	Val	Gln 735	Pro
Gly	Gly	Ser	Leu 740	Arg	Leu	Ser	Суз	Ala 745	Ala	Ser	Gly	Ser	Asn 750	Pro	Tyr

Tyr Tyr Gly Gly Thr His Trp Val Arg Gln Ala Pro Gly Glu Glu Leu 755 760 765 Glu Trp Val Ala Ser Ile Gly Ser Tyr Pro Gly Tyr Thr Asp Tyr Ala 770 775 780 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg His Tyr Tyr Trp Tyr Asp Ala Thr Asp Tyr Trp 820 825 830 Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> SEQ ID NO 162 <211> LENGTH: 847 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VL-VH) CK129 <400> SEQUENCE: 162 Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Lys Phe Gly Glu 2.05 Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp

-continued

				245					250					255	
Arg	Ala	Glu	Leu 260	Ala	Lys	Tyr	Met	Суз 265		Asn	Gln	Ala	Thr 270	Ile	Ser
Ser	Lys	Leu 275	Gln	Thr	Сув	Сүз	Asp 280	Lys	Pro	Leu	Leu	Lys 285	Lys	Ala	His
Суз	Leu 290	Ser	Glu	Val	Glu	His 295	Asp	Thr	Met	Pro	Ala 300	Asp	Leu	Pro	Ala
Ile 305	Ala	Ala	Asp	Phe	Val 310	Glu	Asp	Gln	Glu	Val 315	Суз	ГЛа	Asn	Tyr	Ala 320
Glu	Ala	Lys	Asp	Val 325	Phe	Leu	Gly	Thr	Phe 330	Leu	Tyr	Glu	Tyr	Ser 335	Arg
Arg	His	Pro	Asp 340	Tyr	Ser	Val	Ser	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Lys
Tyr	Glu	Ala 355	Thr	Leu	Glu	ГЛа	Cys 360	Суз	Ala	Glu	Ala	Asn 365	Pro	Pro	Ala
Суз	Tyr 370	Gly	Thr	Val	Leu	Ala 375	Glu	Phe	Gln	Pro	Leu 380	Val	Glu	Glu	Pro
Lys 385	Asn	Leu	Val	Lys	Thr 390	Asn	Сүз	Asp	Leu	Tyr 395	Glu	Lys	Leu	Gly	Glu 400
	Gly	Phe	Gln	Asn 405	Ala	Ile	Leu	Val	Arg 410		Thr	Gln	Lys	Ala 415	
Gln	Val	Ser	Thr 420		Thr	Leu	Val	Glu 425		Ala	Arg	Asn	Leu 430		Arg
Val	Gly			Суз	Сув	Thr			Glu	Asp	Gln			Pro	Суз
Val		435 Asp	Tyr	Leu	Ser		440 Ile	Leu	Asn	Arg		445 Cys	Leu	Leu	His
	450 Lys	Thr	Pro	Val	Ser	455 Glu	His	Val	Thr		460 Cys	Суз	Ser	Gly	
465 Leu	Val	Glu	Arg	Arg	470 Pro	Суз	Phe	Ser	Ala	475 Leu	Thr	Val	Asp	Glu	480 Thr
			-	485	Phe	-			490				-	495	
-			500			-		505					510		-
	-	515			Glu	-	520	-			-	525			
	530				Lys	535	-		-		540				
Lys 545	Thr	Val	Met	Asp	Asp 550	Phe	Ala	Gln	Phe	Leu 555	Asp	Thr	Суз	Суз	Lys 560
Ala	Ala	Asp	Lys	Asp 565	Thr	Суз	Phe	Ser	Thr 570	Glu	Gly	Pro	Asn	Leu 575	Val
Thr	Arg	Сув	Lys 580	Asp	Ala	Leu	Ala	Gly 585	Gly	Gly	Gly	Ser	Gly 590	Gly	Gly
Gly	Ser	Gly 595	Gly	Gly	Gly	Ser	Ala 600	Ser	Asp	Ile	Gln	Met 605	Thr	Gln	Ser
Pro	Ser 610	Pro	Leu	Ser	Ala	Ser 615	Val	Gly	Asp	Arg	Val 620	Thr	Ile	Thr	Суз
Arg 625	Ala	Ser	Gln	Tyr	Gly 630	Gly	Tyr	Val	Ala	Trp 635	Tyr	Gln	Gln	Lys	Pro 640
Gly	Lys	Ala	Pro	Lys 645	Leu	Leu	Ile	Tyr	Gly 650	Ala	Ser	Leu	Leu	Tyr 655	Ser
				545					550						

282

Gly	Val	Pro	Ser 660	Arg	Phe	Ser	Gly	Gly 665	Arg	Ser	Gly	Thr	Asp 670	Phe	Thr
Leu	Thr	Ile 675	Ser	Ser	Leu	Gln	Pro 680	Glu	Asp	Phe	Ala	Thr 685	Tyr	Tyr	Суз
Gln	Arg 690		His	Ala	Leu	Ile 695	Thr	Phe	Gly	Gln	Gly 700	Thr	Lys	Val	Glu
Ile 705	Glu	Gly	Thr	Thr	Ala 710	Ala	Ser	Gly	Ser	Ser 715	Gly	Gly	Ser	Ser	Ser 720
Gly	Ala	Glu	Val	Gln 725	Leu	Val	Glu	Ser	Gly 730	Gly	Gly	Leu	Val	Gln 735	Pro
Gly	Gly	Ser	Leu 740	Arg	Leu	Ser	Суз	Ala 745	Ala	Ser	Gly	Phe	Asn 750	Ile	Ser
Ser	Tyr	Gly 755	Ser	Met	His	Trp	Val 760	Arg	Gln	Ala	Pro	Gly 765	Lys	Gly	Leu
Glu	Trp 770	Val	Ala	Ser	Ile	Tyr 775	Pro	Tyr	Ser	Ser	Ser 780	Thr	Tyr	Tyr	Ala
Asp 785	Ser	Val	Lys	Gly	Arg 790	Phe	Thr	Ile	Ser	Ala 795	Asp	Thr	Ser	Lys	Asn 800
Thr	Ala	Tyr	Leu	Gln 805	Met	Asn	Ser	Leu	Arg 810	Ala	Glu	Asp	Thr	Ala 815	Val
Tyr	Tyr	Суз	Ala 820	Arg	Gly	Tyr	Gly	Pro 825	Trp	Tyr	Ala	Tyr	Ser 830	Tyr	Phe
Ala	Leu	Asp 835	Tyr	Trp	Gly	Gln	Gly 840	Thr	Leu	Val	Thr	Val 845	Ser	Ser	
<21 <22		RGAN EATUI FHER	ISM: RE: INF(ORMA:	FION	: Syr	-								
<40	0> SI			(•==	LOOOS	>C /		1G>C)		e Sl	A- (G	ly4Se	er)3.	-scF	/ (VL-VH)
Glu 1		2Õ0 FI	ICE :		10003	>C /				se Sl	A- (G]	ly4Se	∍r)3·	-scF	/ (VL-VH)
	Ala	-		163			VH44	1G>C)	į			-			
Gln	Ala His	His	Lys	163 Ser 5	Glu	Ile	VH44 Ala	4G>C) His	Arg 10	Tyr	Asn	Asp	Leu	Gly 15	Glu
		His Phe	Lys Lys 20	163 Ser 5 Gly	Glu Leu	Ile Val	VH44 Ala Leu	His His Ile 25	Arg 10 Ala	Tyr Phe	Asn Ser	Asp Gln	Leu Tyr 30	Gly 15 Leu	Glu Gln
Lys	His	His Phe Ser 35	Lys Lys 20 Tyr	163 Ser 5 Gly Asp	Glu Leu Glu	Ile Val His	VH44 Ala Leu Ala 40	His His Ile 25 Lys	Arg 10 Ala Leu	Tyr Phe Val	Asn Ser Gln	Asp Gln Glu 45	Leu Tyr 30 Val	Gly 15 Leu Thr	Glu Gln Asp
Lys Phe	His Cys Ala	His Phe Ser 35 Lys	Lys 20 Tyr Thr	163 Ser 5 Gly Asp Cys	Glu Leu Glu Val	Ile Val His Ala 55	VH44 Ala Leu Ala 40 Asp	4G>C) His Ile 25 Lys Glu	Arg 10 Ala Leu Ser	Tyr Phe Val Ala	Asn Ser Gln Ala 60	Asp Gln Glu 45 Asn	Leu Tyr 30 Val Cys	Gly 15 Leu Thr Asp	Glu Gln Asp Lys
Lys Phe Ser 65	His Cys Ala 50	His Phe Ser 35 Lys His	Lys 20 Tyr Thr Thr	163 Ser 5 Gly Asp Cys Leu	Glu Leu Glu Val Phe 70	Ile Val His Ala 55 Gly	VH44 Ala Leu Ala 40 Asp Asp	4G>C) His Ile 25 Lys Glu Lys	Arg 10 Ala Leu Ser Leu	Tyr Phe Val Ala Cys 75	Asn Ser Gln Ala 60 Ala	Asp Gln Glu 45 Asn Ile	Leu Tyr 30 Val Cys Pro	Gly 15 Leu Thr Asp Asn	Glu Gln Asp Lys Leu 80
Lys Phe Ser 65 Arg	His Cys Ala 50 Leu	His Phe Ser 35 Lys His Asn	Lys 20 Tyr Thr Thr Tyr	163 Ser 5 Gly Asp Cys Leu Gly 85	Glu Leu Glu Val Phe 70 Glu	Ile Val His Ala 55 Gly Leu	VH44 Ala Leu Ala 40 Asp Asp Ala	4G>C) His 11e 25 Lys Glu Lys Asp	Arg 10 Ala Leu Ser Leu Cys 90	Tyr Phe Val Ala Cys 75 Cys	Asn Ser Gln Ala 60 Ala Thr	Asp Gln Glu 45 Asn Ile Lys	Leu Tyr 30 Val Cys Pro Gln	Gly 15 Leu Thr Asp Asn Glu 95	Glu Gln Asp Lys Leu 80 Pro
Lys Phe Ser 65 Arg Glu	His Cys Ala 50 Leu Glu	His Phe Ser 35 Lys His Asn	Lys 20 Tyr Thr Thr Tyr Glu 100	163 Ser 5 Gly Asp Cys Leu Gly 85 Cys	Glu Leu Glu Val Phe 70 Glu Phe	Ile Val His Ala 55 Gly Leu Leu	VH44 Ala Leu Ala 40 Asp Ala Gln	His Ile 25 Lys Glu Lys Asp His 105	Arg 10 Ala Leu Ser Leu Cys 90 Lys	Tyr Phe Val Ala Cys 75 Cys Asp	Asn Ser Gln Ala 60 Ala Thr Asp	Asp Gln Glu 45 Asn Ile Lys Asn	Leu Tyr 30 Val Cys Gln Pro 110	Gly 15 Leu Thr Asp Asn Glu 95 Ser	Glu Gln Asp Lys Leu 80 Pro Leu
Lys Phe Ser 65 Arg Glu Pro	His Cys Ala 50 Leu Glu Arg	His Phe Ser 35 Lys His Asn Asn Phe 115	Lys 20 Tyr Thr Thr Glu 100 Glu	163 Ser 5 Gly Asp Cys Leu Gly 85 Cys Arg	Glu Leu Glu Val Phe 70 Glu Phe Pro	Ile Val His Ala 55 Gly Leu Leu Glu	VH44 Ala Leu Ala 40 Asp Ala Gln Ala 120	His Ile 25 Lys Glu Lys Asp His 105 Glu	Arg 10 Ala Leu Leu Leu Lys Ala	Tyr Phe Val Ala Cys Cys Asp Met	Asn Ser Gln Ala 60 Ala Thr Asp Cys	Asp Gln Glu 45 Asn Ile Lys Asn Thr 125	Leu Tyr 30 Val Cys Gln Pro 110 Ser	Gly 15 Leu Thr Asp Asn Glu 95 Ser Phe	Glu Gln Asp Lys Pro Leu Lys

