(19)
 United States

Patent Application Publication
Priceman et al.
(10)

Pub. No.: US 2021/0308184 A1
(43)

Pub. Date:
Oct. 7, 2021
(54) TAG72 TARGETED CHIMERIC ANTIGEN RECEPTOR MODIFIED T CELLS FOR TREATMENT OF TAG72-POSITIVE TUMORS
(71)

Applicant: City of Hope, Duarte, CA (US)
Inventors: Saul J. Priceman, Valley Village, CA (US); John P. Murad, Diamond Bar, CA (US); Stephen J. Forman, Duarte, CA (US); Jack Shively, Duarte, CA (US); Paul Yazaki, Duarte, CA (US); David Colcher, Duarte, CA (US); Anna Kozlowska, Duarte, CA (US); Hee Jun Lee, Diamond Bar, CA (US)
(21) Appl. No.: \quad 17/264,911
(22) PCT Filed:

Aug. 1, 2019
(86) PCT No.:

PCT/US2019/044751
§ 371 (c)(1),
(2) Date:

Feb. 1, 2021

Related U.S. Application Data

(60) Provisional application No. 62/713,485, filed on Aug. 1, 2018.

Publication Classification

(51) Int. Cl.

A61K 35/17	(2006.01)
CO7K 16/30	(2006.01)
CO7K 14/705	(2006.01)
CO7K 14/715	(2006.01)
CO7K 14/73	(2006.01)
C07K 14/725	(2006.01)
A61P 35/00	(2006.01)
C12N 5/0783	(2006.01)

(52) U.S. Cl.

CPC A61K 35/I7 (2013.01); C07K 16/3092 (2013.01); C07K 14/70521 (2013.01); C07K 14/7151 (2013.01); C07K 14/70514 (2013.01); C07K 14/7051 (2013.01); C12N 2501/2O (2013.01); C12N 5/0636 (2013.01); C07K 2317/622 (2013.01); C07K 2317/53 (2013.01); C07K 2319/03 (2013.01); C07K 2319/02 (2013.01); C07K 2319/33 (2013.01); A61P 35/00 (2018.01)

(57)

ABSTRACT
Chimeric antigen receptors targeted to TAG72 and the use thereof to treat ovarian cancer and other cancers are described

Specification includes a Sequence Listing.

Figures 1A-1D

Figures 2A-2B

Figures 3A-3H

Figure 4

Figure 5

Figures 6A-6F

Figure 7

Figures 8A-8B

Figures 9A-9F

Figures 10A-10B

Figures 11A-11E

[^0]Legend:

```
GMCSFRa signal peptide
Tag72 scFv
IgG4 Hinge with amino acid at position 10 mutated to
proline.(P)
    linker
    IgG4....H3...domain
    CD4 transmembrane domain
    4-1BB co-stimulatory domain
CD3 - zeta
T2A ribosomal skip sequence
CD19t
```

Figure 12
a

$$
0 \quad 0 \mathrm{Y} 90-72 \mathrm{hr} 12
$$

Figures 13A-13C

Figures 14A-14B

Figures 15A-15C

> ssex

Figures 16A-16E

Figure 17

b
Tcell expansion

Figures 18A-18B

Tag72scFv(IDEC)-IgG4(HL-CH3)-CD4tm-41BB-Zeta

MLLLVTSLLLCELPHPAFLLIPQVQLVQSGAEVVKPGASVKISCKASGYTFTDHAIHWVKQNP GMCSFRa signal peptide Tag 72 scFv (IDEC)

GQRLEWIGYFSPGNDDFKYNERFKGKATLTADTSASTAYVELSSLRSEDTAVYFCTRSLNMA YWGQGTLVTVSSGSTSGGGSGGGSGGGGSSDIVMSQSPDSLAVSLGERVTLNCKSSQSLLY SGNQKNYLAWYQQKPGQSPKLLIYWASARESGVPDRFSGSGSGTDFTLTISSVQAEDVAVY YCQQYYSYPLTFGAGTKLELKESKYGPPCPPCPGGGSSGGGSGGQPREPQVYTLPPSQEEMT $\lg G 4$ Hinge Linker $\lg G 4 \mathrm{CH} 3$

KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEG NVFSCSVMHEALHNHYTQKSLSLSLGKMALIVLGGVAGLLLFIGLGIFFKRGRKKLLYIFKQPF CD4 transmembrane 4-1BB cyto

MRPVQTTQEEDGCSCRFPEEEEGGCELGGGRVKFSRSADAPAYQQGQNQLYNELNLGRRE Zeta

EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL YQGLSTATKDTYDALHMQALPPR

Tag72scFv(v15) -lgG4(HL-CH3)-CD4tm-41BB-Zeta MLLLVTSLLLCELPHPAFLLIPQVQLVQSGAEVVKPGASVKISCKASGYTFTDHAIHWVKQNP GMCSFRa signal peptide $\mathrm{Tag} 72 \mathrm{scFv}(v 15)$
 GQRLEWIGYFSPGNDDFKYSQKFQGKATLTADTSASTAYVELSSLRSEDTAVYFCTRSLNMA YWGQGTLVTVSSGSTSGGGSGGGSGGGGSSDIVMSQSPDSLAVSLGERVTLNCKSSQSVLY SSNSKNYLAWYQQKPGQSPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSVQAEDVAVYY CQQYYSYPLSFGAGTKLELKESKYGPPCPPCPGGGSSGGGSGGQPREPQVYTLPPSQEEMT IgG4Hinge Linker IgG4CH3

KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEG NVFSCSVMHEALHNHYTQKSLSLSLGKMALIVLGGVAGLLLFIGLGIFFKRGRKKLLYIFKQPF CD4 transmembrane 4-1BB cyto

MRPVQTTQEEDGCSCRFPEEEEGGCELGGGRVKFSRSADAPAYQQGQNQLYNELNLGRRE Zeta

EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL YQGLSTATKDTYDALHMQALPPR

Figure 20

Tag72scFv(v59_v15) -IgG4(HL-CH3)-CD4tm-41BB-Zeta-T2A-CD19t

MLLLVTSLLLCELPHPAFLLIPQVQLVQSGAEVKKPGASVKVSCKASGYTFTDHAIHWVRQAP GMCSFRa signal peptide $\operatorname{Tag} 72 \mathrm{scFv}\left(v 59 _v 15\right)$

GQRLEWMGYFSPGNDDFKYSQKFQGRVTITADTSASTAYMELSSLRSEDTAVYFCTRSLNM AYWGQGTLVTVSSGSTSGGGSGGGSGGGGSSDIVMTQSPDSLAVSLGERATINCKSSQSLL YSSNSKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVY YCQQPYSYPLSFGAGTKLELKESKYGPPCPPCPGGGSSGGGSGGQPREPQVYTLPPSQEEMT lgG4Hinge Linker lgG4 CH3

KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEG NVFSCSVMHEALHNHYTQKSLSLSLGKMALIVLGGVAGLLLFIGLGIFFKRGRKKLLYIFKQPF CD4 transmembrane $4-1 \mathrm{BB}$ cyto MRPVQTTQEEDGCSCRFPEEEEGGCELGGGRVKFSRSADAPAYQQGQNQLYNELNLGRRE Zeta

EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL YQGLSTATKDTYDALHMQALPPR

Figure 21

TAG72 TARGETED CHIMERIC ANTIGEN RECEPTOR MODIFIED T CELLS FOR TREATMENT OF TAG72-POSITIVE TUMORS

TECHNICAL FIELD

[0001] This disclosure concerns tumor-associated glycoprotein 72 (TAG72)-specific chimeric antigen receptor (CAR)-engineered T cells, methods of formulating, and methods of use as anti-cancer agents selective against TAG72-positive cells.

