(Lead Discovery Center)

Asset Overview

Product Type	Antibody
Disease Area	Genitourinary Disease
Indication	Chronic Kidney Disease
Current Stage	Lead identification
Target	FGF23/FGFR4
МоА	FGFR4-Ab prevents (i) FGF23/FGFR4 interaction, and (ii) LVH
Brief Description	 Chronic kidney disease (CKD) is a worldwide public health threat that increases risk of death due to cardiovascular complications, including left ventricular hypertrophy (LVH). Novel therapeutic targets are needed to design treatments to alleviate the cardiovascular burden of CKD. FGF23 exclusively activates FGFR4 on cardiac myocytes to stimulate phospholipase Cg/calcineurin/nuclear factor of activated T cell signaling. A specific FGFR4-blocking antibody inhibits FGF23-induced hypertrophy of isolated cardiac myocytes and attenuates LVH in rats with CKD. Mice lacking FGFR4 do not develop LVH in response to elevated FGF23, whereas knockin mice carrying an FGFR4 gain-of-function mutation spontaneously develop LVH. FGF23 promotes LVH by activating FGFR4, thereby establishing FGFR4 as a pharmacological target for reducing cardiovascular risk in CKD.
Intellectual Property	WO2012177481A2
Publication	Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metabolism, (2015)
Inventors	Christian FAUL, Myles Wolf

5 KDDF GLOBAL CAD TECH FAIR

Highlights

- In the absence of a-klotho, FGF23 induces binding of FGFR4 to $\ensuremath{\text{PLC}\gamma}$
- FGF23 activates calcineurin/NFAT signaling in cardiac myocytes via FGFR4
- FGFR4 blockade protects CKD rats with high serum FGF23 from cardiac hypertrophy
- Knockin mice carrying a FGFR4 gain-of-function mutation develop cardiac hypertrophy

(Lead Discovery Center)

5" KDDF GLOBAL C&D TECH FAIR

Key Data

(Lead Discovery Center)

5 KDDF GLOBAL

Key Data

Pharmacological Inhibition of FGFR4 Attenuates LVH in a Rat Model of CKD

(A and B) Compared with sham nephrectomy, 5/6 nephrectomy (Nx) in rats' results in increased ratio of heart weight to tibia length (A) and increased left ventricular mass (LVM) by echocardiography (B) at day 14 post-surgery. Each of these effects is attenuated by administering an FGFR4-specific blocking antibody (anti-FGFR4) (*p < 0.05 compared with Sham). (C) Representative gross pathology sections (H&E stain; original magnification, 32.5; scale bar, 2 mm), wheat germ agglutinin (WGA)-stained sections (original magnification, 363; scale bar, 50 mm), and picrosirius red stainings (original magnification, 310; scale bar, 100 mm) from the left ventricular mid-chamber (MC) at day 14 after 5/6 nephrectomy. (D–F) Compared with vehicle, anti-FGFR4 attenuates the effects of 5/6 nephrectomy to increase left ventricular (LV) wall thickness (by gross pathology, (D), cross-sectional area of individual cardiac myocytes (E), and myocardial fibrosis (F). All values are mean ± SEM (n = 6-14 rats per group; *p < 0.001 compared with Sham; #p < 0.01 compared with 5/6 nephrectomy treated with vehicle). (G and H) Quantitative PCR analysis of cardiac tissue shows that expression levels of hypertrophic markers (ANP, BNP, and b-MHC) (G) and of some fibrotic markers (TIMP metallopeptidase inhibitor 1, Timp1; collagen type 1 alpha 1, Col1a1; collagen type 3 alpha 1, Col3a1) (H) are significantly elevated in 5/6 nephrectomy rats that were treated with vehicle, but not in anti-FGFR4 treated rats (n = 6 rats per group; *p < 0.05 compared with Sham). (I and J) Echocardiography shows no significant differences in ejection fraction among the three groups (I), but anti-FGFR4 significantly improves diastolic function (E/E') in 5/6 nephrectomy rats compared to vehicle-treatment (J) (n = 6-8 rats per group; *p < 0.05 compared with vehicle-injected 5/6 nephrectomy).

(Lead Discovery Center)

5" KDDF GLOBAL C₄D TECH FAIR

Key Data

To be continued

(Lead Discovery Center)

5[™] KDDF GLOBÂL C₄D TECH FAIR

Key Data

Knockin Mice with an FGFR4 Gain-of-Function Mutation Spontaneously Develop LVH

(A) Six-month old homozygous knockin mice carrying the Arg385 substitution in FGFR4 (FGFR4Arg/Arg385) manifest significant increases in the ratio of heart weight to tibia length compared with wild-type littermates (FGFR4Gly/Gly385) (mean \pm SEM; n = 9–12 mice per group; *p < 0.01).

(B) Representative gross pathology of mid-chamber (MC) sections of the heart (H&E stain; original magnification, 35; scale bar, 2 mm) and wheat germ agglutinin (WGA)-stained sections (original magnification, 363; scale bar, 50 mm) demonstrate LVH in FGFR4Arg/Arg385 mice but lack of myocardial fibrosis by picrosirius red staining (original magnification, 3100; scale bar, 100 mm).

(C–E) Compared with wild-type, FGFR4Arg/Arg385 mice develop significant increases in left ventricular (LV) wall thickness (mean \pm SEM; n = 9–12 mice per group; *p < 0.01) (C) and cross-sectional area of individual cardiac myocytes (mean \pm SEM; n = 100 cells per group; *p < 0.0001) (D), but no difference in collagen deposition (mean \pm SEM; n = 9–12 mice per group) (E).

(F) Quantitative PCR analysis of total hearts from mice reveals significantly elevated BNP expression in 6-month-old FGFR4Arg/Arg385 mice compared with wildtype (n = 4-6 mice per group; *p < 0.01).

(G) Quantitative PCR analysis of cardiac tissue shows that expression levels of some fibrotic markers (TIMP

metallopeptidase inhibitor 1, Timp1; collagen type 1 alpha 2, Col1a2; collagen type 5 alpha 1, Col5a1) are significantly elevated in FGFR4Arg/Arg385 mice compared to wild-type mice (n = 6 mice per group; *p < 0.01).

(H–J) Echocardiography shows that compared to wild-type mice, relative wall thickness (H), ejection fraction (I) and diastolic dysfunction (E/E') (J) are increased in FGFR4Arg/Arg385 mice (n = 5–9 mice per group; *p < 0.05).

(K) FGFR4Arg/Arg385 mice demonstrate increased serum FGF23 levels compared with wild-type littermates (mean \pm SEM; n = 9–12 mice per group; *p < 0.05).

Source: https://pubmed.ncbi.nlm.nih.gov/26437603/