-continued

145					150					155					160
Tyr	Asn	Glu	Ile	Leu 165	Thr	Gln	Суз	Суз	Ala 170	Glu	Ala	Asp	Lys	Glu 175	Ser
Сүз	Leu	Thr	Pro 180	Lys	Leu	Asp	Gly	Val 185	Lys	Glu	Lys	Ala	Leu 190	Val	Ser
Ser	Val	Arg 195	Gln	Arg	Met	Lys	Cys 200	Ser	Ser	Met	Gln	Lys 205	Phe	Gly	Glu
Arg	Ala 210	Phe	Lys	Ala	Trp	Ala 215	Val	Ala	Arg	Leu	Ser 220	Gln	Thr	Phe	Pro
Asn 225	Ala	Asp	Phe	Ala	Glu 230	Ile	Thr	Lys	Leu	Ala 235	Thr	Asp	Leu	Thr	Lys 240
Val	Asn	Lys	Glu	Cys 245	Сүз	His	Gly	Asp	Leu 250	Leu	Glu	Суа	Ala	Asp 255	Asp
Arg	Ala	Glu	Leu 260	Ala	Lys	Tyr	Met	Cys 265	Glu	Asn	Gln	Ala	Thr 270	Ile	Ser
Ser	Lys	Leu 275	Gln	Thr	Суз	Суз	Asp 280	Lys	Pro	Leu	Leu	Lys 285	Lys	Ala	His
Суз	Leu 290	Ser	Glu	Val	Glu	His 295	Asp	Thr	Met	Pro	Ala 300	Asp	Leu	Pro	Ala
Ile 305	Ala	Ala	Asp	Phe	Val 310	Glu	Asp	Gln	Glu	Val 315	Сув	Lys	Asn	Tyr	Ala 320
Glu	Ala	Lys	Asp	Val 325	Phe	Leu	Gly	Thr	Phe 330	Leu	Tyr	Glu	Tyr	Ser 335	Arg
Arg	His	Pro	Asp 340	Tyr	Ser	Val	Ser	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Lys
Tyr	Glu	Ala 355	Thr	Leu	Glu	Lys	Суз 360	Суз	Ala	Glu	Ala	Asn 365	Pro	Pro	Ala
Суз	Tyr 370	Gly	Thr	Val	Leu	Ala 375	Glu	Phe	Gln	Pro	Leu 380	Val	Glu	Glu	Pro
Lys 385	Asn	Leu	Val	Lys	Thr 390	Asn	Суз	Asp	Leu	Tyr 395	Glu	Lys	Leu	Gly	Glu 400
Tyr	Gly	Phe	Gln	Asn 405	Ala	Ile	Leu	Val	Arg 410	Tyr	Thr	Gln	Lys	Ala 415	Pro
Gln	Val	Ser	Thr 420	Pro	Thr	Leu	Val	Glu 425	Ala	Ala	Arg	Asn	Leu 430	Gly	Arg
Val	Gly	Thr 435	Lya	СЛа	САа	Thr	Leu 440		Glu	Asp	Gln	Arg 445	Leu	Pro	Сүз
Val	Glu 450		Tyr	Leu	Ser	Ala 455			Asn	Arg	Val 460		Leu	Leu	His
Glu 465		Thr	Pro	Val	Ser 470		His	Val	Thr	Lys 475	Суз	Суз	Ser	Gly	Ser 480
	Val	Glu	Arg	Arg 485		Суз	Phe	Ser	Ala 490		Thr	Val	Asp	Glu 495	
Tyr	Val	Pro	Lys 500		Phe	Lys	Ala	Glu 505	Thr	Phe	Thr	Phe	His 510		Asp
Ile	Суз			Pro	Glu	Lys			Gln	Ile	Lys	-		Thr	Ala
Leu	Ala	515 Glu	Leu	Val	Lys	His	520 Lys	Pro	Lys	Ala	Thr	525 Ala	Glu	Gln	Leu
Lvs	530 Thr	Val	Met	Asp	Asp	535 Phe	Ala	Gln	Phe	Leu	540 Asp	Thr	Çva	Çvs	Lvs
545		var	nee	mpp	550	I IIC	ma	GIII	i iic	555	пор		сур	сyы	560

284

d

Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Ser Ala Ile Gln Met Thr Arg Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys 610 615 Arg Ala Ser Gln Tyr His Asp Gly Ser Ala Ala Trp Tyr Gln Gln Lys 625 630 635 640 Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Gly Ala Ser Tyr Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Ser Tyr Ser Leu Ile Thr Phe Gly Cys Gly Thr Lys Val Glu Ile Lys Gly Thr Thr Ala Ala Ser Gly Ser Ser Gly Gly Ser Ser Ser Gly Ala Glu Val Gln Leu Val Glu Ser Asp Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Leu Ser Tyr Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Cys Leu Glu Trp Val Ala Tyr Ile Ala Ser Tyr Pro Gly Tyr Thr Ser Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser Gly Tyr Ser Tyr Ser Pro Tyr Tyr Ser Trp Phe Ser Ala Gly Met Asn Tyr Trp Gly Gln Gly Ala Leu Val Thr Val Ser Ser <210> SEQ ID NO 164 <211> LENGTH: 851 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VL-VH) CK138-ds2 (VL43A>C / VH105Q>C) <400> SEQUENCE: 164 Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp

-continued

		35					40					45			
Phe	Ala 50	Lys	Thr	Суз	Val	Ala 55	Asp	Glu	Ser	Ala	Ala 60	Asn	Суз	Asp	Lys
Ser 65	Leu	His	Thr	Leu	Phe 70	Gly	Asp	Гла	Leu	Cys 75	Ala	Ile	Pro	Asn	Leu 80
Arg	Glu	Asn	Tyr	Gly 85	Glu	Leu	Ala	Asp	Суз 90	Суз	Thr	ГЛа	Gln	Glu 95	Pro
Glu	Arg	Asn	Glu 100	Суз	Phe	Leu	Gln	His 105	Lys	Asp	Asp	Asn	Pro 110	Ser	Leu
Pro	Pro	Phe 115	Glu	Arg	Pro	Glu	Ala 120	Glu	Ala	Met	Суз	Thr 125	Ser	Phe	Lys
Glu	Asn 130	Pro	Thr	Thr	Phe	Met 135	Gly	His	Tyr	Leu	His 140	Glu	Val	Ala	Arg
Arg 145	His	Pro	Tyr	Phe	Tyr 150	Ala	Pro	Glu	Leu	Leu 155	Tyr	Tyr	Ala	Glu	Gln 160
Tyr	Asn	Glu	Ile	Leu 165	Thr	Gln	Сүз	Сүз	Ala 170	Glu	Ala	Asp	Lys	Glu 175	Ser
Суз	Leu	Thr	Pro 180	ГÀа	Leu	Asp	Gly	Val 185	ГÀа	Glu	LYa	Ala	Leu 190	Val	Ser
Ser	Val	Arg 195	Gln	Arg	Met	Lys	Cys 200	Ser	Ser	Met	Gln	Lys 205	Phe	Gly	Glu
Arg	Ala 210	Phe	ГÀа	Ala	Trp	Ala 215	Val	Ala	Arg	Leu	Ser 220	Gln	Thr	Phe	Pro
Asn 225	Ala	Asp	Phe	Ala	Glu 230	Ile	Thr	ГЛа	Leu	Ala 235	Thr	Asp	Leu	Thr	Lys 240
Val	Asn	Lys	Glu	Cys 245	Суз	His	Gly	Asp	Leu 250	Leu	Glu	Суз	Ala	Asp 255	Asp
Arg	Ala	Glu	Leu 260	Ala	Lys	Tyr	Met	Cys 265	Glu	Asn	Gln	Ala	Thr 270	Ile	Ser
Ser	Lys	Leu 275	Gln	Thr	Сүз	Сүз	Asp 280	Lys	Pro	Leu	Leu	Lys 285	Lys	Ala	His
Суз	Leu 290	Ser	Glu	Val	Glu	His 295	Asp	Thr	Met	Pro	Ala 300	Asb	Leu	Pro	Ala
Ile 305	Ala	Ala	Asp	Phe	Val 310	Glu	Asp	Gln	Glu	Val 315	Сүз	Lys	Asn	Tyr	Ala 320
Glu	Ala	Lys	Asp	Val 325	Phe	Leu	Gly	Thr	Phe 330	Leu	Tyr	Glu	Tyr	Ser 335	Arg
Arg	His	Pro	Asp 340	Tyr	Ser	Val	Ser	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Lys
Tyr	Glu	Ala 355	Thr	Leu	Glu	ГЛа	Сув 360	Сүз	Ala	Glu	Ala	Asn 365	Pro	Pro	Ala
Суз	Tyr 370	Gly	Thr	Val	Leu	Ala 375	Glu	Phe	Gln	Pro	Leu 380	Val	Glu	Glu	Pro
Lys 385	Asn	Leu	Val	ГÀа	Thr 390	Asn	Суз	Asp	Leu	Tyr 395	Glu	ГÀа	Leu	Gly	Glu 400
Tyr	Gly	Phe	Gln	Asn 405	Ala	Ile	Leu	Val	Arg 410	Tyr	Thr	Gln	Lys	Ala 415	Pro
Gln	Val	Ser	Thr 420	Pro	Thr	Leu	Val	Glu 425	Ala	Ala	Arg	Asn	Leu 430	Gly	Arg
Val	Gly	Thr 435	Lys	Сүз	Суз	Thr	Leu 440	Pro	Glu	Asp	Gln	Arg 445	Leu	Pro	Суз

Val Glu Asp Tyr Leu Ser Ala Ile Leu Asn Arg Val Cys Leu Leu His Glu Lys Thr Pro Val Ser Glu His Val Thr Lys Cys Ser Gly Ser Leu Val Glu Arg Arg Pro Cys Phe Ser Ala Leu Thr Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Lys Ala Glu Thr Phe Thr Phe His Ser Asp Ile Cys Thr Leu Pro Glu Lys Glu Lys Gln Ile Lys Lys Gln Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Ser Ala Ile Gln Met Thr Arg Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Tyr His Asp Gly Ser Ala Ala Trp Tyr Gln Gln Lys Pro Gly Lys Cys Pro Lys Leu Leu Ile Tyr Gly Ala Ser Tyr Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Ser Tyr Ser Leu Ile Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Gly Thr Thr Ala Ala Ser Gly Ser Ser Gly Gly Ser Ser Ser Gly Ala Glu Val Gln Leu Val Glu Ser Asp Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Leu Ser Tyr Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly 755 760 765 Leu Glu Trp Val Ala Tyr Ile Ala Ser Tyr Pro Gly Tyr Thr Ser Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser Gly Tyr Ser Tyr Ser Pro Tyr Tyr Ser Trp Phe Ser Ala Gly Met Asn Tyr Trp Gly Cys Gly Ala Leu Val Thr

Val Ser Ser

<210> SEQ ID NO 165 <211> LENGTH: 842 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VL-VH) CK157-ds1 (VL100Q>C / VH44E>C) <400> SEQUENCE: 165 Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln 20 25 30 Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu 65 70 75 80 Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro 85 90 95 Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr Phe Leu Tyr Glu Tyr Ser Arg