BACKGROUND

[0002] Chimeric Antigen Receptor (CAR)-engineered T cell therapy in patients with CD19+ B-cell malignancies have demonstrated impressive clinical responses, which have recently resulted in two landmark FDA approvals for patients with leukemia and lymphoma (Maude S L, Teachey D T, Porter D L, Grupp S A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015; 125(26):4017-23; Jain M D, Davila M L. Concise Review: Emerging Principles from the Clinical Application of Chimeric Antigen Receptor T Cell Therapies for B Cell Malignancies. Stem cells. 2018; 36(1):36-44). These studies have shown that CAR T cells can be optimized to induce durable and complete responses in cancer patients, even under conditions of highly refractory disease. Major obstacles in developing effective CAR T cell therapies for solid cancers is avoiding off-tumor on-target toxicity due to the lack of truly restricted tumor antigens, as well as achieving durable responses that are limited by T cell persistence and tumor trafficking (Priceman S J, Forman S J, Brown C E. Smart CARs engineered for cancer immunotherapy. Current opinion in oncology. 2015; 27(6):466-74; Chen N, Li X, Chintala N K, Tano Z E, Adusumilli P S. Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Current opinion in immunology. 2018; 51:103-10). To date, the majority of tumor antigens for directing specificity of CAR T cells have targeted overexpressed proteins, including but not limited to mesothelin, PSMA, PSCA, HER2/neu, EGFR, and IL13R $\alpha 2$ (Priceman S J, Forman S J, Brown C E. Smart CARs engineered for cancer immunotherapy. Current opinion in oncology. 2015; 27(6):466-74; Yong C S M, Dardalhon V, Devaud C, Taylor N, Darcy P K, Kershaw M H. CAR T-cell therapy of solid tumors. Immunology and cell biology. 2017; 9 5(4):356-63). While the field is still evolving, the clinical efficacy of CAR T cells targeting these proteins in solid tumors have been somewhat limited (Castellarin M, Watanabe K, June C H, Kloss C C, Posey A D, Jr. Driving cars to the clinic for solid tumors. Gene therapy. 2018. Epub 2018/06/09.), and identification of additional targets as well as addressing limited T cell durability continue to be outstanding problems limiting the success of CAR T cell therapies.
[0003] Aberrant glycosylation of cell surface proteins on tumors have long been implicated in tumor development, and have unique glycoprotein signatures that are attractive targets for immunotherapy, including CAR T cells (Steentoft C, Migliorini D, King T R, Mandel U, June C H, Posey A D, Jr. Glycan-Directed Car-T Cells. Glycobiology. 2018. Epub 2018/01/26; Rodriguez E, Schetters S T T, van Kooyk Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nature reviews Immunology. 2018; 18(3): 204-11. Epub 2018/02/06). Multiple cancer types including
colon, breast, pancreas, and ovarian, are known to overexpress glycoproteins, including the mucins MUC16 and MUC1, and tumor associated glycoprotein-72 (TAG72) (Hollingsworth M A, Swanson B J. Mucins in cancer: protection and control of the cell surface. Nature reviews Cancer. 2004; 4(1):45-60. Epub 2003/12/19), that differentiate them from normal epithelia. TAG72 is a high molecular weight mucin with large amounts of 0 -glycosidic linkages to serine and threonine residues (Julien S, Videira P A, Delannoy P. Sialyl-tn in cancer: (how) did we miss the target? Biomolecules. 2012; 2(4):435-66. Epub 2012/01/01). High expression of TAG72, MUC1, and MUC16 has been shown in ovarian cancer patient tissue samples, with nearly $100-$ percent of ovarian cancers identified with simultaneous staining of the three antigens (Chauhan S C, Vinayek N, Maher D M, Bell M C, Dunham K A, Koch M D, Lio Y, Jaggi M. Combined staining of TAG72, MUC1, and CA125 improves labeling sensitivity in ovarian cancer: antigens for multi-targeted antibody-guided therapy. The journal of histochemistry and cytochemistry. 2007; 55(8):867-75). Importantly, approximately 90 -percent of epithelial ovarian cancers are TAG72 positive, indicating its abundance across multiple histological subtypes of ovarian cancer.
[0004] Several monoclonal antibodies specific to the tumor-associated sialyl Tn antigen (STn antigen) of TAG72 have been developed, including the well-studied clone CC49 (Muraro R, Kuroki M, Wunderlich D, Poole D J, Colcher D, Thor A, Greiner J W, Simpson J F, Molinolo A, Noguchi P, et al. Generation and characterization of B 72.3 second generation monoclonal antibodies reactive with the tumorassociated glycoprotein 72 antigen. Cancer research. 1988; 48(16):4588-96). CC49 has been subsequently utilized in multiple pre-clinical and clinical investigations using diagnostic imaging and radiotherapy and also involved in multiple attempts of antibody humanization (Cheng K T. Radioiodinated anti-TAG72 CC49 Fab' antibody fragment. Molecular Imaging and Contrast Agent Database (MICAD). Bethesda Md. 2004; Pavlinkova G, Booth B J, Batra S K, Colcher D. Radioimmunotherapy of human colon cancer xenografts using a dimeric single-chain Fv antibody construct. Clinical cancer research: an official journal of the American Association for Cancer Research. 1999; 5(9): 2613-9; Kashmiri S V, Shu L, Padlan E A, Milenic D E, Schlom J, Hand P H. Generation, characterization, and in vivo studies of humanized anticarcinoma antibody CC49. Hybridoma. 1995; 14(5):461-73; De Pascalis R, Gonzales N R, Padlan E A, Schuck P, Batra S K, Schlom J, Kashmiri S V. In vitro affinity maturation of a specificity-determining region-grafted humanized anticarcinoma antibody: isolation and characterization of minimally immunogenic high-affinity variants. Clinical cancer research: an official journal of the American Association for Cancer Research. 2003; 9(15): 5521-31; Gonzales N R, Padlan E A, De Pascalis R, Schuck P, Schlom J, Kashmiri S V. Minimizing immunogenicity of the SDR-grafted humanized antibody CC49 by genetic manipulation of the framework residues. Molecular immunology. 2003; 40(6):337-49; Pavlinkova G, Colcher D, Booth B J, Goel A, Wittel U A, Batra S K. Effects of humanization and gene shuffling on immunogenicity and antigen binding of anti-TAG72 single-chain Fvs. International journal of cancer. 2001; 94(5):717-26; Hege K M, Bergsland E K, Fisher G A, Nemunaitis J J, Warren R S, McArthur J G, Lin A A, Schlom J, June C H, Sherwin S A. Safety, tumor trafficking and immunogenicity of chimeric
antigen receptor (CAR)-T cells specific for TAG72 in colorectal cancer. Journal for immunotherapy of cancer. 2017; 5:22).

SUMMARY

[0005] Described herein are methods for using TAG72 targeted CAR T cells to treat a variety of cancers, for example, ovarian cancer.
[0006] Described herein is a nucleic acid molecule comprising a nucleotide sequence encoding a chimeric antigen receptor (CAR), wherein the chimeric antigen receptor comprises: an scFv targeting Tag-72, a spacer, a transmembrane domain, a $41-\mathrm{BB}$ co-stimulatory domain or CD28 co-stimulatory domain, and a CD3 signaling domain.
[0007] In various embodiments: the transmembrane domain is selected from: a CD4 transmembrane domain or variant thereof having 1-5 amino acid modifications, a CD8 transmembrane domain or variant thereof having 1-5 amino acid modifications, a CD28 transmembrane domain or a variant thereof having 1-5 amino acid modifications; the spacer comprises 20-150 amino acids and is located between the scFv and the transmembrane domain; the transmembrane domain is a CD4 transmembrane domain or variant thereof having 1-5 amino acid modifications; the transmembrane domain is a CD4 transmembrane domain; the chimeric antigen receptor comprises a transmembrane domain selected from: a CD4 transmembrane domain or variant thereof having 1-2 amino acid modifications, a CD8 transmembrane domain or variant thereof having 1-2 amino acid modifications, a CD28 transmembrane domain or a variant thereof having 1-2 amino acid modifications; the spacer region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2-12 or a variant thereof having 1-5 amino acid modifications; the spacer comprises an IgG hinge region; the spacer comprises $10-50$ amino acids; the $4-1 \mathrm{BB}$ costimulatory domain comprises the amino acid sequence of SEQ ID NO: 24 or a variant thereof having $1-5$ amino acid modifications; the CD3 signaling domain comprises the amino acid sequence of SEQ ID NO:21; a linker of 3 to 15 amino acids is located between the $4-1 \mathrm{BB}$ costimulatory domain and the CD3 signaling domain or variant thereof; the CAR comprises the amino acid sequence of SEQ ID NO: 29 or a variant thereof having 1-5 amino acid modifications; the scFv comprises the amino acid sequence of SEQ ID NO:1, SEQ ID NO:33 or SEQ ID NO:34.
[0008] Also disclosed herein is: a viral vector comprising a nucleic acid molecule described herein; a population of human T cells (e.g., a population comprising central memory T cells) transduced by a vector comprising a nucleic acid molecule described herein.
[0009] Also described herein is a method of treating solid tumor in a patient comprising administering a population of autologous or allogeneic human T cells transduced by a vector comprising a nucleic acid molecule described herein, wherein the solid tumor comprises cells expressing Tag-72. In various embodiments: the chimeric antigen receptor is administered locally or systemically; the TAG72-expressing cells are ovarian cancer cells; and the chimeric antigen receptor is administered by single or repeat dosing.
[0010] In various embodiments: the chimeric antigen receptor comprises: a TAG72 scFv (e.g., an scFv comprising the amino acid sequence:
(SEQ ID NO: 1)
QVQLVQSGAEVVKPGASVKISCKA.SGYTFTDHAIHWVKQNPGQRLEWIG YFSPGNDDFKYNERFKGKATLTADTSASTAYVELSSLRSEDTAVYFCTR SLNMAYWGQGTLVTVSSGSTSGGGSGGGSGGGGSSDIVMSQSPDSLAVS LGERVTLNCKSSQSLLYSGNQKINYLAWYQQKPGQSPKLLIYWASARESG VPDRFSGSGSGTDFTLTISSVQAEDVAVYYCQQYYSYPLTFGAGTKLEL K
[0011] with up to 5 or up to 10 single amino acid substitutions).
[0012] In various embodiments: the chimeric antigen receptor comprises: a TAG72 V15 scFv (e.g., an scFv comprising the amino acid sequence:
(SEQ ID NO: 33)
QVQLVQSGAEVVKPGASVKISCKASGYTFTDHAIHWVKQNPGQRLEWIG
YFSPGNDDFKYSQKFQGKATLTADTSASTAYVELSSLRSEDTAVYFCTR

SLNMAYWGQGTLVTVSSGSTSGGGSGGGSGGGGSSDIVMSQSPDSLAVS
LGERVTLNCKSSQSVLYSSNS KINYLAWYQQKPGQSPKLLIYWASTRESG

VPDRFSGSGSGTDFTLTISSVQAEDVAVYYCQQYYSYPLSFGAGTKLEL

K

[0013] with up to 5 or up to 10 single amino acid substitutions).
[0014] In various embodiments: the chimeric antigen receptor comprises: a TAG72 V59 V15 scFv (e.g., an scFv comprising the amino acid sequence:
(SEQ ID NO: 34)
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDHAIHWVRQAPGQRLEWMG YFSPGNDDFKYSQKFQGRVTI TADTSASTAYMELSSLRSEDTAVYFCTR SLNMAYWGQGTLVTVSSGSTSGGGSGGGSGGGGSSDIVMTQSPDSLAVS LGERAT INCKSSQSLLYSSNSKINYLAWYQQKPGQPPKLLIYWASTRESG VPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQPYSYPLSFGAGTKLEL K
[0015] with up to 5 or up to 10 single amino acid substitutions).
[0016] Also described a T cells harboring a vector expressing the CAR. In various embodiments: at least $20 \%, 30 \%$, or 40% of the transduced human T cells are central memory T cells; at least 30% of the transduced human T cells are CD4+ and CD62L+ or CD8+ and CD62L+; the population of human T cells are autologous to the patient; and the population of human T cells are allogenic to the patient.
[0017] TAG72 Targeted CAR
[0018] The TAG72 targeted CAR described herein include a TAG72 targeting scFv (e.g., an (e.g., an scFv comprising the amino acid sequence:
(SEQ ID NO: 1)
QVQLVQSGAEVVKPGASVKISCKASGYTFTDHAIHWVKQNPGQRLEWIG
YFSPGNDDFKYNERFKGKATLTADTSASTAYVELSSLRSEDTAVYFCTR
-continued
SLNMAYWGQGTLVTVSSGSTSGGGSGGGSGGGGSSDIVMSQSPDSLAVS

LGERVTLNCKSSQSLLYSGNQKNYLAWYQQKPGQSPKLLIYWASARESG VPDRFSGSGSGTDFTLTISSVQAEDVAVYYCQQYYSYPLTFGAGTKLEL K
[0019] or comprising the sequence
(SEQ ID NO:) QVQLVQSGAEVVKPGASVKISCKASGYTFTDHAIHWVKQNGQRLEWIGY FSPGNDDFKYNERFKGKATLTADTSASTAYVELSSLRSEDTAVYFCTRS LNMAYWGQGTLVTVSSGSTS
[0020] and the sequence