-	cont	inu	ed

Arg	His	Pro	Asp 340	Tyr	Ser	Val	Ser	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Lys
Tyr	Glu	Ala 355	Thr	Leu	Glu	Lys	Cys 360	Суз	Ala	Glu	Ala	Asn 365	Pro	Pro	Ala
Суз	Tyr 370	Gly	Thr	Val	Leu	Ala 375	Glu	Phe	Gln	Pro	Leu 380	Val	Glu	Glu	Pro
Lys 385	Asn	Leu	Val	Lys	Thr 390	Asn	Суз	Asp	Leu	Tyr 395	Glu	Гла	Leu	Gly	Glu 400
Tyr	Gly	Phe	Gln	Asn 405	Ala	Ile	Leu	Val	Arg 410	Tyr	Thr	Gln	Lys	Ala 415	Pro
Gln	Val	Ser	Thr 420	Pro	Thr	Leu	Val	Glu 425	Ala	Ala	Arg	Asn	Leu 430	Gly	Arg
Val	Gly	Thr 435	Lys	Сув	Сүз	Thr	Leu 440	Pro	Glu	Asp	Gln	Arg 445	Leu	Pro	Сүз
Val	Glu 450	Asp	Tyr	Leu	Ser	Ala 455	Ile	Leu	Asn	Arg	Val 460	Суз	Leu	Leu	His
Glu 465	LÀa	Thr	Pro	Val	Ser 470	Glu	His	Val	Thr	Lys 475	СЛа	СЛа	Ser	Gly	Ser 480
Leu	Val	Glu	Arg	Arg 485	Pro	Сув	Phe	Ser	Ala 490	Leu	Thr	Val	Asp	Glu 495	Thr
Tyr	Val	Pro	Lys 500	Glu	Phe	Lys	Ala	Glu 505	Thr	Phe	Thr	Phe	His 510	Ser	Asp
Ile	Суз	Thr 515	Leu	Pro	Glu	Lys	Glu 520	Гла	Gln	Ile	Lys	Lys 525	Gln	Thr	Ala
Leu	Ala 530	Glu	Leu	Val	Гла	His 535	Lys	Pro	Lys	Ala	Thr 540	Ala	Glu	Gln	Leu
Lys 545	Thr	Val	Met	Asp	Asp 550	Phe	Ala	Gln	Phe	Leu 555	Asp	Thr	Суз	Суз	Lys 560
Ala	Ala	Asp	Lys	Asp 565	Thr	Суз	Phe	Ser	Thr 570	Glu	Gly	Pro	Asn	Leu 575	Val
Thr	Arg	Cys	Lys 580	Asp	Ala	Leu	Ala	Gly 585	Gly	Gly	Gly	Ser	Gly 590	Gly	Gly
Gly	Ser	Gly 595	Gly	Gly	Gly	Ser	Ala 600	Ser	Asp	Ile	Gln	Met 605	Thr	Gln	Ser
Pro	Ser 610	Ser	Leu	Ser	Ala	Ser 615	Val	Gly	Asp	Arg	Val 620	Thr	Ile	Thr	Сүз
Arg 625	Ala	Ser	Gln	Ser	Tyr 630	Gly	Gly	Val	Ala	Trp 635	Tyr	Gln	Gln	Lys	Pro 640
Gly	Lys	Ala	Pro	Lys 645	Leu	Leu	Ile	Tyr	Ser 650	Ala	Ser	Tyr	Leu	Tyr 655	Ser
Gly	Val	Pro	Ser 660	Arg	Phe	Ser	Gly	Ser 665	Arg	Ser	Gly	Thr	Asp 670	Phe	Thr
Leu	Thr	Ile 675	Ser	Ser	Leu	Gln	Pro 680	Glu	Asp	Phe	Ala	Thr 685	Tyr	Tyr	САа
Gln	Gln 690	Pro	Ser	His	Leu	Ile 695	Thr	Phe	Gly	Cys	Gly 700	Thr	Glu	Val	Glu
Ile 705	Lys	Gly	Thr	Thr	Ala 710	Ala	Ser	Gly	Ser	Ser 715	Gly	Gly	Ser	Ser	Ser 720
Gly	Ala	Glu	Val	Gln 725	Leu	Val	Glu	Ser	Gly 730	Gly	Gly	Leu	Val	Gln 735	Pro

											-	con	tın	ued	
Gly	Gly	Ser	Leu 740	Arg	Leu	Ser	Сүз	Ala 745	Ala	Ser	Gly	Ser	Asn 750	Pro	Tyr
Tyr	Tyr	Gly 755	Gly	Thr	His	Trp	Val 760	Arg	Gln	Ala	Pro	Gly 765	Glu	Суз	Leu
Glu	Trp 770	Val	Ala	Ser	Ile	Gly 775	Ser	Tyr	Pro	Gly	Tyr 780	Thr	Asp	Tyr	Ala
Asp 785	Ser	Val	Lys	Gly	Arg 790	Phe	Thr	Ile	Ser	Ala 795	Asp	Thr	Ser	Lys	Asn 800
Thr	Ala	Tyr	Leu	Gln 805	Met	Asn	Ser	Leu	Arg 810	Ala	Glu	Asp	Thr	Ala 815	Val
Tyr	Tyr	Cys	Ala 820	Arg	His	Tyr	Tyr	Trp 825	Tyr	Asp	Ala	Thr	Asp 830	Tyr	Trp
Gly	Gln	Gly 835	Thr	Leu	Val	Thr	Val 840	Ser	Ser						
<211 <212 <213 <220 <223	 LH T) OF FH OT CH 	EATUR THER (157-	I: 84 PRT ISM: RE: INFO -ds2	42 Art: ORMA (VL4	TION	: Syı	Seque nthet VH105	cic:		se S.	A- (G	ly4S	er)3	-scF	7 (VL-
Glu		EQUEN His		Ser	Glu	Ile	Ala	His		Tyr	Asn	Asp	Leu	-	Glu
1 Gln	His	Phe	Lys 20	5 Gly	Leu	Val	Leu	Ile 25	10 Ala	Phe	Ser	Gln	Tyr 30	15 Leu	Gln
Lys	Суз	Ser 35		Asp	Glu	His	Ala 40		Leu	Val	Gln	Glu 45		Thr	Asp
Phe	Ala 50		Thr	Суз	Val	Ala 55	Asp	Glu	Ser	Ala	Ala 60		Суз	Asp	Lys
Ser 65	Leu	His	Thr	Leu	Phe 70	Gly	Asp	Lys	Leu	Cys 75	Ala	Ile	Pro	Asn	Leu 80
Arg	Glu	Asn	Tyr	Gly 85	Glu	Leu	Ala	Asp	Cys 90	Суз	Thr	Lys	Gln	Glu 95	Pro
Glu	Arg	Asn	Glu 100	Cys	Phe	Leu	Gln	His 105	Lys	Asp	Asp	Asn	Pro 110	Ser	Leu
Pro	Pro	Phe 115	Glu	Arg	Pro	Glu	Ala 120	Glu	Ala	Met	СЛа	Thr 125	Ser	Phe	Lys
Glu	Asn 130	Pro	Thr	Thr	Phe	Met 135	Gly	His	Tyr	Leu	His 140	Glu	Val	Ala	Arg
Arg 145	His	Pro	Tyr	Phe	Tyr 150	Ala	Pro	Glu	Leu	Leu 155	Tyr	Tyr	Ala	Glu	Gln 160
Tyr	Asn	Glu	Ile	Leu 165	Thr	Gln	Сув	Сув	Ala 170	Glu	Ala	Asp	Lys	Glu 175	Ser
Сүз	Leu	Thr	Pro 180	Lys	Leu	Asp	Gly	Val 185	ГÀа	Glu	Lys	Ala	Leu 190	Val	Ser
Ser	Val	Arg 195	Gln	Arg	Met	ГЛа	Cys 200	Ser	Ser	Met	Gln	Lys 205	Phe	Gly	Glu
Arg	Ala 210	Phe	Lys	Ala	Trp	Ala 215	Val	Ala	Arg	Leu	Ser 220	Gln	Thr	Phe	Pro
Asn 225		Asp	Phe	Ala	Glu 230		Thr	Lys	Leu	Ala 235		Asp	Leu	Thr	Lys 240
223					002					200					210

3

Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr Phe Leu Tyr Glu Tyr Ser Arg Arg His Pro Asp Tyr Ser Val Ser Leu Leu Leu Arg Leu Ala Lys Lys Tyr Glu Ala Thr Leu Glu Lys Cys Cys Ala Glu Ala Asn Pro Pro Ala Cys Tyr Gly Thr Val Leu Ala Glu Phe Gln Pro Leu Val Glu Glu Pro Lys Asn Leu Val Lys Thr Asn Cys Asp Leu Tyr Glu Lys Leu Gly Glu Tyr Gly Phe Gln Asn Ala Ile Leu Val Arg Tyr Thr Gln Lys Ala Pro Gln Val Ser Thr Pro Thr Leu Val Glu Ala Ala Arg Asn Leu Gly Arg Val Gly Thr Lys Cys Cys Thr Leu Pro Glu Asp Gln Arg Leu Pro Cys Val Glu Asp Tyr Leu Ser Ala Ile Leu Asn Arg Val Cys Leu Leu His Glu Lys Thr Pro Val Ser Glu His Val Thr Lys Cys Ser Gly Ser Leu Val Glu Arg Arg Pro Cys Phe Ser Ala Leu Thr Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Lys Ala Glu Thr Phe Thr Phe His Ser Asp Ile Cys Thr Leu Pro Glu Lys Glu Lys Gln Ile Lys Lys Gln Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys 545 550 555 560 Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Tyr Gly Gly Val Ala Trp Tyr Gln Gln Lys Pro

-continued	
------------	--

													CIII	<u>u</u>	
Gly	Lys	Cys	Pro	Lys 645	Leu	Leu	Ile	Tyr	Ser 650	Ala	Ser	Tyr	Leu	Tyr 655	Ser
Gly	Val	Pro	Ser 660	Arg	Phe	Ser	Gly	Ser 665	Arg	Ser	Gly	Thr	Asp 670	Phe	Thr
Leu	Thr	Ile 675	Ser	Ser	Leu	Gln	Pro 680	Glu	Asp	Phe	Ala	Thr 685	Tyr	Tyr	Сүз
Gln	Gln 690	Pro	Ser	His	Leu	Ile 695	Thr	Phe	Gly	Gln	Gly 700	Thr	Glu	Val	Glu
Ile 705	Lys	Gly	Thr	Thr	Ala 710	Ala	Ser	Gly	Ser	Ser 715	Gly	Gly	Ser	Ser	Ser 720
Gly	Ala	Glu	Val	Gln 725	Leu	Val	Glu	Ser	Gly 730	Gly	Gly	Leu	Val	Gln 735	Pro
Gly	Gly	Ser	Leu 740	Arg	Leu	Ser	Cys	Ala 745	Ala	Ser	Gly	Ser	Asn 750	Pro	Tyr
Tyr	Tyr	Gly 755	Gly	Thr	His	Trp	Val 760	Arg	Gln	Ala	Pro	Gly 765	Glu	Glu	Leu
Glu	Trp 770		Ala	Ser	Ile	Gly 775	Ser	Tyr	Pro	Gly	Tyr 780		Aab	Tyr	Ala
Asp 785		Val	Lys	Gly	Arg 790			Ile	Ser	Ala 795		Thr	Ser	Lys	Asn 800
Thr	Ala	Tyr	Leu	Gln 805		Asn	Ser	Leu	Arg 810		Glu	Asp	Thr	Ala 815	
Tyr	Tyr	Cys	Ala 820		His	Tyr	Tyr	Trp 825		Asp	Ala	Thr	Asp 830		Trp
Gly	Суз	Gly 835		Leu	Val	Thr	Val 840		Ser				050		
<210 <211 <212 <213 <220 <223 <400	> LE > T\ > OF > FE > OT	ENGTH PE: RGANI EATUR THER	H: 70 PRT ISM: RE: INFO	06 Art: ORMA			-		mou	se S.	A- (G	ly4S	er)-\	VL CI	K157
Glu 1	Ala	His	Lys	Ser 5	Glu	Ile	Ala	His	Arg 10	Tyr	Asn	Asp	Leu	Gly 15	Glu
Gln	His	Phe	Lys 20	Gly	Leu	Val	Leu	Ile 25	Ala	Phe	Ser	Gln	Tyr 30	Leu	Gln
Lys	Суз	Ser 35	Tyr	Asp	Glu	His	Ala 40	Lys	Leu	Val	Gln	Glu 45	Val	Thr	Asp
Phe	Ala 50	ГЛа	Thr	Суз	Val	Ala 55	Asp	Glu	Ser	Ala	Ala 60	Asn	Суз	Asp	Lys
Ser 65	Leu	His	Thr	Leu	Phe 70	Gly	Asp	Lys	Leu	Cys 75	Ala	Ile	Pro	Asn	Leu 80
Arg	Glu	Asn	Tyr	Gly 85	Glu	Leu	Ala	Asp	Суз 90	Суз	Thr	Lys	Gln	Glu 95	Pro
Glu	Arg	Asn	Glu 100		Phe	Leu	Gln	His 105	Lys	Asp	Asp	Asn	Pro 110	Ser	Leu
Pro	Pro	Phe 115	Glu	Arg	Pro	Glu	Ala 120	Glu	Ala	Met	Суз	Thr 125	Ser	Phe	ГЛЗ
Glu	Asn 130		Thr	Thr	Phe	Met 135	Gly	His	Tyr	Leu	His 140	Glu	Val	Ala	Arg

													CIII	ucu	
Arg 145	His	Pro	Tyr	Phe	Tyr 150	Ala	Pro	Glu	Leu	Leu 155	Tyr	Tyr	Ala	Glu	Gln 160
Tyr	Asn	Glu	Ile	Leu 165	Thr	Gln	Суз	Суз	Ala 170	Glu	Ala	Asp	Lys	Glu 175	Ser
Суз	Leu	Thr	Pro 180	Гла	Leu	Asp	Gly	Val 185	Lys	Glu	Lys	Ala	Leu 190	Val	Ser
Ser	Val	Arg 195	Gln	Arg	Met	Lys	Cys 200	Ser	Ser	Met	Gln	Lys 205	Phe	Gly	Glu
Arg	Ala 210	Phe	Lys	Ala	Trp	Ala 215	Val	Ala	Arg	Leu	Ser 220	Gln	Thr	Phe	Pro
Asn 225	Ala	Asp	Phe	Ala	Glu 230	Ile	Thr	Lys	Leu	Ala 235	Thr	Asp	Leu	Thr	Lys 240
Val	Asn	Гла	Glu	Cys 245	Суз	His	Gly	Asp	Leu 250	Leu	Glu	Суз	Ala	Asp 255	Asp
Arg	Ala	Glu	Leu 260	Ala	Lys	Tyr	Met	Cys 265	Glu	Asn	Gln	Ala	Thr 270	Ile	Ser
Ser	Lys	Leu 275	Gln	Thr	Cya	Сүз	Asp 280	Lys	Pro	Leu	Leu	Lys 285	Lys	Ala	His
Суз	Leu 290	Ser	Glu	Val	Glu	His 295	Asp	Thr	Met	Pro	Ala 300	Asp	Leu	Pro	Ala
Ile 305	Ala	Ala	Asp	Phe	Val 310	Glu	Asp	Gln	Glu	Val 315	Суз	Lys	Asn	Tyr	Ala 320
Glu	Ala	Гла	Asp	Val 325	Phe	Leu	Gly	Thr	Phe 330	Leu	Tyr	Glu	Tyr	Ser 335	Arg
Arg	His	Pro	Asp 340	-	Ser	Val	Ser	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Lys
Tyr	Glu	Ala 355	Thr	Leu	Glu	Lys	Сув 360	Суз	Ala	Glu	Ala	Asn 365	Pro	Pro	Ala
Суз	Tyr 370	Gly	Thr	Val	Leu	Ala 375	Glu	Phe	Gln	Pro	Leu 380	Val	Glu	Glu	Pro
Lys 385	Asn	Leu	Val	ГЛа	Thr 390	Asn	Суа	Asp	Leu	Tyr 395	Glu	ГЛа	Leu	Gly	Glu 400
Tyr	Gly	Phe	Gln	Asn 405	Ala	Ile	Leu	Val	Arg 410	Tyr	Thr	Gln	Lys	Ala 415	Pro
Gln	Val	Ser	Thr 420		Thr	Leu	Val	Glu 425		Ala	Arg	Asn	Leu 430		Arg
Val	Gly	Thr 435		Суз	Суз	Thr	Leu 440		Glu	Asp	Gln	Arg 445		Pro	Суа
Val	Glu 450		Tyr	Leu	Ser	Ala 455	Ile	Leu	Asn	Arg	Val 460		Leu	Leu	His
Glu 465		Thr	Pro	Val	Ser 470	Glu	His	Val	Thr	Lys 475		Суз	Ser	Gly	Ser 480
	Val	Glu	Arg	Arg 485			Phe	Ser	Ala 490		Thr	Val	Asp	Glu 495	
Tyr	Val	Pro	-		Phe	Lys	Ala			Phe	Thr	Phe			Asp
Ile	Cys		500 Leu	Pro	Glu	Lys	Glu	505 Lys	Gln	Ile	Lys	-	510 Gln	Thr	Ala
Leu	Ala	515 Glu	Leu	Val	Гла	His	520 Lys	Pro	Lys	Ala	Thr	525 Ala	Glu	Gln	Leu
	530				-	535	- Ala		-		540				
-12				~F	~F						~P		- 1 - 2	-1-2	-1~

545	_	_	_	_	550		_		_	555	_	_	_		560
Ala	Ala	Asp	Lys	Asp 565	Thr	Суз	Phe	Ser	Thr 570	Glu	Gly	Pro	Asn	Leu 575	Val
Thr	Arg	Cys	Lys 580	Asp	Ala	Leu	Ala	Gly 585	Gly	Gly	Gly	Ser	Gly 590	Gly	Gly
Gly	Ser	Gly 595	Gly	Gly	Gly	Ser	Ala 600	Ser	Asp	Ile	Gln	Met 605	Thr	Gln	Ser
Pro	Ser 610	Ser	Leu	Ser	Ala	Ser 615	Val	Gly	Asp	Arg	Val 620	Thr	Ile	Thr	Сүз
Arg 625	Ala	Ser	Gln	Ser	Tyr 630	Gly	Gly	Val	Ala	Trp 635	Tyr	Gln	Gln	Lys	Pro 640
Gly	Lys	Ala	Pro	Lys 645	Leu	Leu	Ile	Tyr	Ser 650	Ala	Ser	Tyr	Leu	Tyr 655	Ser
Gly	Val	Pro	Ser 660	Arg	Phe	Ser	Gly	Ser 665	Arg	Ser	Gly	Thr	Asp 670	Phe	Thr
Leu	Thr	Ile 675	Ser	Ser	Leu	Gln	Pro 680	Glu	Asp	Phe	Ala	Thr 685	Tyr	Tyr	Cys
Gln	Gln 690	Pro	Ser	His	Leu	Ile 695	Thr	Phe	Gly	Gln	Gly 700	Thr	Glu	Val	Glu
Ile 705	Lys														
<220 <223)> FH	CATUR THER	RE: INF(ORMA'	ific: TION		-		mou	se Si	A- (G	ly4S	er)-'	ин си	K157
Glu 1	Ala	His	Lys	Ser 5	Glu	Ile	Ala	His	Arg 10	Tyr	Asn	Asp	Leu	Gly 15	Glu
Gln	His	Phe	Lys 20	Gly	Leu	Val	Leu	Ile 25	Ala	Phe	Ser	Gln	Tyr 30	Leu	Gln
ГЛа	Суз	Ser 35	Tyr	Asp	Glu	His	Ala 40	ГЛа	Leu	Val	Gln	Glu 45	Val	Thr	Asp
Phe	Ala 50	Lys	Thr	Суз	Val	Ala 55	Asp	Glu	Ser	Ala	Ala 60	Asn	Суз	Asp	Lys
Ser 65	Leu	His	Thr	Leu	Phe 70	Gly	Asp	Lys	Leu	Cys 75	Ala	Ile	Pro	Asn	Leu 80
Arg	Glu	Asn	Tyr	Gly 85	Glu	Leu	Ala	Asp	Сув 90	Суз	Thr	ГЛа	Gln	Glu 95	Pro
Glu	Arg	Asn	Glu 100	Сув	Phe	Leu	Gln	His 105	Lys	Asp	Asp	Asn	Pro 110	Ser	Leu
Pro	Pro	Phe 115	Glu	Arg	Pro	Glu	Ala 120	Glu	Ala	Met	СЛа	Thr 125	Ser	Phe	Lys
Glu	Asn 130	Pro	Thr	Thr	Phe	Met 135	Gly	His	Tyr	Leu	His 140	Glu	Val	Ala	Arg
Arg 145	His	Pro	Tyr	Phe	Tyr 150	Ala	Pro	Glu	Leu	Leu 155	Tyr	Tyr	Ala	Glu	Gln 160
Tyr	Asn	Glu	Ile	Leu 165	Thr	Gln	Сүз	Сүз	Ala 170	Glu	Ala	Aap	Lys	Glu 175	Ser
Cys	Leu	Thr	Pro		Leu	Asp	Gly	Val		Glu	Гла	Ala	Leu		Ser
-															

-continued

			180					185					190			
Ser	Val	Arg 195	Gln	Arg	Met	Lys	Суз 200	Ser	Ser	Met	Gln	Lys 205	Phe	Gly	Glu	
Arg	Ala 210	Phe	Lys	Ala	Trp	Ala 215	Val	Ala	Arg	Leu	Ser 220	Gln	Thr	Phe	Pro	
Asn 225	Ala	Asp	Phe	Ala	Glu 230	Ile	Thr	Lys	Leu	Ala 235	Thr	Asp	Leu	Thr	Lys 240	
Val	Asn	Lys	Glu	Cys 245	Суз	His	Gly	Asp	Leu 250	Leu	Glu	Сүз	Ala	Asp 255	Asp	
Arg	Ala	Glu	Leu 260	Ala	ГЛа	Tyr	Met	Cys 265	Glu	Asn	Gln	Ala	Thr 270	Ile	Ser	
Ser	Lys	Leu 275	Gln	Thr	САа	САа	Asp 280	Lys	Pro	Leu	Leu	Lys 285	Lys	Ala	His	
Суз	Leu 290	Ser	Glu	Val	Glu	His 295	Asp	Thr	Met	Pro	Ala 300	Asp	Leu	Pro	Ala	
Ile 305	Ala	Ala	Asp	Phe	Val 310	Glu	Asp	Gln	Glu	Val 315	Сүз	ГÀа	Asn	Tyr	Ala 320	
Glu	Ala	LÀa	Asp	Val 325	Phe	Leu	Gly	Thr	Phe 330	Leu	Tyr	Glu	Tyr	Ser 335	Arg	
Arg	His	Pro	Asp 340	Tyr	Ser	Val	Ser	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Lys	
Tyr	Glu	Ala 355	Thr	Leu	Glu	ГÀа	Сув 360	Сүз	Ala	Glu	Ala	Asn 365	Pro	Pro	Ala	
Суз	Tyr 370	Gly	Thr	Val	Leu	Ala 375	Glu	Phe	Gln	Pro	Leu 380	Val	Glu	Glu	Pro	
Lys 385	Asn	Leu	Val	ГЛЗ	Thr 390	Asn	Суз	Asp	Leu	Tyr 395	Glu	ГЛЗ	Leu	Gly	Glu 400	
Tyr	Gly	Phe	Gln	Asn 405	Ala	Ile	Leu	Val	Arg 410	Tyr	Thr	Gln	Lys	Ala 415	Pro	
Gln	Val	Ser	Thr 420	Pro	Thr	Leu	Val	Glu 425	Ala	Ala	Arg	Asn	Leu 430	Gly	Arg	
Val	Gly	Thr 435	Lys	Суз	Суз	Thr	Leu 440	Pro	Glu	Asp	Gln	Arg 445	Leu	Pro	Суз	
Val	Glu 450	Asp	Tyr	Leu	Ser	Ala 455	Ile	Leu	Asn	Arg	Val 460	Суз	Leu	Leu	His	
Glu 465	Lys	Thr	Pro	Val	Ser 470	Glu	His	Val	Thr	Lys 475	Суз	Суз	Ser	Gly	Ser 480	
Leu	Val	Glu	Arg	Arg 485	Pro	Сүз	Phe	Ser	Ala 490	Leu	Thr	Val	Asp	Glu 495	Thr	
Tyr	Val	Pro	Lys 500	Glu	Phe	Lys	Ala	Glu 505	Thr	Phe	Thr	Phe	His 510	Ser	Asp	
Ile	Сув	Thr 515	Leu	Pro	Glu	ГÀа	Glu 520	Lys	Gln	Ile	LÀa	Lys 525	Gln	Thr	Ala	
Leu	Ala 530	Glu	Leu	Val	ГЛа	His 535	Гла	Pro	Гла	Ala	Thr 540	Ala	Glu	Gln	Leu	
Lys 545	Thr	Val	Met	Asp	Asp 550	Phe	Ala	Gln	Phe	Leu 555	Asp	Thr	Cys	Cys	Lys 560	
Ala	Ala	Asp	Lys	Asp 565	Thr	Суз	Phe	Ser	Thr 570	Glu	Gly	Pro	Asn	Leu 575	Val	
Thr	Arg	Суз	Lys 580	Asp	Ala	Leu	Ala	Gly 585	Gly	Gly	Gly	Ser	Gly 590	Gly	Gly	