Abstract

(SEQ ID NO:_) SSDIVMSQSPDSLAVSLGERVTLNCKSSQSLLYSGNQKNYLAWYQQKPG ${ }^{-}$ QSPKLLIYWASARESGVPDRFSGSGSGTDFTLTISSVQAEDVAVYYCQQ YYSYPLTFGAGTKLELK

[0021] joined by a flexible linker;
(SEQ ID NO: 33)
QVQLVQSGAEVVKPGASVKISCKASGYTFTDHAIHWVKQNPGQRLEWIG YFSPGNDDFKYSQKFQGKATLTADTSASTAYVELSSLRSEDTAVYFCTR SLNMAYWGQGTLVTVSSGSTSGGGSGGGSGGGGSSDIVMSQSPDSLAVS LGERVTLNCKSSQSVLYSSNSKNYLAWYQQKPGQSPKLLIYWASTRESG VPDRFSGSGSGTDFTLTISSVQAEDVAVYYCQQYYSYPLSFGAGTKLEL K;
-continued

QVQLVQSGAEVKKPGASVKVSCKA.SGYTFTDHAIHWVRQAPGQRLEWMG YFSPGNDDFKYSQKFQGRVTI TADTSASTAYMELSSLRSEDTAVYFCTR SLNMAYWGQGTLVTVSSGSTSGGGSGGGSGGGGSSDIVMTQSPDSLAVS LGERAT INCKSSQSLLYSSNS KIYYLAWYQQKPGQPPKWYWASTRESGVP DRFSGSGSGTDFTLTISSLQAEDVAVYYCQQPYSYPLSFGAGTKLELK.
[0022] A useful TAG72 CAR can consist of or comprises the amino acid sequence of SEQ ID NO: (mature CAR lacking a signal sequence) or the TAG72 CAR can consist of or comprise the amino acid sequence of SEQ ID NO:29, 31, or 31 (immature CAR having a GMCSFRa signal sequence). The CAR and can be expressed in a form that includes a signal sequence, e.g., a human GM-CSF receptor alpha signal sequence (MLLLVTSLLLCELPHPAFLLIP; SEQ ID NO:). The CAR can be expressed with additional sequences that are useful for monitoring expression, for example, a T2A skip sequence and a truncated EGFRt. Thus, the CAR can comprise or consist of the amino acid sequence of SEQ ID Nos: 29, 31, or 32 or can comprise or consist of an amino acid sequence that is at least $95 \%, 96 \%, 97 \%, 98 \%$ or 99% identical to SEQ ID Nos: 29,31 , or 32 . The CAR can comprise or consist of the amino acid sequence of any of SEQ ID Nos: 29,31 , or 32 with up to $1,2,3,4$ or 5 amino acid changes (preferably conservative amino acid changes). [0023] Spacer Region
[0024] The CAR described herein can include a spacer located between the TAG72 targeting domain (i.e., a TAG72 targeted ScFv or variant thereof) and the transmembrane domain. A variety of different spacers can be used. Some of them include at least portion of a human Fc region, for example a hinge portion of a human Fc region or a CH3 domain or variants thereof. Table 1 below provides various spacers that can be used in the CARs described herein.

TABLE 1

Examples of Spacers		
Name	Length	Sequence
a3	3 aa	A.A.
linker	10 aa	GGGSSGGGSG (SEQ ID NO: 2)
$\begin{aligned} & \text { IgG4 hinge }(S \rightarrow P) \\ & (\mathrm{S} 228 \mathrm{P}) \end{aligned}$	12 aa	ESKYGPPCPPCP (SEQ ID NO: 3)
IgG4 hinge	12 aa	ESKYGPPCPSCP (SEQ ID NO: 4)
$\begin{aligned} & \text { IgG4 hinge }(S 228 P)+ \\ & \text { linker } \end{aligned}$	22 aa	ESKYGPPCPPCPGGGSSGGGSG (SEQ ID NO: 5)
CD28 hinge	39 aa	IEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKP (SEQ ID NO: 6)
CD8 hinge-48 aa	48 aa	AKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACD (SEQ ID NO: 7)
CD8 hinge-45 aa	45 aa	TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACD (SEQ ID NO: 8)
$\begin{aligned} & \text { IgG4 (HL-CH3) } \\ & \text { (includes } 5228 \mathrm{P} \text { in hinge) } \end{aligned}$	129 aa	ESKYGPPCPPCPGGGSSGGGSGGQPREPQVYTLPPSQEEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE GNVFSCSVMHEALHNHYTQKSLSLSLGK (SEQ ID NO: 9)
IgG4 (L235E, N297Q)	229 aa	ESKYGPPCPSCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQED PEVQFNWYVDGVEVHQAKTKPREEQFQSTYRVVSVLTVLHQDWLNGKEY

TABLE 1-continued

Examples of Spacers		
Name	Length	Sequence
		KCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKG FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGN VFSCSVMHEALHNHYTQKSLSLSLGK (SEQ ID NO: 10)
$\begin{aligned} & \text { IgG4 (S228P, L235E، } \\ & \text { N297Q) } \end{aligned}$	229 aa	ESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQED PEVQFNWYVDGVEVHQAKTKPREEQFQSTYRVVSVLTVLHQDWLNGKEY KCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTTLLVKG FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGN VFSCSVMHEALHNHYTQKSLSLSLGK (SEQ ID NO: 11)
IgG4 (CH3)	107 aa	GQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN YKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL SLSLGK (SEQ ID NO: 12)

[0025] Some spacer regions include all or part of an immunoglobulin (e.g., IgG1, IgG2, IgG3, IgG4) hinge region, i.e., the sequence that falls between the CH 1 and CH 2 domains of an immunoglobulin, e.g., an IgG4 Fc hinge or a CD8 hinge. Some spacer regions include an immunoglobulin CH 3 domain or both a CH 3 domain and a CH 2 domain. The immunoglobulin derived sequences can include one or more amino acid modifications, for example, $1,2,3,4$ or 5 substitutions, e.g., substitutions that reduce off-target binding.
changes (e.g., conservative changes) compared to SEQ ID $\mathrm{NO}: 11$. In some cases, the $\mathrm{IgG4} \mathrm{Fc}$ hinge/linker region that is mutated at two positions (L235E; N297Q) in a manner that reduces binding by Fc receptors (FcRs).
[0027] Transmembrane Domain
[0028] A variety of transmembrane domains can be used in the. Table 2 includes examples of suitable transmembrane domains. Where a spacer region is present, the transmembrane domain is located carboxy terminal to the spacer region.

TABLE 2

| | | Examples of Transmembrane Domains | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name | Accession | Length | Sequence |
| CD3z | J04132.1 | 21 aa | LCYLLDGILFIYGVILTALFL (SEQ ID NO: 13) |
| CD28 | NM_006139 | 27 aa | FWVLVVVGGVLACYSLLVTVAFIIFWV (SEQ ID NO: 14) |
| CD28(M) | NM_006139 | 28 aa | MFWVLVVVGGVLACYSLLVTVAFIIFWV (SEQ ID NO: 15) |
| CD4 | M35160 | 22 aa | MALIVLGGVAGLLLFIGLGIFF (SEQ ID NO: 16) |
| CD8tm | NM_001768 | 21 aa | IYIWAPLAGTCGVLLLSLVIT (SEQ ID NO: 17) |
| CD8tm2 | NM_001768 | 23 aa | IYIWAPLAGTCGVLLLSLVITLY (SEQ ID NO: 18) |
| CD8tm3 | NM_001768 | 24 aa | IYIWAPLAGTCGVLLLSLVITLYC (SEQ ID NO: 19) |
| 41BB | NM_001561 | 27 aa | IISFFLALTSTALLFLLFFLTLRFSVV (SEQ ID NO: 20) |

[0026] The hinge/linker region can also comprise a IgG4 hinge region having the sequence ESKYGPPCPSCP (SEQ ID NO:4) or ESKYGPPCPPCP (SEQ ID NO:3). The hinge/ linger region can also comprise the sequence ESKYGPPCPPCP (SEQ ID NO:3) followed by the linker sequence GGGSSGGGSG (SEQ ID NO:2) followed by IgG4 CH3 sequence GQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK (SEQ ID NO:12). Thus, the entire linker/spacer region can comprise the sequence: ESKY-GPPCPPCPGGGSSGGGSGGQPREPQVYTLPP-
SQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCS VMHEALHNHY TQKSLSLSLGK (SEQ ID NO:11). In some cases, the spacer has $1,2,3,4$, or 5 single amino acid

[0029] Costimulatory Domain

[0030] The costimulatory domain can be any domain that is suitable for use with a $\operatorname{CD} 3 \zeta$ signaling domain. In some cases the co-signaling domain is a $4-1 \mathrm{BB}$ co-signaling domain that includes a sequence that is at least 90%, at least 95%, at least 98% identical to or identical to: KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL
(SEQ ID NO:24). In some cases, the $4-1 \mathrm{BB}$ co-signaling domain has $1,2,3,4$ of 5 amino acid changes (preferably conservative) compared to SEQ ID NO:24.
[0031] The costimulatory domain(s) are located between the transmembrane domain and the CD3 signaling domain. Table 3 includes examples of suitable costimulatory domains together with the sequence of the $\mathrm{CD} 3 \zeta$ signaling domain.