Gly Ser Gly Gly Gly Gly Ser Ala Ser Ala Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ser Asn Pro Tyr Tyr Tyr Gly Gly Thr His Trp Val Arg Gln Ala Pro Gly Glu Glu Leu Glu Trp Val Ala Ser Ile Gly Ser Tyr Pro Gly Tyr Thr Asp Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg His Tyr Tyr 690 695 Trp Tyr Asp Ala Thr Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val 705 710 715 720 Ser Ser <210> SEO ID NO 169 <211> LENGTH: 847 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VL-VH) CK129-ds1 (VL100Q>C / VH44G>C) <400> SEQUENCE: 169 Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu _____110 Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Lys Phe Gly Glu

Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu Ala Thr Asp Leu Thr Lys Val Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu Asn Gln Ala Thr Ile Ser Ser Lys Leu Gln Thr Cys Cys Asp Lys Pro Leu Leu Lys Lys Ala His Cys Leu Ser Glu Val Glu His Asp Thr Met Pro Ala Asp Leu Pro Ala Ile Ala Ala Asp Phe Val Glu Asp Gln Glu Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Thr Phe Leu Tyr Glu Tyr Ser Arg Arg His Pro Asp Tyr Ser Val Ser Leu Leu Leu Arg Leu Ala Lys Lys Tyr Glu Ala Thr Leu Glu Lys Cys Cys Ala Glu Ala Asn Pro Pro Ala Cys Tyr Gly Thr Val Leu Ala Glu Phe Gln Pro Leu Val Glu Glu Pro Lys Asn Leu Val Lys Thr Asn Cys Asp Leu Tyr Glu Lys Leu Gly Glu Tyr Gly Phe Gln Asn Ala Ile Leu Val Arg Tyr Thr Gln Lys Ala Pro Gln Val Ser Thr Pro Thr Leu Val Glu Ala Ala Arg Asn Leu Gly Arg Val Gly Thr Lys Cys Cys Thr Leu Pro Glu Asp Gln Arg Leu Pro Cys Val Glu Asp Tyr Leu Ser Ala Ile Leu Asn Arg Val Cys Leu Leu His Glu Lys Thr Pro Val Ser Glu His Val Thr Lys Cys Ser Gly Ser Leu Val Glu Arg Arg Pro Cys Phe Ser Ala Leu Thr Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Lys Ala Glu Thr Phe Thr Phe His Ser Asp Ile Cys Thr Leu Pro Glu Lys Glu Lys Gln Ile Lys Lys Gln Thr Ala Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Ser Asp Ile Gln Met Thr Gln Ser

-cont:	inued
--------	-------

											-	con	tin	ued				
Pro	Ser 610	Pro	Leu	Ser	Ala	Ser 615	Val	Gly	Asp	Arg	Val 620	Thr	Ile	Thr	Сув			
Arg 625		Ser	Gln	Tyr	Gly 630	Gly	Tyr	Val	Ala	Trp 635		Gln	Gln	Lys	Pro 640			
Gly	Lys	Ala	Pro	Lys 645	Leu	Leu	Ile	Tyr	Gly 650	Ala	Ser	Leu	Leu	Tyr 655	Ser			
Gly	Val	Pro	Ser 660	Arg	Phe	Ser	Gly	Gly 665	Arg	Ser	Gly	Thr	Asp 670	Phe	Thr			
Leu	Thr	Ile 675	Ser	Ser	Leu	Gln	Pro 680	Glu	Asp	Phe	Ala	Thr 685	Tyr	Tyr	Cys			
Gln	Arg 690	-	His	Ala	Leu	Ile 695	Thr	Phe	Gly	Сүз	Gly 700	Thr	Lys	Val	Glu			
Ile 705	Glu	Gly	Thr	Thr	Ala 710	Ala	Ser	Gly	Ser	Ser 715	Gly	Gly	Ser	Ser	Ser 720			
Gly	Ala	Glu	Val	Gln 725	Leu	Val	Glu	Ser	Gly 730	Gly	Gly	Leu	Val	Gln 735	Pro			
Gly	Gly	Ser	Leu 740	Arg	Leu	Ser	Cys	Ala 745	Ala	Ser	Gly	Phe	Asn 750	Ile	Ser			
Ser	Tyr	Gly 755	Ser	Met	His	Trp	Val 760		Gln	Ala	Pro	Gly 765	Lys	Сув	Leu			
Glu	Trp 770	Val	Ala	Ser	Ile	Tyr 775	Pro	Tyr	Ser	Ser	Ser 780	Thr	Tyr	Tyr	Ala			
Asp 785		Val	Lys	Gly	Arg 790	Phe	Thr	Ile	Ser	Ala 795	Asp	Thr	Ser	Lys	Asn 800			
Thr	Ala	Tyr	Leu	Gln 805	Met	Asn	Ser	Leu	Arg 810	Ala	Glu	Asp	Thr	Ala 815	Val			
Tyr	Tyr	Cys	Ala 820	Arg	Gly	Tyr	Gly	Pro 825	Trp	Tyr	Ala	Tyr	Ser 830	Tyr	Phe			
Ala	Leu	Asp 835	Tyr	Trp	Gly	Gln	Gly 840	Thr	Leu	Val	Thr	Val 845	Ser	Ser				
<210> SEQ ID NO 170 <211> LENGTH: 847 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: mouse SA-(Gly4Ser)3-scFv (VL-VH) CK129-ds2 (VL43A>C / VH105Q>C)																		
		EQUEN																
1			-	5	Glu				10	-		_		15				
Gln	His	Phe	Lys 20	Gly	Leu	Val	Leu	Ile 25	Ala	Phe	Ser	Gln	Tyr 30	Leu	Gln			
Lys	Суз	Ser 35	Tyr	Asp	Glu	His	Ala 40	Гла	Leu	Val	Gln	Glu 45	Val	Thr	Asp			
Phe	Ala 50	Гла	Thr	Суз	Val	Ala 55	Asp	Glu	Ser	Ala	Ala 60	Asn	Сув	Asp	Lys			
Ser 65	Leu	His	Thr	Leu	Phe 70	Gly	Asp	Lys	Leu	Cys 75	Ala	Ile	Pro	Asn	Leu 80			
Arg	Glu	Asn	Tyr	Gly 85	Glu	Leu	Ala	Asp	Суз 90	Суз	Thr	ГЛа	Gln	Glu 95	Pro			
Glu	Arg	Asn	Glu 100	Суз	Phe	Leu	Gln	His 105	Lys	Asp	Asp	Asn	Pro 110	Ser	Leu			

-	CC	nt	in	ue	d

Pro	Pro	Phe 115	Glu	Arg	Pro	Glu	Ala 120	Glu	Ala	Met	Сув	Thr 125	Ser	Phe	Lys
Glu	Asn 130	Pro	Thr	Thr	Phe	Met 135	Gly	His	Tyr	Leu	His 140	Glu	Val	Ala	Arg
Arg 145	His	Pro	Tyr	Phe	Tyr 150	Ala	Pro	Glu	Leu	Leu 155	Tyr	Tyr	Ala	Glu	Gln 160
Tyr	Asn	Glu	Ile	Leu 165	Thr	Gln	Суз	Суз	Ala 170	Glu	Ala	Asp	Lys	Glu 175	Ser
Сүз	Leu	Thr	Pro 180	Lys	Leu	Asp	Gly	Val 185	Lys	Glu	Lys	Ala	Leu 190	Val	Ser
Ser	Val	Arg 195	Gln	Arg	Met	ГЛЗ	Cys 200	Ser	Ser	Met	Gln	Lys 205	Phe	Gly	Glu
Arg	Ala 210	Phe	Lys	Ala	Trp	Ala 215	Val	Ala	Arg	Leu	Ser 220	Gln	Thr	Phe	Pro
Asn 225	Ala	Asp	Phe	Ala	Glu 230	Ile	Thr	Гла	Leu	Ala 235	Thr	Asp	Leu	Thr	Lys 240
Val	Asn	Lys	Glu	Сув 245	Сув	His	Gly	Asp	Leu 250	Leu	Glu	Суа	Ala	Asp 255	Asp
Arg	Ala	Glu	Leu 260	Ala	ГЛа	Tyr	Met	Сув 265	Glu	Asn	Gln	Ala	Thr 270	Ile	Ser
Ser	Lys	Leu 275	Gln	Thr	Сүз	Суз	Asp 280	Lys	Pro	Leu	Leu	Lys 285	ГЛа	Ala	His
Сүз	Leu 290	Ser	Glu	Val	Glu	His 295	Asp	Thr	Met	Pro	Ala 300	Asp	Leu	Pro	Ala
Ile 305	Ala	Ala	Asp	Phe	Val 310	Glu	Asp	Gln	Glu	Val 315	Суз	Lys	Asn	Tyr	Ala 320
Glu	Ala	Lys	Asp	Val 325	Phe	Leu	Gly	Thr	Phe 330	Leu	Tyr	Glu	Tyr	Ser 335	Arg
Arg	His	Pro	Asp 340	Tyr	Ser	Val	Ser	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Lys
Tyr	Glu	Ala 355	Thr	Leu	Glu	Lys	Суз 360	Суз	Ala	Glu	Ala	Asn 365	Pro	Pro	Ala
Суз	Tyr 370	Gly	Thr	Val	Leu	Ala 375	Glu	Phe	Gln	Pro	Leu 380	Val	Glu	Glu	Pro
Lуя 385	Asn	Leu	Val	ГЛЗ	Thr 390	Asn	Суз	Asp	Leu	Tyr 395	Glu	ГЛа	Leu	Gly	Glu 400
Tyr	Gly	Phe	Gln	Asn 405	Ala	Ile	Leu	Val	Arg 410	Tyr	Thr	Gln	ГÀа	Ala 415	Pro
Gln	Val	Ser	Thr 420	Pro	Thr	Leu	Val	Glu 425	Ala	Ala	Arg	Asn	Leu 430	Gly	Arg
Val	Gly	Thr 435	Lys	Сув	Сүз	Thr	Leu 440	Pro	Glu	Asp	Gln	Arg 445	Leu	Pro	Cya
Val	Glu 450	Asp	Tyr	Leu	Ser	Ala 455	Ile	Leu	Asn	Arg	Val 460	Cys	Leu	Leu	His
Glu 465	Lys	Thr	Pro	Val	Ser 470	Glu	His	Val	Thr	Lys 475	Cys	Cys	Ser	Gly	Ser 480
Leu	Val	Glu	Arg	Arg 485	Pro	Сүз	Phe	Ser	Ala 490	Leu	Thr	Val	Asp	Glu 495	Thr
Tyr	Val	Pro	Lys 500	Glu	Phe	Lys	Ala	Glu 505	Thr	Phe	Thr	Phe	His 510	Ser	Asp