TABLE 3

$\left.\begin{array}{llll}\hline & \text { CD36 Domain and Examples of Costimulatory Domains }\end{array}\right]$| Name | Accession | Length |
| :--- | :--- | :--- |
| CD3 Sequence | | |

[0032] In various embodiments: the costimulatory domain is selected from the group consisting of: a costimulatory domain depicted in Table 3 or a variant thereof having 1-5 (e.g., 1 or 2) amino acid modifications, a CD28 costimulatory domain or a variant thereof having $1-5$ (e.g., 1 or 2) amino acid modifications, a 4-1BB costimulatory domain or a variant thereof having $1-5$ (e.g., 1 or 2) amino acid modifications and an OX40 costimulatory domain or a variant thereof having 1-5 (e.g., 1 or 2) amino acid modifications. In certain embodiments, a $4-1 \mathrm{BB}$ costimulatory domain or a variant thereof having 1-5 (e.g., 1 or 2) amino acid modifications in present. In some embodiments there are two costimulatory domains, for example a CD28 costimulatory domain or a variant thereof having 1-5 (e.g., 1 or 2) amino acid modifications (e.g., substitutions) and a $4-1 \mathrm{BB}$ co-stimulatory domain or a variant thereof having $1-5$ (e.g., 1 or 2) amino acid modifications (e.g., substitutions). In various embodiments the 1-5 (e.g., 1 or 2) amino acid modification are substitutions. The costimulatory domain is amino terminal to the CD3 signaling domain and a short linker consisting of 2-10, e.g., 3 amino acids (e.g., GGG) is can be positioned between the costimulatory domain and the CD3 ξ signaling domain.
[0033] CD3 Signaling Domain
[0034] The CD3 ζ Signaling domain can be any domain that is suitable for use with a CD3 5 signaling domain. In some cases, the $\mathrm{CD} 3 \zeta$ signaling domain includes a sequence that is at least 90%, at least 95%, at least 98% identical to or identical to: RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEG LYNELQKDKMAEAYSEIGMKGERRRGKGHDG-
LYQGLSTATKDTYDALHMQALPPR (SEQ ID NO:21). In some cases, the CD3 ζ signaling has $1,2,3,4$ of 5 amino acid changes (preferably conservative) compared to SEQ ID NO:21.
[0035] Truncated EGFR
[0036] The CD3 ζ signaling domain can be followed by a ribosomal skip sequence (e.g., LEGGGEGRGSLLTCGDVEENPGPR; SEQ ID NO:27) and a truncated EGFR having a sequence that is at least 90%, at least 95%, at least 98% identical to or identical to: LVTSLLLCELPHPAFLLIP-RKVCNGIGIGEFKDSLSINATNIKHFKNCTSISGDLHILPVAFR GDSFTHTPPLDPQELDILKTVKEITGFLLIQAWPENRTDLHAFENLEIIRGRTKQ

HGQFSL AVVSLNITSLGLRSLKEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIISNRGENSC KATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCNLLEGEPREFVENSECIQC HPECLPQAM-NITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVMGENNTLVWKYADAGH
VCHLCHPNCTYGCTGPGLEGCPTNGPKIPSIATGMVGALLLLLVVALGIGLFM (SEQ ID NO:28). In some cases, the truncated EGFR has 1, 2, 3, 4 of 5 amino acid changes (preferably conservative) compared to SEQ ID NO:28.
[0037] An amino acid modification refers to an amino acid substitution, insertion, and/or deletion in a protein or peptide sequence. An "amino acid substitution" or "substitution" refers to replacement of an amino acid at a particular position in a parent peptide or protein sequence with another amino acid. A substitution can be made to change an amino acid in the resulting protein in a non-conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping of amino acids having a particular size or characteristic to an amino acid belonging to another grouping) or in a conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping of amino acids having a particular size or characteristic to an amino acid belonging to the same grouping). Such a conservative change generally leads to less change in the structure and function of the resulting protein. The following are examples of various groupings of amino acids: 1) Amino acids with nonpolar R groups: Alanine, Valine, Leucine, Isoleucine, Proline, Phenylalanine, Tryptophan, Methionine; 2) Amino acids with uncharged polar R groups: Glycine, Serine, Threonine, Cysteine, Tyrosine, Asparagine, Glutamine; 3) Amino acids with charged polar R groups (negatively charged at pH 6.0): Aspartic acid, Glutamic acid; 4) Basic amino acids (positively charged at pH 6.0): Lysine, Arginine, Histidine (at pH 6.0). Another grouping may be those amino acids with phenyl groups: Phenylalanine, Tryptophan, and Tyrosine.
[0038] In some cases, the TAG72 CAR can be produced using a vector in which the CAR open reading frame is followed by a T2A ribosome skip sequence and a truncated EGFR (EGFRt), which lacks the cytoplasmic signaling tail. In this arrangement, co-expression of EGFRt provides an inert, non-immunogenic surface marker that allows for accu-
rate measurement of gene modified cells, and enables positive selection of gene-modified cells, as well as efficient cell tracking of the therapeutic T cells in vivo following adoptive transfer. Efficiently controlling proliferation to avoid cytokine storm and off-target toxicity is an important hurdle for the success of T cell immunotherapy. The EGFRt incorporated in the TAG72 CAR lentiviral vector can act as suicide gene to ablate the CAR +T cells in cases of treatment-related toxicity.
[0039] The CAR described herein can be produced by any means known in the art, though preferably it is produced using recombinant DNA techniques. Nucleic acids encoding the several regions of the chimeric receptor can be prepared and assembled into a complete coding sequence by standard techniques of molecular cloning known in the art (genomic library screening, overlapping PCR, primer-assisted ligation, site-directed mutagenesis, etc.) as is convenient. The resulting coding region is preferably inserted into an expression vector and used to transform a suitable expression host cell line, preferably a T lymphocyte cell line, and most preferably an autologous T lymphocyte cell line.
[0040] Various T cell subsets isolated from the patient can be transduced with a vector for CAR expression. Central memory T cells are one useful T cell subset. Central memory T cell can be isolated from peripheral blood mononuclear cells (PBMC) by selecting for CD45RO+/CD62L+ cells, using, for example, the CliniMACS® device to immunomagnetically select cells expressing the desired receptors. The cells enriched for central memory T cells can be activated with anti-CD3/CD28, transduced with, for example, a lentiviral vector that directs the expression of an TAG72 CAR as well as a non-immunogenic surface marker for in vivo detection, ablation, and potential ex vivo selection. The activated/genetically modified TAG72 central memory T cells can be expanded in vitro with IL-2/IL-15 and then cryopreserved.

DESCRIPTION OF DRAWINGS

[0041] FIG. 1A-1D shows cartoon representation of TAG72-BB ζ CAR T cells and shows results of TAG72-BB ζ CAR T cells cultured with purified TAG72. (A) Diagram of the lentiviral expression cassette with TAG72-CARs containing the humanized scFv (CC49 clone) targeting TAG72, with a 129 amino acid modified human IgG4 Fc linker (void of the CH2 domain, $\Delta \mathrm{CH} 2$), a CD4 transmembrane domain, a cytoplasmic $4-1 \mathrm{BB}$ costimulatory domain, and a cytolytic CD3 ל domain. A truncated non-signaling CD19 (CD19t), separated from the CAR sequence by a T2A ribosomal skip sequence, was expressed for identifying lentivirally transduced T cells. (B) Mock (untransduced) and TAG72-BB ζ CAR T cells were evaluated by flow cytometry for CD19t expression to detect lentiviral transduction of CARs (left) or Protein L to detect the scFv (right). (C) CD4 and CD8 expression in Mock (top) and TAG72-BB ζ CAR T cells (bottom). (D) Activation (expression of CD137) was assessed by flow cytometry with in vitro stimulated CAR T cells against soluble or plate-bound purified TAG72 antigen for 24 h at indicated protein amounts (units).
[0042] FIG. 2A-2B shows results of TAG72-BBC CAR T cell activation against purified TAG72 antigen. (A) Activation (expression of CD69) was assessed by flow cytometry with in vitro stimulated CAR T cells against soluble or plate-bound purified TAG72 antigen for 24 h at indicated
protein amounts (units). (B) IFN γ production by ELISA from TAG72-BBC CAR T cells against plate-bound purified TAG72 antigen.
[0043] FIG. 3A-31I shows results from experiments with TAG72-BBC CAR T cells cultured with TAG72-positive and TAG72-negative cancer cells. (a) Flow cytometric analysis of TAG72 surface expression on multiple ovarian and colorectal (LS174T) cancer cell lines. (b) Quantification of tumor killing by TAG72-BBC CAR T cells relative to Mock following a 24 and 72 h co-culture with antigen-positive and -negative tumor targets as described in Materials and Methods. (c) TAG72-BB ζ CAR T cell expansion at 24 and 72 h following co-culture with indicated tumor targets. (d,e) IFN γ and IL-2 levels in supernatant quantified by ELISA from Mock or TAG72-BBY CAR T cells following a 24 and 72 h co-culture with indicated tumor targets. (F) Flow cytometric analysis of TAG72 surface expression on primary human ovarian cancer cells harvested from patient ascites (OAS) after 72 h in culture. (G) Quantification of tumor killing and (H) IFN γ production by TAG72-BBC CAR T cells relative to Mock following a 72 h co-culture with freshly thawed OAS cells.
[0044] FIG. 4 shows results of flow cytometric analysis of TAG72 expression on ascites from OVCAR3 or OV90 tumor-bearing mice.
[0045] FIG. 5 shows results TAG72-BBC CAR T cellmediated tumor killing of OVCAR3 cells in the presence or absence of 10 units of soluble TAG72 in a 24 h co-culture assay.
[0046] FIG. 6A-6F shows results from experiments with regional intraperitoneal delivery of TAG72-BBY CAR T cells in of OVCAR3 tumor-bearing mice. (A) Schematic illustrating i.p. engraftment of 5.0×106 OVCAR3(eGFP/ flluc) tumor cells in NSG mice, followed by either i.v. or i.p. delivery of 5.0×106 Mock or TAG72-BBG CAR T cells on day 14 post tumor injection. (B) Representative bioluminescent flux imaging of mice treated i.v. or i.p. with Mock or TAG72-BBC CAR T cells. (C) Quantification of flux (each mouse) from OVCAR3(eGFP/ffluc) tumor-bearing mice treated i.v. or i.p. with Mock or TAG72-BBC CAR T cells. $\mathrm{N}=3$ per group. (D) Kaplan-Meier survival for Mock and TAG72-BBC CAR T cell treated mice. $\mathrm{N} \geq 4$ mice per group. Data are representative of or combined from two independent experiments. (E) Quantification of TAG72-BBC CART cells per uL blood at 6, 13, and 29 days post treatment. $\mathrm{N}=4$ per group. (F) Representative flow cytometric analysis of the frequency of human CD45+(hCD45) and mouse CD45+ (mCD45) cells in the i.p. cavity of tumor-bearing mice at day 6 and 13 post treatment. Representative images from two independent experiments.
[0047] FIG. 7 shows quantification of human CD45+ cells in OVCAR3 model; quantification of human CD45+ cells per uL blood at 6,13 , and 29 days post treatment. $\mathrm{N}=4$ per group.
[0048] FIG. 8A-8B shows results of TAG72-BB ζ CAR T cells anti-tumor activity in OV90 tumor-bearing mice in vivo delivered either by i.p. or by i.v.; (A) Quantification of flux (each mouse) from OV90(eGFP/ffluc) tumor-bearing mice treated i.v. or i.p. with Mock or TAG72-BBY CAR T cells. (B) Kaplan-Meier survival for Mock and TAG72-BB CAR T cell treated mice. $\mathrm{N} \geq 4$ mice per group.
[0049] FIG. 9A-9F show results of experiments with either single or repeat regional administration of TAG72BBC CAR T cells in OV90 tumor-bearing mice. (A) Sche-
matic illustrating i.p. engraftment of 5.0×106 OV90(eGFP/ ffluc) tumor cells in NSG mice, followed by either single or repeat i.p. treatment with 5.0×106 Mock or TAG72-BB ζ CAR T cells on day 8 post tumor infection. (B) Representative bioluminescent flux imaging of mice treated i.p. with a single or repeat treatment of Mock or TAG72-BB ζ CAR T cells. (C) Quantification of flux (each mouse) from OV90 (eGFP/ffluc) tumor-bearing mice with single or repeat i.p. treatment of Mock or TAG72-BBC CAR T cells. (D) Analysis of relative tumor growth kinetics at start of treatment (top) and at peak therapy (bottom) time points for all mice. Mann-Whitney test was performed to calculate p values. (E) Kaplan-Meier survival for Mock and TAG72-BB ζ CAR T cell treated mice. $\mathrm{N} \geq 5$ mice per group. (F) Histology of human CD3 cells in tumors harvested from single and repeat treated mice at days 42 and 70 post tumor injection (top: 10× magnification, bottom: $40 \times$ magnification). Data are representative of two independent experiments.
[0050] FIG. 10A-10B shows quantification of human CD45+ cells in OV90 model; quantification of human CD45+ cells per uL blood at 7, 14, and 34 days post treatment. $\mathrm{N}=4$ per group.
[0051] FIG. 11A-11E show results of tumor-associated glycoprotein antigen heterogeneity in ovarian cancer and experiments quantifying CAR T cell-mediated antigen escape. (A) Flow cytometric analysis of TAG72, MUC16, and MUC1 surface expression on OVCAR8, OVCAR3, and OV90 human ovarian cancer cell lines. (B) Histology of TAG72, MUC16, and MUC1 expression in i.p. solid tumors harvested from Mock and TAG72-BB乌 CAR T cell treated OVCAR3 tumor-bearing mice at day 99 post treatment. 10x magnification. (C) Histology of TAG72 expression on solid tumors harvested from single and repeat treated OV90 tumor-bearing mice at day 42,70 , and 105 post tumor injection. 10x magnification. (D) Flow cytometric analysis of TAG72 expression in OV90 tumor cells harvested from ascites at indicated time points from mice that received single or repeat i.p. treatment. (E) TAG72 expression on OVCAR3 cells at day 4 following co-culture with Mock or TAG72-BBG CAR T cells (1:10 E:T ratio), and on tumor cells that grew out at day 28.
[0052] FIG. 12 shows the annotated polypeptide sequence of hTag72scFv-IgG4(HL-CH3)-CD4tm-41BB-Zeta-T2ACD19t (SEQ ID NO:26 with the T2A and CD19t; SEQ ID NO:29 without the T2A and CD19t). SEQ ID NO:35 without the GMCSFRa signal peptide, T2A and CD19t.
[0053] FIGS. 13A-13C show tumor killing, activation, and T cell proliferation of humanized TAG72 CAR T cells. (A) OV90 and OVCAR3 cells were co-cultured for 72 hours with either Mock, IDEC, V15 or V59/15 variant TAG72 CART cells at an E:T of 1:2. Tumor killing is represented as $\%$ killing relative to mock-treated conditions. (B) T cell activation was analyzed from 72 hour co-culture assays by flow cytometry staining of surface CD137 expression. (C) T cell proliferation (fold expansion) at 72 hours was determined relative to T cell counts plated on day 0 .
[0054] FIGS. 14A-14B show results of experiments with either single or repeat regional administration of humanized TAG72 CAR T cells in OV90 tumor-bearing mice. (A) Endogenous expression of TAG72 antigen on OV90 tumor cell line was determined by flow cytometry. OV90-ffluc cells were injected into the intraperitoneal (i.p.) cavity of NSG mice and tracked by bioluminescent imaging and reported as flux (photos/sec). At 8 days post tumor injection, either a
single or repeat dose of 5.0×10^{6} Mock, IDEC, or V15 variants of TAG72 CART cells administered regionally into the i.p. cavity of tumor-bearing mice. (B) Tumor burden of single or repeat T cell-treated mice was quantified by bioluminescent imaging. Dashed vertical lines indicate time points of initial and repeated treatment with T cells.
[0055] FIGS. 15A-15C show results of i.v. administered humanized TAG72 CAR T cells in OVCAR3 tumor-bearing mice. (A) Endogenous surface TAG72 expression was analyzed by flow cytometry on OVCAR3 tumor cells. OVCAR3-flluc tumors were then injected into the i.p. cavity of NSG mice, and treated i.v. with a single dose of 5.0×10^{6} Mock, IDEC, or V15 variant TAG72 CAR T cells. (B) Tumor burden of single dose treated mice was quantified by bioluminescent imaging and reported as flux (photos/sec). Dashed vertical lines indicate time point of treatment with T cells. (C) Quantification of either Mock, or IDEC and V15 TAG72 CAR T cell persistence and proliferation was quantified in the blood by flow cytometry (CAR + cells per uL of blood) in mice at day 6,13 , and 29 post T cell treatment, and highlight increased persistence and proliferation of V15 variant TAG72 CAR T cells over DEC.
[0056] FIGS. 16A-16E show varying humanized V15CAR design impacts in vitro antitumor T cell functional activity. (A) CAR expression stability of seven TAG72-CAR T cells variants (with the V 15 scFv clone). (B-E) In vitro tumor killing activity, T cell proliferation, CD137+ activation indicator, and PD-1+ exhaustion indicator (72 hours), of CAR T cells against TAG72-negative (DU145, OVCAR8), and TAG72-positive (OVCAR3, OV90, and OVCAR8-sTn) expressing tumor cells.
[0057] FIG. 17 shows varying humanized V15-CAR design impacts in vitro cytokine production of TAG72-CAR T cells. In vitro IFN γ production (24 hours), of CAR T cells against TAG72-negative (DU145, OVCAR8), and TAG72positive (OVCAR3, OV90, OVCAR8-sTn) expressing tumor cells.
[0058] FIGS. 18A-18B show real-time long-term killing and proliferation of humanized TAG72 CAR T cells. (A) Real time cytotoxicity assay was performed using xCelligence technology with OV90 cells. The four T cells populations were plated at an effector to target ratio of 1-to-20 and observed for 10 days. Cell Index is indicative of live tumor count. (B) At endpoint, remaining cells were collected and analyzed by flow cytometry.
[0059] FIG. 19 shows the annotated polypeptide sequence of Tag72scFv(IDEC)-IgG4(HL-CH3)-CD4tm-41BB-Zeta without the with the T2A and CD19t (SEQ ID NO:30). SEQ ID NO:35 without the GMCSFRa signal peptide.
[0060] FIG. 20 shows the annotated polypeptide sequence of Tag72scFv(v15)-IgG4(HL-CH3)-CD4tm-41BB-Zeta without the with the T2A and CD19t (SEQ ID NO:31). SEQ ID NO:3 without the GMCSFRa signal peptide.
[0061] FIG. 21 shows the annotated polypeptide sequence of Tag72scFv(v59 v15)-IgG4(HL-CH3)-CD4tm-41BB-Zeta without the with the T2A and CD19t (SEQ ID NO:32). SEQ ID NO:37 without the GMCSFRa signal peptide.

DETAILED DESCRIPTION

[0062] In this disclosure the generation and anti-tumor efficacy of a second-generation CAR T cell with a humanized anti-human TAG72 scFv antigen-binding domain and a $4-1 \mathrm{BB}$ intracellular co-stimulatory signaling domain (TAG72-BBC) are described. The TAG72-BB ζ CAR T cells
exhibited potent antigen-dependent cytotoxicity against multiple TAG72-expressing human ovarian cancer cell lines and epithelial cells derived from patient ovarian cancer ascites grown in cell culture. Regional intraperitoneal in vivo delivery of TAG72-BB ζ CAR T cells in peritoneal ovarian tumor models conferred elimination of antigenpositive disease and extension of mice overall survival. In contrast, intravenous CAR T cell delivery was ineffective in controlling disease. Additionally, repeat regional infusions of TAG72-BB ζ CAR T cells promoted more durable control of disease compared to single treatment. These preclinical findings support TAG72-BB ζ CAR T cells as a viable therapeutic option for ovarian cancers, and also highlight its broader application for multiple TAG72-expressing solid cancers.