-continued

											-	con	tin	ued	
Ile	Cys	Thr 515	Leu	Pro	Glu	Lys	Glu 520	Lys	Gln	Ile	Lys	Lys 525	Gln	Thr	Ala
Leu	Ala 530	Glu	Leu	Val	Lys	His 535		Pro	Lys	Ala	Thr 540	Ala	Glu	Gln	Leu
Lys 545	Thr	Val	Met	Asp	Asp 550	Phe	Ala	Gln	Phe	Leu 555	Asp	Thr	Суз	Суз	Lys 560
Ala	Ala	Asp	Lys	Asp 565	Thr	Суз	Phe	Ser	Thr 570	Glu	Gly	Pro	Asn	Leu 575	Val
Thr	Arg	Cys	Lys 580		Ala	Leu	Ala	Gly 585		Gly	Gly	Ser	Gly 590	Gly	Gly
Gly	Ser	Gly 595	Gly	Gly	Gly	Ser	Ala 600	Ser	Asp	Ile	Gln	Met 605	Thr	Gln	Ser
Pro	Ser 610	Pro	Leu	Ser	Ala	Ser 615	Val	Gly	Asp	Arg	Val 620	Thr	Ile	Thr	CAa
Arg 625		Ser	Gln	Tyr	Gly 630	Gly	Tyr	Val	Ala	Trp 635	Tyr	Gln	Gln	Lys	Pro 640
Gly	Lys	Cys	Pro	Lys 645	Leu	Leu	Ile	Tyr	Gly 650	Ala	Ser	Leu	Leu	Tyr 655	Ser
Gly	Val	Pro	Ser 660		Phe	Ser	Gly	Gly 665	Arg	Ser	Gly	Thr	Asp 670	Phe	Thr
Leu	Thr	Ile 675	Ser	Ser	Leu	Gln	Pro 680	Glu	Asp	Phe	Ala	Thr 685	Tyr	Tyr	Сув
Gln	Arg 690		His	Ala	Leu	Ile 695	Thr	Phe	Gly	Gln	Gly 700	Thr	Lys	Val	Glu
Ile 705	Glu	Gly	Thr	Thr	Ala 710	Ala	Ser	Gly	Ser	Ser 715	Gly	Gly	Ser	Ser	Ser 720
Gly	Ala	Glu	Val	Gln 725	Leu	Val	Glu	Ser	Gly 730	Gly	Gly	Leu	Val	Gln 735	Pro
Gly	Gly	Ser	Leu 740	Arg	Leu	Ser	Суз	Ala 745	Ala	Ser	Gly	Phe	Asn 750	Ile	Ser
Ser	Tyr	Gly 755	Ser	Met	His	Trp	Val 760	Arg	Gln	Ala	Pro	Gly 765	Lys	Gly	Leu
Glu	Trp 770	Val	Ala	Ser	Ile	Tyr 775	Pro	Tyr	Ser	Ser	Ser 780	Thr	Tyr	Tyr	Ala
Asp 785	Ser	Val	Гла	Gly	Arg 790	Phe	Thr	Ile	Ser	Ala 795	Asp	Thr	Ser	Lys	Asn 800
Thr	Ala	Tyr	Leu	Gln 805	Met	Asn	Ser	Leu	Arg 810	Ala	Glu	Aap	Thr	Ala 815	Val
Tyr	Tyr	Суа	Ala 820	Arg	Gly	Tyr	Gly	Pro 825	Trp	Tyr	Ala	Tyr	Ser 830	Tyr	Phe
Ala	Leu	Asp 835	Tyr	Trp	Gly	САа	Gly 840	Thr	Leu	Val	Thr	Val 845	Ser	Ser	
<211 <212	0> SH L> LH 2> TY 3> OH	ENGTH	H: 5 PRT	85	o saj	pien	s								
<400)> SH	EQUEI	ICE :	171											
Asp 1	Ala	His	Lys	Ser 5	Glu	Val	Ala	His	Arg 10	Phe	Lys	Asp	Leu	Gly 15	Glu
Glu	Asn	Phe	Lys 20	Ala	Leu	Val	Leu	Ile 25	Ala	Phe	Ala	Gln	Tyr 30	Leu	Gln
			10					10							

Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr 340 345 350 Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys

-continued

													CIII	<u>u</u>	
Val	Gly	Ser 435	Lys	Сув	Сув	Lys	His 440	Pro	Glu	Ala	Lys	Arg 445	Met	Pro	Сув
	Glu 450	Asp	Tyr	Leu	Ser	Val 455	Val	Leu	Asn	Gln	Leu 460	Cys	Val	Leu	His
Glu 465	Lys	Thr	Pro	Val	Ser 470		Arg	Val	Thr	Lys 475	Сүз	СЛа	Thr	Glu	Ser 480
Leu	Val	Asn	Arg	Arg 485	Pro	Суз	Phe	Ser	Ala 490	Leu	Glu	Val	Asp	Glu 495	Thr
Tyr	Val	Pro	Lys 500	Glu	Phe	Asn	Ala	Glu 505	Thr	Phe	Thr	Phe	His 510	Ala	Asp
Ile	Cys	Thr 515	Leu	Ser	Glu	Lya	Glu 520	Arg	Gln	Ile	ГÀа	Lys 525	Gln	Thr	Ala
Leu	Val 530	Glu	Leu	Val	Lys	His 535	Lys	Pro	Lys	Ala	Thr 540	Lys	Glu	Gln	Leu
Lys 545	Ala	Val	Met	Aap	Asp 550		Ala	Ala	Phe	Val 555	Glu	ГЛа	Суз	Суз	Lys 560
Ala	Asp	Aab	Lys	Glu 565	Thr	Сүз	Phe	Ala	Glu 570	Glu	Gly	Lys	Lys	Leu 575	Val
Ala	Ala	Ser	Gln 580		Ala	Leu	Gly	Leu 585							
<212 <213	211> LENGTH: 330 212> TYPE: PRT 213> ORGANISM: Homo sapiens 2400> SEQUENCE: 172 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys														
Ala 1	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Ser	Ser 15	Lys
Ser	Thr	Ser	Gly 20	Gly	Thr	Ala	Ala	Leu 25	Gly	Суз	Leu	Val	Lys 30	Asp	Tyr
Phe	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80
Tyr	Ile	Cys	Asn	Val 85	Asn	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
Lys	Val	Glu	Pro 100	ГÀа	Ser	Сүз	Asp	Lys 105	Thr	His	Thr	СЛа	Pro 110	Pro	Cys
Pro	Ala	Pro 115	Glu	Leu	Leu	Gly	Gly 120	Pro	Ser	Val	Phe	Leu 125	Phe	Pro	Pro
Lys	Pro 130	Lys	Asp	Thr	Leu	Met 135	Ile	Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Сув
Val 145	Val	Val	Asp	Val	Ser 150	His	Glu	Asp	Pro	Glu 155	Val	ГЛа	Phe	Asn	Trp 160
Tyr	Val	Asp	Gly	Val 165	Glu	Val	His	Asn	Ala 170	Lys	Thr	Lys	Pro	Arg 175	Glu
Glu	Gln	Tyr	Asn 180	Ser	Thr	Tyr	Arg	Val 185	Val	Ser	Val	Leu	Thr 190	Val	Leu
His	Gln	Asp 195	Trp	Leu	Asn	Gly	Lys 200	Glu	Tyr	Lys	Суз	Lys 205	Val	Ser	Asn

1

Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 305 310 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys <210> SEQ ID NO 173 <211> LENGTH: 584 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEOUENCE: 173 Glu Ala His Lys Ser Glu Ile Ala His Arg Tyr Asn Asp Leu Gly Glu Gln His Phe Lys Gly Leu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln Lys Cys Ser Tyr Asp Glu His Ala Lys Leu Val Gln Glu Val Thr Asp Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Ala Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Ala Ile Pro Asn Leu Arg Glu Asn Tyr Gly Glu Leu Ala Asp Cys Cys Thr Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Ser Leu Pro Pro Phe Glu Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Lys Glu Asn Pro Thr Thr Phe Met Gly His Tyr Leu His Glu Val Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Gln Tyr Asn Glu Ile Leu Thr Gln Cys Cys Ala Glu Ala Asp Lys Glu Ser Cys Leu Thr Pro Lys Leu Asp Gly Val Lys Glu Lys Ala Leu Val Ser Ser Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Thr Phe Pro Asn Ala Asp Phe Ala Glu Ile Thr Lys Leu Ala Thr Asp Leu Thr Lys

225					230					235					240
Val	Asn	Lys	Glu	Cys 245	Сүз	His	Gly	Asp	Leu 250	Leu	Glu	Суз	Ala	Asp 255	Asp
Arg	Ala	Glu	Leu 260	Ala	Lys	Tyr	Met	Суз 265	Glu	Asn	Gln	Ala	Thr 270	Ile	Ser
Ser	Lys	Leu 275	Gln	Thr	Суз	Сүз	Asp 280	Lys	Pro	Leu	Leu	Lys 285	Lys	Ala	His
Cys	Leu 290	Ser	Glu	Val	Glu	His 295	Asp	Thr	Met	Pro	Ala 300	Asp	Leu	Pro	Ala
Ile 305	Ala	Ala	Asp	Phe	Val 310	Glu	Asp	Gln	Glu	Val 315	Суз	ГЛа	Asn	Tyr	Ala 320
Glu	Ala	Lys	Asp	Val 325	Phe	Leu	Gly	Thr	Phe 330	Leu	Tyr	Glu	Tyr	Ser 335	Arg
Arg	His	Pro	Asp 340	Tyr	Ser	Val	Ser	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Lys
Tyr	Glu	Ala 355	Thr	Leu	Glu	Гла	Сув 360	Сув	Ala	Glu	Ala	Asn 365	Pro	Pro	Ala
Сув	Tyr 370	Gly	Thr	Val	Leu	Ala 375		Phe	Gln	Pro	Leu 380	Val	Glu	Glu	Pro
Lys 385		Leu	Val	L'Aa	Thr 390		Суз	Asp	Leu	Tyr 395		ГÀа	Leu	Gly	Glu 400
	Gly	Phe	Gln	Asn 405		Ile	Leu	Val	Arg 410		Thr	Gln	Lys	Ala 415	
Gln	Val	Ser	Thr 420		Thr	Leu	Val			Ala	Arg	Asn	Leu 430		Arg
Val	Gly	Thr		Суз	Суз	Thr		425 Pro	Glu	Asp	Gln	-		Pro	Суз
Val		435 Asp	Tyr	Leu	Ser		440 Ile	Leu	Asn	Arg		445 Cys	Leu	Leu	His
Glu	450 Lys	Thr	Pro	Val	Ser	455 Glu	His	Val	Thr	Lys	460 Cys	Суз	Ser	Gly	Ser
465	-	Glu			470					475	-	-		-	480
			-	485		-			490				-	495	
-		Pro	500			-		505					510		-
Ile	Сув	Thr 515				Гла		-	Gln		-	-		Thr	Ala
Leu	Ala 530	Glu	Leu	Val	LÀa	His 535	Lys	Pro	Lys	Ala	Thr 540	Ala	Glu	Gln	Leu
Lys 545	Thr	Val	Met	Asp	Asp 550	Phe	Ala	Gln	Phe	Leu 555	Asp	Thr	Суз	Суз	Lys 560
Ala	Ala	Asp	Lys	Asp 565	Thr	Суз	Phe	Ser	Thr 570	Glu	Gly	Pro	Asn	Leu 575	Val
Thr	Arg	Cys	Lys 580	Asp	Ala	Leu	Ala								