EXAMPLES

[0063] The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.
[0064] Materials and Methods
[0065] The following materials and methods were used in the Examples set forth herein.
[0066] Cell Lines
[0067] The epithelial ovarian cancer line OVCAR3 (ATCC HTB-161) was cultured in RPMI-1640 (Lonza) containing 20% fetal bovine serum (FBS, Hyclone) and $1 \times$ antibiotic-antimycotic ($1 \times \mathrm{AA}$, Gibco) (complete RPMI). The epithelial ovarian cancer line derived from metastatic ascites OV90 (CRL-11732) was cultured in a 1:1 mixture of MCDB 105 medium (Sigma) and Medium 199 (Thermo) adjusted to pH of 7.0 with sodium hydroxide (Sigma) and final 20% FBS and $1 \times$ AA. The epithelial-endometroid ovarian cancer line COV362.4 (Sigma) was cultured in Dulbecco's Modified Eagles Medium (DMEM, Life Technologies) containing 10% FBS, $1 \times$ AA , 25 mM HEPES (Irvine Scientific), and 2 mM L-Glutamine (Fisher Scientific) (complete DMEM). The epithelial ovarian cancer line OVCAR8 was a generous gift from Dr. Carlotta Glackin at City of Hope and was cultured in complete RPMI-1640. The epithelial ovarian cancer line SKOV3 (ATCC HTB-77) and the colon epithelial cancer line LS174T (ATCC CL-188) were cultured in complete DMEM. All cells were cultured at 37° C. with 5\% CO2.
[0068] DNA Constructs and Lentivirus Production
[0069] Tumor cells were engineered to express enhanced green fluorescent protein and firefly luciferase (eGFP/ffluc) by transduction with epHIV7 lentivirus carrying the eGFP/ ffluc fusion under the control of the EF1a promoter as described previously (22). The humanized scFv sequence used in the CAR construct was obtained from a monoclonal antibody clone huCC49 that targets TAG72 (17). The extracellular spacer domain included the 129 -amino acid middlelength CH 2 -deleted version ($\Delta \mathrm{CH} 2$) of the IgG 4 Fc spacer (23). The intracellular co-stimulatory signaling domain contained was a $4-1 \mathrm{BB}$ with a CD4 transmembrane domain. The CD3 ζ cytolytic domain was previously described (22). The CAR sequence was separated from a truncated CD19 gene (CD19t) by a T2A ribosomal skip sequence, and cloned in an epHIV7 lentiviral backbone under the control of the EF1 α promoter.
[0070] Lentivirus was generated as previously described $(22,24)$. Briefly, 293 T cells were transfected with packaging plasmid and CAR lentiviral backbone plasmid using a
modified calcium phosphate method. Viral supernatants were collected after 3 to 4 days and treated with 2 mM magnesium and $25 \mathrm{U} / \mathrm{mL}$ Benzonase ${ }^{\mathbb{R}}$ endonuclease (EMD Millipore). Supernatants were concentrated via high-speed centrifugation and lentiviral pellets were resuspended in phosphate-buffered saline (PBS)-lactose solution (4 g lactose per 100 mL PBS), aliquoted and stored at $-80^{\circ} \mathrm{C}$. Lentiviral titers were quantified using HT1080 cells based on CD19t expression.
[0071] T Cell Isolation, Lentiviral Transduction, and Ex Vivo Expansion
[0072] Leukapheresis products were obtained from consented research participants (healthy donors) under protocols approved by the City of Hope Internal Review Board (IRB). On the day of leukapheresis, peripheral blood mononuclear cells (PBMC) were isolated by density gradient centrifugation over Ficoll-Paque (GE Healthcare) followed by multiple washes in PBS/EDTA (Miltenyi Biotec). Cells were rested overnight at room temperature (RT) on a rotator, and subsequently washed and resuspended in X-VIVO T cell medium (Lonza) containing 10\% FBS (complete X-VIVO). Up to 5.0×109 PBMC were incubated with anti-CD14 and anti-CD25 microbeads (Miltenyi Biotec) for 30 min at RT and magnetically depleted using the CliniMACSR system (Miltenyi Biotec) according to the manufacturer's protocol and these were termed depleted PBMCs (dPBMC). dPBMC were frozen in CryoStor ${ }^{\circledR}$ CS5 (StemCell Technologies) until further processing.
[0073] T cell activation and transduction was performed as described previously (22). Briefly, freshly thawed dPBMC were washed once and cultured in complete X-VIVO containing $100 \mathrm{U} / \mathrm{mL}$ recombinant human IL-2 (rhIL-2, Novartis Oncology) and $0.5 \mathrm{ng} / \mathrm{mL}$ recombinant human IL-15 (rhIL-15, CellGenix). For CAR lentiviral transduction, T cells were cultured with CD3/CD28 Dynabeads® (Life Technologies), protamine sulfate (APP Pharmaceuticals), cytokine mixture (as stated above) and desired lentivirus at a multiplicity or infection (MOI) of 1 the day following bead stimulation. Cells were then cultured in and replenished with fresh complete X-VIVO containing cytokines every 2-3 days. After 7 days, beads were magnetically removed, and cells were further expanded in complete X-VIVO containing cytokines to achieve desired cell yield. CAR T cells were positively selected for CD19t using the EasySep ${ }^{\text {TM }}$ CD19 Positive Enrichment Kit I or II (StemCell Technologies) according to the manufacturer's protocol. Following further expansion, cells were frozen in CryoStor® CS5 prior to in vitro functional assays and in vivo tumor models. Purity and phenotype of CAR T cells were verified by flow cytometry. [0074] Flow Cytometry
[0075] For flow cytometric analysis, cells were resuspended in FACS buffer (Hank's balanced salt solution without $\mathrm{Ca} 2+, \mathrm{Mg} 2+$, or phenol red (HBSS-/-, Life Technologies) containing $2 \% \mathrm{FBS}$ and $1 \times \mathrm{AA}$). Cells were incubated with primary antibodies for 30 minutes at $4^{\circ} \mathrm{C}$. in the dark. For secondary staining, cells were washed twice prior to 30 min incubation at $4^{\circ} \mathrm{C}$. in the dark with either Brilliant Violet 510 (BV510), fluorescein isothiocyanate (FITC), phycoerythrin (PE), peridinin chlorophyll protein complex (PerCP), PerCP-Cy5.5, PE-Cy7, allophycocyanin (APC), or APC-Cy7 (or APC-eFluor780)-conjugated antibodies. Antibodies against CD3 (BD Biosciences, Clone: SK7), CD4 (BD Biosciences, Clone: SK3), CD8 (BD Biosciences, Clone: SK1), CD14 (BD Biosciences, Clone: MTP9), CD19
(BD Biosciences, Clone: SJ25C1), CD25 (BD Biosciences, Clone: 2A3), mouse CD45 (BioLegend, Clone: 30-F11), CD45 (BD Biosciences, Clone: 2D1), CD69 (BD Biosciences, Clone: L78), CD137 (BD Biosciences, Clone: 4B41), MUC1 (BioLegend, Clone 16A), MUC16 (Abcam, Clone X75 or EPSISR23), biotinylated Protein-L (GenScript USA) (25), TAG72 (Clone, muCC49), Donkey Anti-Rabbit Ig (Invitrogen), Goat Anti-Mouse Ig (BD Biosciences), and streptavidin (BD Biosciences) were used. Cell viability was determined using 4', 6-diamidino-2-phenylindole (DAPI, Sigma). Flow cytometry was performed on a MACSQuant Analyzer 10 (Miltenyi Biotec), and the data was analyzed with FlowJo software (v10, TreeStar).
[0076] In Vitro Tumor Killing and T Cell Functional Assays
[0077] For tumor killing assays, CAR T cells and tumor targets were co-cultured at indicated effector:tumor (E:T) ratios in complete X-VIVO in the absence of exogenous cytokines in 96 -well plates for 24 to 72 h and analyzed by flow cytometry as described above. Tumor killing by CAR T cells was calculated by comparing CD45-negative cell counts relative to that observed when targets were cocultured with Mock (untransduced) T cells. For T cell activation assays, CAR T cells and tumor targets were co-cultured at the indicated E:T ratios in complete X-VIVO in the absence of exogenous cytokines in 96 -well plates for the indicated time points and analyzed by flow cytometry for specific markers of T cell activation. Frozen, uncultured patient primary ovarian cancer ascites (OAS3, OAS4, and OAS7) were thawed, directly analyzed for TAG72 expression, and evaluated in T cell functional assays. Briefly, ascites fluid from ovarian cancer patients was obtained from City of Hope National Medical Center (COH) surgical staff in a sterile vacuum container with approval from the COH Institutional Review Board (IRB) and Office of Human Subjects Protection. The COH IRB waived the need for written informed consent as all samples were de-identified and ascites was discard material as previously described (26).
[0078] For T cell activation assays on plate-bound antigen, purified soluble TAG72 antigen (BioRad) was plated in duplicate at indicated TAG72 units overnight at $4^{\circ} \mathrm{C}$. in $1 \times$ PBS in 96 -well flat bottom high-affinity plates (Corning). A total of 104 TAG72-BB ζ CAR T cells were then added in a fixed volume of 1004, to each well and incubated for indicated times prior to collection of cells for analysis of activation markers (CD69, CD137) by flow cytometry. Supernatants were also collected for analysis of cytokine production.
[0079] ELISA Cytokine Assays
[0080] Supernatants from tumor killing assays or CAR T cell activation assays on plate-bound TAG72 antigen were collected at indicated times and frozen at $-20^{\circ} \mathrm{C}$. for further use. Supernatants were then analyzed for secreted human IFN γ and IL-2 according to the Human IFN γ and IL-2 ELISA Ready-SET-GO!® ELISA kit manufacturer's protocol, respectively. Plates were read at 450 nm using a Wallac Victor3 1420 Counter (Perkin-Elmer) and the Wallac 1420 Workstation software.
[0081] In Vivo Tumor Studies
[0082] All animal experiments were performed under protocols approved by the City of Hope Institutional Animal Care and Use Committee. For in vivo tumor studies, OVCAR3 and OV90 cells (5.0×106) were prepared in a final
volume of $500 \mu \mathrm{HBSS}-/-$ and engrafted in 6 to 8 week old female NSG mice by intraperitoneal (i.p.) injection. Tumor growth was monitored at least once a week via biophotonic imaging (Xenogen, LagoX) and flux signals were analyzed with Living Image software (Xenogen). For imaging, mice were i.p. injected with $150 \mu \mathrm{~L}$ D-luciferin potassium salt (Perkin Elmer) suspended in PBS at $4.29 \mathrm{mg} /$ mouse. Once flux signals reached desired levels, day 8 for OV90 and day 14 for OVCAR3, T cells were prepared in $1 \times \mathrm{PBS}$, and mice were treated with $500 \mu \mathrm{~L}$ i.p. or $200 \mu \mathrm{~L}$ intravenous (i.v.) injection of 5.0×106 Mock or TAG72-BBC CART cells. In the OV90 tumor model, we tested the impact of repeat treatment with i.p. TAG72-BB ζ CAR T cells starting at day 8, followed by treatments at additional indicated days post tumor engraftment. Humane endpoints were used in determining survival. Mice were euthanized upon signs of distress such as a distended belly due to ascites, labored or difficulty breathing, apparent weight loss, impaired mobility, or evidence of being moribund. At pre-determined time points or at moribund status, mice were euthanized and tissues and/or ascites fluid were harvested and processed for flow cytometry and immunohistochemistry as described below.
[0083] Peripheral blood was collected from isofluraneanesthetized mice by retro-orbital (RO) bleed through heparinized capillary tubes (Chase Scientific) into polystyrene tubes containing a heparin/PBS solution (1000 units $/ \mathrm{mL}$, Sagent Pharmaceuticals). Volume of each RO blood draw (approximately $120 \mu \mathrm{~L} /$ mouse) was recorded for cell quantification per $\mu \mathrm{L}$ blood. Red blood cells (RBCs) were lysed with $1 \times$ Red Cell Lysis Buffer (Sigma) according to the manufacturer's protocol and then washed, stained, and analyzed by flow cytometry as described above. Cells from i.p. ascites fluid was collected from euthanized mice by injecting 5 mL cold $1 \times$ PBS into the i.p. cavity, which was drawn up via syringe and stored on ice until further processing. RBC-depleted ascites was washed, stained, and analyzed by flow cytometry for tumor-associated glycoprotein expression and CAR T cells using antibodies and methods described above.
[0084] Immunohistochemistry
[0085] Tumor tissue was fixed for up to 3 days in 4% paraformaldehyde (4% PFA, Boston BioProducts) and stored in 70% ethanol until further processing. Immunohistochemistry was performed by the Pathology Core at City of Hope. Briefly, paraffin-embedded sections ($10 \mu \mathrm{~m}$) were stained with hematoxylin \& eosin (H\&E, Sigma-Aldrich), mouse anti-human CD3 (DAKO), mouse anti-human TAG72 (AB16838, Abcam), rabbit anti-human MUC1 (AB45167, Abcam), MUC16 (AB1107, Abcam). Images were obtained using the Nanozoomer 2.0 HT digital slide scanner and the associated NDP.view2 software (Hamamatzu).
[0086] Statistical Analysis
[0087] Data are presented as mean \pm SEM, unless otherwise stated. Statistical comparisons between groups were performed using the unpaired two-tailed Student's t test to calculate p value, unless otherwise stated. ${ }^{*} p<0.05, * * p<0$. $01,{ }^{* * *} \mathrm{p}<0.001$; NS, not significant.

Example 1: Construction of TAG72-CAR T Cells
Containing a 4-1BB Intracellular Co-Stimulatory
Domain and Validation that TAG72-BBC CAR T Cells Exhibit Activity Against TAG72
[0088] To determine if TAG72-CAR T cells containing a 4-1BB intracellular co-stimulatory domain effectively dem-
onstrate activation against purified TAG72, the aforementioned cells were grown in presence of increasing amounts of either soluble TAG72 or plate-bound TAG72 and CD137 expression, an indicator of activation, was measured.
[0089] Results
[0090] TAG72-BB ζ CAR lentivirus was used to transduce human healthy donor-derived peripheral blood mononuclear cells depleted of CD14+ and CD25+ cells (dPBMC), as previously described (Priceman S J, Gerdts E A, Tilakawardane D, Kennewick K T, Murad J P, Park A K, Jeang B, Yamaguchi Y, Yang X, Urak R, Weng L, Chang W C, Wright S, Pal S, Reiter R E, Wu A M, Brown C E, Forman S J. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. Oncoimmunology. 2018; 7(2): e1380764). TAG72-BB ζ CART cells were enriched during the manufacturing process (based on CD19t+ selection) and were stably expressed on the surface of T cells (FIG. 1B). CAR T cells expanded ex vivo with similar kinetics and comparable CD4:CD8 ratios to Mock (untransduced) T cells (FIG. 1C). Importantly, and as a first measure of CAR T cell activation against TAG72, TAG72-BB ζ CAR T cells exhibited dose-dependent CD137 expression on the surface when cultured with plate-bound, but not soluble, purified TAG72 (FIG. 1D). Additionally, TAG72-BB ζ CAR T cells exhibited dose-dependent induction of other activator indicators, specifically cell-surface CD69 expression and IFN γ release, when cultured with plate-bound TAG72, but not soluble, purified TAG72 (FIG. 2).

Example 2: Validation that TAG72-BB ζ CAR T Cells Selectively Target and Exhibit Activation Against TAG72-Positive Ovarian Cancer Cells In Vitro

[0091] To determine if TAG72-BB ζ CAR T cells demonstrate selective activity against TAG72-positive cancer cells, the TAG72-BBG CAR T cells were grown in presence of either TAG72-positive or TAG72-negative ovarian cancer cells and the percentage of ovarian cancer cells killed was quantified.
[0092] Results
[0093] As a first step toward evaluating TAG72-BB ζ CAR T cells selective activity-including targeting and conferring cell death of target cells-against TAG72-positive cancer cells, TAG72 expression on human ovarian cancer cell lines, including SKOV3, OVCAR8, COV362.4, OVCAR3, OV90, as well as the TAG72+ colon cancer line, LS174T, was evaluated to identify a TAG72-positive cancer cell line. Prior studies have demonstrated expression of TAG72 by immunohistochemistry of ovarian tumor patient samples and by western blotting of human ovarian cancer cell lines (Chauhan S C, Vinayek N, Maher D M, Bell M C, Dunham K A, Koch M D, Lio Y, Jaggi M. Combined staining of TAG-72, MUC1, and CA125 improves labeling sensitivity in ovarian cancer: antigens for multi-targeted antibody-guided therapy. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society. 2007; 55(8):867-75; Ponnusamy M P, Venkatraman G, Singh A P, Chauhan S C, Johansson S L, Jain M, Smith L, Davis J S, Remmenga S W, Batra S K. Expression of TAG-72 in ovarian cancer and its correlation with tumor stage and patient prognosis. Cancer letters. 2007; 251(2): 247-57). By flow cytometry, TAG72 was expressed on OVCAR3 cells (approximately 42%) and to a greater extent
on OV90 cells (approximately 90\%), with very low levels detected on COV362.4 cells (FIG. 3A). TAG72 was absent on SKOV3 and OVCAR8 cells. Immunofluorescence staining of tumor cells confirmed TAG72 expression and cellular localization on the cell surface as well as intracellularly. Notably, higher expression of TAG72 on OVCAR3 and OV90 cells harvested from the ascites of tumor-bearing animals was observed as compared to in vitro cultured cells (FIG. 4).
[0094] To assess antigen-dependent activity of our TAG72-BBC CAR T cells, co-cultured assays with TAG72positive and -negative ovarian tumor targets were conducted at an E:T ratio between 1:1 and 1:2 to determine their killing potential. After 24 hours, antigen-specific T cell-mediated killing activity was evident with TAG72-BB ζ CAR T cells relative to Mock T cells (FIG. 3B). Amongst TAG72expressing targets, an average of 59% LS174T, 79\% OVCAR3, and 67% OV90 cells were killed. After 72 hours, killing of the same tumor lines increased to $77 \%, 90 \%$, and 97%, respectively. TAG72-BB ζ CAR T cells showed minimal killing of TAG72-negative or low expressing SKOV3, OVCAR8, and COV362.4 cells. At 72 hours, TAG72-BB5 CAR T cell expansion against TAG72-positive tumor cells was 2- to 3 -fold (FIG. 3C). Similar tumor killing was observed at lower $\mathrm{E}: \mathrm{T}$ ratios of $1: 10$, demonstrating the potent killing ability of TAG72-BB ζ CART cells. The tumor killing ability of TAG72-BB ζ CART cells was minimally impacted by soluble TAG72 shed from tumor cells (FIG. 5). Cytokine production from CAR T cells was measured as an additional measure of T cell activity. IFN γ and IL-2 cytokine production was observed only when TAG72-BBY CAR T cells were co-cultured with antigen-positive tumor targets, OVCAR3, LS174T, and OV90 (FIGS. 3D and 3E). While IL-2 production peaked at early time points ($\mathrm{T}=24$ hour) and was detectable only against OVCAR3 at later time points ($\mathrm{T}=72$ hours), in contrast IFN γ levels exhibited elevated levels over the full 72 hours.

Example 3: Validation that TAG72-BBC CAR T Cells Selectively Target TAG72-Positive Cells from Ovarian Cancer Ascites In Vitro
[0095] To further confirm TAG72 as an ovarian cancer CAR target and the anti-tumor activity of our TAG72-BB5 CART cells, TAG72-BBG CAR T cells were grown in presence of human ovarian cancer ascites from three patients (OAS3, OAS4, OAS7).
[0096] Results
[0097] Freshly thawed ascites from OAS3, OAS4, and OAS7 expressed $62 \%, 80 \%$, and 67% TAG 72 , respectively, by flow cytometry, but after 72 hours in culture, was reduced to $2 \%, 53 \%$, and 19%, respectively (FIG. 3F). Without wishing to be bound to a particular theory, the reduction in TAG72 expression may reflect an influence of ex vivo culturing conditions on maintenance of TAG72 expression (Horan Hand P, Colcher D, Salomon D, Ridge J, Noguchi P, Schlom J. Influence of spatial configuration of carcinoma cell populations on the expression of a tumor-associated glycoprotein. Cancer research. 1985; 45(2):833-40). TAG72-BB ζ CAR T cells exhibited cytolytic activity after 72 hours of co-culture with ascites, and showed potent and selective CAR-mediated killing of the TAG72-positive OAS4 and OAS7 cells, with no detectable anti-tumor activity against the TAG72-negative OAS3 cells (FIG. 3G). TAG72-BB ζ CAR T cells produced IFN γ and IL-2 against

OAS4, but not OAS3 and OAS7 cells (FIG. 3H). These data suggest that TAG72-CAR T cells selectively target TAG72positive cells from ovarian cancer ascites in vitro.