<211> LENGTH: 232 <212> TYPE: PRT <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 174

_	_	_											COII	<u> </u>	ucu		 	
G1 1	u F	Pro	Lys	Ser	Сув 5	Asp	Lys	Thr	His	Thr 10	Сув	Pro	Pro	Сув	Pro 15	Ala		
Pr	0 0	Ju	Leu	Leu 20	Gly	Gly	Pro	Ser	Val 25	Phe	Leu	Phe	Pro	Pro 30	Lys	Pro		
Lу	s A		Thr 35	Leu	Met	Ile	Ser	Arg 40	Thr	Pro	Glu	Val	Thr 45	Cys	Val	Val		
Va		ab 20	Val	Ser	His	Glu	Asp 55	Pro	Glu	Val	Lys	Phe 60	Asn	Trp	Tyr	Val		
As 65		ly	Val	Glu	Val	His 70	Asn	Ala	Lys	Thr	Lys 75	Pro	Arg	Glu	Glu	Gln 80		
ту	r Æ	lsn	Ser	Thr	Tyr 85	Arg	Val	Val	Ser	Val 90	Leu	Thr	Val	Leu	His 95	Gln		
As	р٦	rp	Leu	Asn 100	Gly	ГЛа	Glu	Tyr	Lys 105	Cys	Lys	Val	Ser	Asn 110	Lys	Ala		
Le	u F		Ala 115		Ile	Glu	ГЛа	Thr 120	Ile	Ser	Lys	Ala	Lys 125		Gln	Pro		
Ar				Gln	Val	Tyr	Thr 135		Pro	Pro	Ser	Arg 140		Glu	Leu	Thr		
Ly 14	s A		Gln	Val	Ser	Leu 150		Cys	Leu	Val	Lys 155		Phe	Tyr	Pro	Ser 160		
		le	Ala	Val			Glu	Ser	Asn	Gly 170		Pro	Glu	Asn	Asn 175			
Ly	s 1	hr	Thr		165 Pro	Val	Leu	Asp			Gly	Ser	Phe		Leu	Tyr		
Se	r I			180 Thr	Val	Asp	Гла		185 Arg	Trp	Gln	Gln	-	190 Asn	Val	Phe		
Se		ys	195 Ser	Val	Met	His		200 Ala	Leu	His	Asn		205 Tyr	Thr	Gln	Lys		
	r I	210 Jeu	Ser	Leu	Ser		215 Gly	Lys				220						
22	5					230												
<2	11>	> LE) NO 1: 19 PRT														
<2	20>	> FE	ATUF	ξE :			ial : : Svi		ence tic:	HSA	doma	ain :	I					
				ICE :														
As 1	p₽	Ala	His	Lys	Ser 5	Glu	Val	Ala	His	Arg 10	Phe	Lys	Asp	Leu	Gly 15	Glu		
Gl	u A	Asn	Phe	Lys 20	Ala	Leu	Val	Leu	Ile 25	Ala	Phe	Ala	Gln	Tyr 30	Leu	Gln		
Gl	n C	Ya	Pro 35	Phe	Glu	Asp	His	Val 40	Гла	Leu	Val	Asn	Glu 45	Val	Thr	Glu		
Ph		Ala 50		Thr	Сүз	Val	Ala 55		Glu	Ser	Ala	Glu 60		Cys	Asp	Гла		
	r L		His	Thr	Leu			Asp	Lys	Leu			Val	Ala	Thr			
65 Ar		Ju	Thr	Tyr	Gly	70 Glu	Met	Ala	Asp	Суз	75 Cys	Ala	Lys	Gln	Glu	80 Pro		
Gl	u A	ra	Asn	Glu	85 Cvs	Phe	Leu	Gln	His	90 Lvs	Asp	Asp	Asn	Pro	95 Asn	Leu		
01	~ ~	9		100	215		204	C 1 11	105	-15	p	P		110		204		

-continued

Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His 115 120 125 Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 135 130 140 Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg 145 150 155 160 Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 170 165 175 Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 185 Ser Ala Lys Gln Arg 195 <210> SEQ ID NO 176 <211> LENGTH: 197 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: HSA domain II <400> SEOUENCE: 176 Gly Lys Ala Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln 1 5 10 15 Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser 30 20 25 Gln Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr 35 40 Asp Leu Thr Lys Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu 50 55 60 Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln 65 70 75 80 65 70 80 Asp Ser Ile Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu 90 85 95 Glu Lys Ser His Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala 105 100 110 Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys 120 125 Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr 130 135 140 Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Arg 150 155 145 Leu Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala 170 165 175 Asp Pro His Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu 185 180 190 Val Glu Glu Pro Gln 195 <210> SEQ ID NO 177 <211> LENGTH: 200 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: HSA domain III <400> SEQUENCE: 177

-	CO	nt	ir	ιu	ed

Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr 10 1 5 Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro Gln 20 25 30 Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys Val 40 35 45 Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala 55 Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu 65 70 75 80 Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser Leu 85 90 95 Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr Tyr 100 105 110 Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp Ile 125 115 120 Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu 135 130 140 Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys 150 145 155 160 Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Lys Ala 165 175 170 Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val Ala 180 185 190 Ala Ser Gln Ala Ala Leu Gly Leu 195 200 <210> SEQ ID NO 178 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker domain <400> SEQUENCE: 178 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 5 1 10 15 <210> SEQ ID NO 179 <211> LENGTH: 22 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: Secretory leader sequence <400> SEQUENCE: 179 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 1 5 10 15 Leu Pro Gly Ala Arg Cys 20 <210> SEQ ID NO 180 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: FLAG tag

<400> SEQUENCE: 180 Asp Tyr Lys Asp Asp Asp Asp Lys 1 5 <210> SEQ ID NO 181 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: Polyhistidine (6-His) <400> SEQUENCE: 181 His His His His His His 1 5 <210> SEQ ID NO 182 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: Hemagglutinin <400> SEQUENCE: 182 Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1 5 <210> SEQ ID NO 183 <211> LENGTH: 51 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2)..(51) <223> OTHER INFORMATION: "Gly Gly Gly Gly Ser" is present at least once and may or may not repeat up to 10 times. <400> SEQUENCE: 183 Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 5 10 1 15 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly 20 25 Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 40 35 45 Gly Gly Ser 50 <210> SEQ ID NO 184 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <400> SEQUENCE: 184 Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 1 5 10 15 <210> SEQ ID NO 185 <211> LENGTH: 21 <212> TYPE: PRT

```
-continued
```

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <400> SEQUENCE: 185 Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 10 1 5 15 Gly Gly Gly Gly Ser 20 <210> SEQ ID NO 186 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2)..(31) <223> OTHER INFORMATION: "Gly Gly Gly Gly Ser" is present at least once and may or may not repeat up to 6 times. <400> SEQUENCE: 186 Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 10 1 5 15 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser 20 25 30 <210> SEQ ID NO 187 <211> LENGTH: 24 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: "Gly Gly Gly Ser" is present at least once and may or may not repeat up to 6 times. <400> SEQUENCE: 187 Gly Gly Ser Gly Gly Gly Ser Gly Gly Ser Gly Ser Gly Gly Ser 5 10 1 15 Gly Gly Gly Ser Gly Gly Gly Ser 20 <210> SEQ ID NO 188 <211> LENGTH: 26 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: Fc interlinker from human IgG1 CH2 residues 297-322 <400> SEOUENCE: 188 Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 5 10 1 15 Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 20 25 <210> SEQ ID NO 189 <211> LENGTH: 25 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence

<220> FEATURE: <223> OTHER INFORMATION: Synthetic: HSA interlinker from the D3 domain of human serum albumin <400> SEQUENCE: 189 Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro Gln Val 5 1 10 15 Ser Thr Pro Thr Leu Val Glu Val Ser 20 25 <210> SEQ ID NO 190 <211> LENGTH: 27 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2)..(26) <223> OTHER INFORMATION: "Glu Ala Ala Ala Lys" is present at least twice and may or may not repeat up to 5 times <400> SEQUENCE: 190 Ala Glu Ala Ala Ala Lys Glu Ala Ala Ala Lys Glu Ala Ala Ala Lys 1 5 10 15 Glu Ala Ala Ala Lys Glu Ala Ala Ala Lys Ala 20 25 <210> SEQ ID NO 191 <211> LENGTH: 50 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: alpha-helix forming linker <400> SEQUENCE: 191 Leu Glu Ala Glu Ala Ala Ala Lys Glu Ala Ala Ala Lys Glu Ala Ala 1 5 10 15 Ala Lys Glu Ala Ala Ala Lys Ala Leu Glu Ala Glu Ala Ala Ala Lys 25 20 30 Glu Ala Ala Ala Lys Glu Ala Ala Ala Lys Glu Ala Ala Ala Lys Ala 40 35 45 Leu Glu 50 <210> SEQ ID NO 192 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <400> SEQUENCE: 192 Gly Gly Ser Gly 1 <210> SEQ ID NO 193 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <220> FEATURE:

309

<221> NAME/KEY: misc_feature

310

```
-continued
```

<222> LOCATION: (1)..(20)
<223> OTHER INFORMATION: "Gly Gly Ser Gly" is present at least once and may or may not repeat up to 5 times <400> SEQUENCE: 193 Gly Gly Ser Gly Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Ser Gly 5 1 10 15 Gly Gly Ser Gly 20 <210> SEQ ID NO 194 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <400> SEQUENCE: 194 Gly Ser Ala Thr 1 <210> SEO ID NO 195 <211> LENGTH: 30 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(30) <223> OTHER INFORMATION: "Gly Gly Ser Gly Gly Ser" is present at least once and may or may not repeat up to 5 times <400> SEQUENCE: 195 Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Ser Gly 15 1 5 10 Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser 20 25 30 <210> SEQ ID NO 196 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <400> SEQUENCE: 196 Gly Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp His Glu 5 1 10 15 <210> SEQ ID NO 197 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: secretory leader peptide sequence <400> SEQUENCE: 197 Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro 1 5 10 15 Gly Ala Arg Cys 20

```
-continued
```

<210> SEQ ID NO 198 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: acid flexible linker <400> SEQUENCE: 198 Ser Ser Gly Val Asp Leu Gly Thr 5 1 <210> SEQ ID NO 199 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: Tobacco Etch Virus proteolytic cleavage site <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (7)..(7) <223> OTHER INFORMATION: Xaa is Ala or Val <400> SEQUENCE: 199 Glu Asn Leu Tyr Phe Gln Xaa 1 5 <210> SEQ ID NO 200 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: linker <400> SEQUENCE: 200 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 1 5 10 <210> SEQ ID NO 201 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: five amino-acid flexible spacer <400> SEQUENCE: 201 Gly Gly Gly Gly Ser 1 5 <210> SEQ ID NO 202 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: secretory leader sequence <400> SEQUENCE: 202 Met Gln Leu Leu Arg Cys Phe Ser Ile Phe Ser Val Ile Ala Ser Val 1 5 10 15 Leu Ala <210> SEQ ID NO 203 <211> LENGTH: 15 <212> TYPE: PRT

312

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: flexible linker <400> SEQUENCE: 203 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 5 10 1 15 <210> SEQ ID NO 204 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: flexible linker <400> SEQUENCE: 204 Gly Thr Thr Ala Ala Ser Gly Ser Ser Gly Gly Ser Ser Ser Gly Ala 5 10 15 1 <210> SEQ ID NO 205 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: c-myc epitope tag <400> SEQUENCE: 205 Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gln 1 5 10 <210> SEQ ID NO 206 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: primer <400> SEQUENCE: 206 ggaggcggta gcggaggcgg agggtcggct agc 33 <210> SEQ ID NO 207 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: primer <400> SEQUENCE: 207 31 gtcctcttca gaaataagct tttgttcgga t <210> SEQ ID NO 208 <211> LENGTH: 22 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: secretory leader peptide sequence <400> SEQUENCE: 208 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 1 5 10 15 Leu Pro Gly Ala Arg Cys 20

L

<210> SEQ ID NO 209 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: secretory leader sequence <400> SEQUENCE: 209 Met Lys Val Leu Ile Val Leu Leu Ala Ile Phe Ala Ala Leu Pro Leu 1 5 10 15 Ala Leu Ala Gln Pro Val Ile Ser Thr Thr Val Gly Ser Ala Ala Glu 20 25 30 Gly Ser Leu Asp Lys Arg 35

1. A fusion protein, comprising a multispecific variable region operably coupled to a polymer, wherein the multispecific variable region binds to at least four ELR+ CXC chemokines.

2. The fusion protein of claim **2**, wherein the multispecific variable region is operably coupled to the C-terminus of the polymer.

3. The fusion protein of claim **2**, wherein the multispecific variable region is operably coupled to the N-terminus of the polymer.

4. The fusion protein of any one of claims **1-3**, wherein the multispecific variable region is operably coupled to the polymer via a linker.

5. The fusion protein of claim **4**, wherein the linker is a Gly-Ser linker.

6. The fusion protein of any one of claims 1-5, wherein the polymer is a serum albumin moiety.

7. The fusion protein of any one of claims 1-5, wherein the polymer is an Fc domain.

8. The fusion protein of any one of claims **1-7**, wherein the multispecific variable region is a scFv.

9. The fusion protein of any one of claims **1-8**, wherein the multispecific variable region binds at least four ELR+ CXC chemokines selected from the group consisting of: human CXCL1 (Gro α), human CXCL2 (Gro β), human CXCL3 (Gro γ), human CXCL5 (ENA-78), human CXCL6 (GCP-2), human CXCL7 (NAP-2), human CXCL8 (IL-8), murine CXCL1 (KC), murine CXCL2 (MIP-2), murine CXCL3 (DCIP-1), murine CXCL5 (LIX), and murine CXCL7 (NAP-2).

10. The fusion protein of claim **9**, wherein the at least four ELR+ CXC chemokines are hCXCL1, hCXCL2, hCXCL3 and mCXCL1.

11. The fusion protein of any one of claims 1-9, wherein the multispecific variable region binds to at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, or at least twelve ELR+ CXC chemokines.

12. The fusion protein of claim **11**, wherein the at least six chemokines are human CXCL1, human CXCL5, human CXCL8, murine CXCL1, murine CXCL2 and murine CXCL5.

13. The fusion protein of claim **11**, wherein the at least eleven chemokines are human CXCL8, murine CXCL2, murine CXCL1, murine CXCL3, human CXCL5, human CXCL1, murine CXCL5, human CXCL3, human CXCL2, and human CXCL6.

14. The fusion protein of any one of claims 1-9, wherein the multispecific variable region binds murine or human ELR+ CXC chemokines.

15. The fusion protein of any one of claims **1-9**, wherein the multispecific variable region binds murine and human ELR+ CXC chemokines.

16. The fusion protein of any one of the preceding claims, wherein the multispecific variable region comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 1, 11 or 21.

17. The fusion protein of any one of the preceding claims, wherein the multispecific variable region comprises a heavy chain variable region and a light chain variable region, wherein the light chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 2, 12 or 22.

18. The fusion protein of any one of the preceding claims, wherein the multispecific variable region comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 1, 11 or 21, and wherein the light chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 2, 12 or 22.

19. A fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+CXC chemokines, and wherein the multispecific variable region comprises a heavy chain variable region and a light chain variable region comprising the amino acid sequences set forth in:

(a) SEQ ID NOs: 1 and 2, respectively;

(b) SEQ ID NOs: 11 and 12, respectively; or

(c) SEQ ID NOs: 21 and 22, respectively.

20. A fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+CXC chemokines, and wherein the multispecific variable region comprises a heavy chain variable region and light chain variable region comprising amino acid sequences having 90% identity to the amino acid sequences set forth in:

(a) SEQ ID NOs: 1 and 2, respectively;

(b) SEQ ID NOs: 11 and 12, respectively; or

(c) SEQ ID NOs: 21 and 22, respectively.

21. A fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+

CXC chemokines, and wherein the multispecific variable region comprises heavy and light chain CDRs selected from the group consisting of:

- (a) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 5, 6 and 7, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 8, 9 and 10, respectively;
- (b) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 15, 16 and 17, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 18, 19 and 20, respectively; and
- (c) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 25, 26 and 27, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 28, 29 and 30, respectively.

22. A fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+CXC chemokines, and wherein the multispecific variable region comprises heavy and light chain variable regions, wherein the heavy chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 11 and 21; and wherein the light chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 12 and 22.

23. The fusion protein of any one of claims **1-22**, wherein the fusion protein inhibits binding of ELR+ CXC chemokines to their cognate CXCR1 and CXCR2.

24. An isolated monoclonal antibody, or binding fragment thereof, that binds to at least four ELR+ CXC chemokines.

25. The isolated monoclonal antibody, or binding fragment thereof, of claim **24**, wherein the at least four ELR+ CXC chemokines are selected from the group consisting of: human CXCL1 (Gro α), human CXCL2 (Gro β), human CXCL3 (Gro γ), human CXCL5 (ENA-78), human CXCL6 (GCP-2), human CXCL7 (NAP-2), human CXCL8 (IL-8), murine CXCL1 (KC), murine CXCL2 (MIP-2), murine CXCL3 (DCIP-1), murine CXCL5 (LIX), and murine CXCL7 (NAP-2).

26. The isolated monoclonal antibody, or binding fragment thereof, of claim **25**, wherein the at least four ELR+CXC chemokines are hCXCL1, hCXCL2, hCXCL3 and mCXCL1

27. The isolated monoclonal antibody, or binding fragment thereof, of claim 24 or 25, wherein the antibody or binding fragment thereof binds to at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, or at least twelve ELR+ CXC chemokines.

28. The isolated monoclonal antibody, or binding fragment thereof, of claim **27**, wherein the at least six chemokines are human CXCL1, human CXCL5, human CXCL8, murine CXCL1, murine CXCL2 and murine CXCL5.

29. The isolated monoclonal antibody, or binding fragment thereof, of claim **27**, wherein the at least eleven chemokines are human CXCL8, murine CXCL2, murine CXCL1, murine CXCL3, human CXCL7, human CXCL5, human CXCL1, murine CXCL5, human CXCL3, human CXCL6.

30. The isolated monoclonal antibody, or binding fragment thereof, of any one of claims **24-25**, wherein the antibody or binding fragment thereof binds murine or human ELR+ CXC chemokines.

31. The isolated monoclonal antibody, or binding fragment thereof, of any one of claims **24-25**, wherein the antibody or binding fragment thereof binds murine and human ELR+ CXC chemokines.

32. The isolated monoclonal antibody, or binding fragment thereof, of any one of claims **24-31**, wherein the antibody is a single chain variable fragment (scFv).

33. The isolated monoclonal antibody, or binding fragment thereof, of any one of claims **24-32**, wherein the antibody or binding fragment comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 1, 11 or 21.

34. The isolated monoclonal antibody, or binding fragment thereof, of any one of claims **24-33**, wherein the antibody or binding fragment comprises a heavy chain variable region and a light chain variable region, wherein the light chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 2, 12 or 22.

35. The isolated monoclonal antibody, or binding fragment thereof, of any one of claims **24-32**, wherein the antibody or binding fragment comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 1, 11 or 21, and wherein the light chain variable region comprises an amino acid sequence as set forth in SEQ ID NOs: 2, 12 or 22.

36. An isolated monoclonal antibody, or binding fragment thereof, that binds at least four ELR+ CXC chemokines, wherein the antibody or binding fragment comprises a heavy chain variable region and light chain variable region comprising the amino acid sequences set forth in:

(a) SEQ ID NOs: 1 and 2, respectively;

(b) SEQ ID NOs: 11 and 12, respectively; or

(c) SEQ ID NOs: 21 and 22, respectively.

37. An isolated monoclonal antibody, or binding fragment thereof, that binds at least four ELR+ CXC chemokines, wherein the antibody or binding fragment comprises a heavy chain variable region and light chain variable region comprising amino acid sequences having 90% identity to the amino acid sequences set forth in:

(a) SEQ ID NOs: 1 and 2, respectively;

(b) SEQ ID NOs: 11 and 12, respectively; or

(c) SEQ ID NOs: 21 and 22, respectively.

38. An isolated monoclonal antibody, or binding fragment thereof, that binds at least four ELR+ CXC chemokines, wherein the antibody or binding fragment comprises heavy and light chain CDRs selected from the group consisting of:

- (a) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 5, 6 and 7, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 8, 9 and 10, respectively;
- (b) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 15, 16 and 17, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 18, 19 and 20, respectively; and
- (c) heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 25, 26 and 27, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 28, 29 and 30, respectively.

39. An isolated monoclonal antibody, or binding fragment thereof, that binds at least four ELR+ CXC chemokines, wherein the antibody or binding fragment comprises heavy and light chain variable regions, wherein the heavy chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 11 or 21; and

wherein the light chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 12 or 22.

40. A method of treating an autoimmune disorder in a subject in need thereof, the method comprising administering an effective amount of the fusion protein of any one of claims **1-23**, or the isolated monoclonal antibody of any one of claims **24-39**.

41. The method of claim **40**, wherein the autoimmune disorder is rheumatoid arthritis.

42. A method of blocking neutrophil infiltration in a subject with an autoimmune disorder, the method comprising administering an effective amount of the fusion protein of any one of claims **1-23**, or the isolated monoclonal antibody of any one of claims **24-39**.

43. The method of claim **42**, wherein neutrophil infiltration of the synovial fluid of arthritic joints is blocked.

44. A method of preventing establishment of an autoimmune disorder in a subject, the method comprising administering an effective amount of the fusion protein of any one of claims 1-23, or the isolated monoclonal antibody of any one of claims 24-39.

45. A method of reversing inflammatory arthritis in a subject in need thereof, the method comprising administering an effective amount of the fusion protein of any one of claims **1-23**, or the isolated monoclonal antibody of any one of claims **24-39**.

46. A fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+ CXC chemokines, and wherein the multispecific variable region comprises heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 5, 6 and 7, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 8, 9 and 10, respectively.

47. A fusion protein, comprising a multispecific variable region operably coupled to a serum albumin moiety, wherein the multispecific variable region binds to at least four ELR+CXC chemokines, and wherein the multispecific variable region comprises heavy chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 25, 26 and 27, respectively, and light chain CDR1, CDR2 and CDR3 sequences set forth in SEQ ID NOs: 28, 29 and 30, respectively.

48. A fusion protein comprising an amino acid sequence selected from the group consisting of SEQ ID Nos: 95-105 and 160-170.

49. A fusion protein comprising an amino acid sequence having at least 90% identity to an amino acid sequence selected from the group consisting of SEQ ID Nos: 95-105 and 160-170.

* * * * *