> Example 4: Validation that TAG72-BB ζ CAR T
> Cells Delivered Locally to Ovarian Ascites In Vivo in a Mouse Model Exhibit Potent Anti-Tumor Activity and Confer Extended Lifespan to the Mice
[0098] To evaluate the therapeutic potential of the TAG72$\mathrm{BB} \zeta \mathrm{CAR} \mathrm{T}$ cells in vivo, the ability of TAG72-BB ζ CAR T cells to selectively target TAG72-positive OVCAR3 tumors in immune compromised NSG mice was tested; this mouse model mimics mimic peritoneal ovarian tumors observed in late-stage human disease. The TAG72-BB ζ CAR T cells were delivered by intraperitoneal (i.p.) injection.
[0099] Results
[0100] OVCAR3 cells were lentivirally transduced to express eGFP/ffluc to allow for tracking of tumor growth via non-invasive optical imaging. At 14 days post tumor i.p. injection, mice were treated with Mock or TAG72-BB ζ CAR T cells (5.0×10^{6}) by systemic intravenous (i.v.) or regional i.p. delivery (FIG. 6A). Rapid anti-tumor effects were observed in mice treated with TAG72-BB ξ CAR T cells via regional i.p. delivery, reaching a maximal antitumor response 1-2 weeks following treatment (FIGS. 6B and 6C). In comparison to regional delivery, i.v. delivery of TAG72-BBG CAR T cells showed limited anti-tumor responses. Anti-tumor responses in mice were durable for 3-4 weeks, but ultimately tumor recurrences were observed in mice. Regional i.p. delivery of TAG72-BB ζ CAR T cells significantly extended survival of mice, with limited benefits observed by i.v. delivery (FIG. 6D).
[0101] To address potential differences observed between i.p. and i.v. therapy, CAR T cells in the blood and ascites of mice were quantified. Strikingly, appreciable numbers of CAR T cells (huCD45+CD19t+) were found in the blood of mice 6 days post i.p. treatment, with more than 5 -fold fewer CART cells in the blood of i.v. treated mice at the same time point (FIG. 6E and FIG. 7). However, equivalent numbers of CAR T cells were observed in the blood of i.p. and i.v. treated mice at later time points, expanding from 1-2 weeks, with significant reductions at 4 weeks post treatment. CAR T cells in the ascites of treated mice continued to be present at the site of tumors at day 6 post i.p. treatment, with no detectable CAR T cells in i.v. treated mice at the same time point. However, at day 13 post treatment, similar levels of CART cells were observed in mice treated i.v. and i.p. (FIG. $6 \mathrm{~F})$. Without wishing to be bound to a particular theory, these data collectively suggest that CAR T cells eventually reached the tumor following i.v. delivery but with delayed kinetics compared with i.p. delivery, which was likely in part responsible for the lack of observed therapy by this route of administration. CD45-negative cells, likely majority being OVCAR3 tumor cells, were significantly depleted in i.p. TAG72-BBE CAR T cell treated mice, but not i.p. or i.v. Mock T cell or i.v. TAG72-BB ζ CAR T cell treated mice. These data support regional intraperitoneal delivery of TAG72-CAR T cells as an effective method of targeting peritoneal ovarian tumors in mice.

> Example 5: Validation that TAG72-BB ζ CAR T Cells Selectively Target TAG72-Positive Cells in OV90 i.p. Model and Comparison of Efficacy for TAG72-BB ζ CAR T Cells Administered as Single Versus Multiple Dosing Regimen

[0102] To evaluate efficacy of TAG72-BB૬ CAR T cells to selective target TAG72-positive cells in the OV90 i.p. model, TAG72-BB ζ CAR T cells were delivered either as single or multiple repeat doses and tumor size was evaluated over time.
[0103] Results
[0104] Notably, the OV90 i.p. model exhibits more uniform TAG72 expression in vitro compared with OVCAR3 (FIG. 3A). Regional CAR T cell delivery in the OV90 i.p. model showed selective targeting of TAG72 cells compared to the OVCAR3 model, i.p. In contrast, i.v. TAG72-BB ζ CAR T cell treatment failed to show anti-tumor efficacy in the OV90 model (FIG. 8). Overall survival was only delayed by approximately 25 days in this model with i.p. delivery of TAG72-BBC CAR T cells (FIG. 8), likely owing to the aggressive nature of this model. Given this observation, the efficacy of repeat TAG72-BB ξ CAR T cell dosing compared with a single dose was evaluated and found to improve therapeutics responses (FIG. 9A). Compared with a single dose of TAG72-BBC CAR T cells, repeat dosing over the course of one month demonstrated more durable anti-tumor responses in the OV90 model (FIGS. 9B and 9C). When plotted as relative tumor growth kinetics, repeat dosing promoted more extensive tumor regression as well as more durable control of tumors compared with single dosing (FIG. 9D)
[0105] In this study, the overall survival was extended significantly in mice that received repeat doses of TAG72$\mathrm{BB} \zeta \mathrm{CAR} \mathrm{T}$ cells (55 day benefit) compared with a single dose (30 day benefit) (FIG. 9E). Greater T cell numbers were observed in peritoneal tumors of mice with repeat treatment (FIG. 9F). Importantly, however, reduced numbers, expansion and persistence of CAR T cells in the blood of OV90bearing mice was observed compared with the OVCAR3 model (FIG. 10). Without wishing to be bound to a particular theory, these results suggest that this more aggressive tumor model may also harbor suppressive mechanisms that hamper T cell function and overall CAR T cell efficacy. Collectively, these data demonstrate potent anti-tumor activity of TAG72$\mathrm{BB} \zeta \mathrm{CAR} \mathrm{T} \mathrm{cells} \mathrm{in} \mathrm{ovarian} \mathrm{cancer} \mathrm{xenograft} \mathrm{models}$, also suggest that repeat dosing of regionally delivered CAR T cells may provide greater control of tumors compared with a single dose.

Example 6: Determination that Tumor Recurrences Following TAG72-CAR T Cell Therapy Exhibit Antigen Escape

[0106] Given that TAG72-BB ζ CAR T cells in previous Examples were observed to reduce prior to tumor recurrences, the expression of TAG72 in tumors was quantified over time to determine if loss of TAG72 expression correlates with reduced TAG72-BBC CAR T cell numbers.
[0107] Results
[0108] One of the major resistance mechanisms to CAR T cell therapy is the tumor antigen heterogeneity that exists in solid tumors that promotes eventual antigen loss or escape (Chen N, Li X, Chintala N K, Tano Z E, Adusumilli P S. Driving CARs on the uneven road of antigen heterogeneity
in solid tumors. Current opinion in immunology. 2018; 5 $1: 103-10$). Given that the loss of CART cells in the two in vivo models (of previous Examples) preceded tumor recurrences, potentially loss of TAG72 expression in tumors occurs correlates with loss of CAR T cells. To evaluate the former, the expression of TAG72 in tumors from Mock and TAG72-BBY CAR T cell treated mice was measured over time pre- and post-therapy. Since TAG72, MUC1, and MUC16 have all been identified as potential targets in ovarian cancer, the expression of these cell surface antigens on TAG72-negative OVCAR8, and TAG72-positive OVCAR3 and OV90 cells was quantified. OVCAR8 appeared to only express low levels of MUC1, and was absent for TAG72 and MUC16, while OVCAR3 expressed all three antigens at varying levels, and OV90 showed low expression of MUC1 and was absent for MUC16 (FIG. 11A). Therefore, the expression of these antigens in OVCAR3 tumors from mice treated with Mock or TAG72$\mathrm{BB} \zeta$ CAR T cells was quantified. At twelve weeks post T cell infusion, tumors from Mock-treated mice showed heterogeneous expression of TAG72 (similar to flow cytometry analysis of the cell line), MUC16, and MUC1 (FIG. 11B). However, tumor recurrences at early time points from mice treated with TAG72-BB ζ CAR T cells showed a dramatic reduction in TAG72 expression, while maintaining expression of MUC16 and MUC1. Similarly, repeat treatment of TAG72-BB C CAR T cells in the OV90 tumor model also showed a reduction in TAG72 expression in early recurrent tumors following treatment (FIG. 11E). Notably, the expression of TAG72 was detected at high levels in tumor recurrences at later time points, in solid tumors as well as in ascites (FIGS. 11C and 11D). To further confirm this finding in vitro, the expression of TAG72 in tumor cells following CAR T cell co-culture was quantified and found to be reduced compared to tumor cells that grew out in the absence of co-culture with CAR T cells (FIG. 11E). In total, these data suggest that antigen escape likely plays a key role in tumor recurrences following TAG72-BB CAR T cell therapy.

> Example 7: Validation that TAG72-BBY CAR T Cells Selectively Target and Exhibit Activation Against TAG72-Positive Ovarian Cancer Cells In Vitro

[0109] To determine if humanized TAG72-BB ζ CAR T cells also effectively kill TAG72-positive cancer cells, humanized TAG72-BB ζ CAR T cells were grown in presence of TAG72-positive ovarian cancer cells and the percentage of ovarian cancer cells killed was quantified.
[0110] Results
[0111] A series of representative $4-1 \mathrm{BB}$ co-stimulated CAR T cells that expresses either the IDEC, V15, or a combined V59/V15 antigen-binding domain (scFv) from humanized variants of anti-TAG-72 antibody clone CC49 (IDEC-TAG72-BBz, V15-TAG72-BBz, or V59/15-TAG72BBz; FIGS. 19-21 (shown without the T2A and CDR sequences present at the carboxy terminus) were created. These CARS all utilize the same extracellular domain (composed of IgG4 hinge with a mutation to P at amino acid 10 of the hinge; a linker having the sequence GGGSSGGGSG and the human IgG CH3 domain), a CD4 transmembrane domain, and a $4-1 \mathrm{BB}$ intracellular co-stimulatory signaling domain. These humanized TAG72-BB ζ CAR T cells were grown in presence of either OV90 or OVCAR3 ovarian
cancer cells and the percentage of ovarian cancer cells killed was quantified. In vitro, both the IDEC and V15 TAG72BBz CAR T cells show equivalent potent T cell-mediated antigen-dependent cytotoxicity, activation, and T cell proliferation following exposure to TAG72-expressing ovarian cancer cell lines (FIG. 13A-13C). The V59/15 TAG72-BBz CARs showed little activity in this assay and was removed from further experiments.

> Example 8: Validation that Humanized TAG72-BB ζ CAR T Cells Selectively Target TAG72-Positive Cells in OV90 i.p. Model and Comparison of Efficacy for TAG72-BB CAR T Cells Administered as Single Versus Multiple Dosing Regimen
[0112] To evaluate efficacy of humanized TAG72-BB ζ CAR T cells to selective target TAG72-positive cells in the OV90 i.p. model, humanized TAG72-BB ζ CAR T cells were delivered either as single or multiple repeat doses and tumor size was evaluated over time.
[0113] Results
[0114] Endogenous expression of TAG72 antigen on OV90 tumor cell line was determined by flow cytometry. OV90-ffluc cells were injected into the intraperitoneal (i.p.) cavity of NSG mice and tracked by bioluminescent imaging and reported as flux (photos $/ \mathrm{sec}$). At 8 days post tumor injection, either a single or repeat dose of 5.0×10^{6} Mock, IDEC, or V15 variants of TAG72 CAR T cells administered regionally into the i.p. cavity of tumor-bearing mice (FIG. 14A). Tumor burden of single or repeat T cell-treated mice was quantified by bioluminescent imaging. Dashed vertical lines indicate time points of initial and repeated treatment with T cells. Interestingly, we show using in vivo ovarian tumor models that regional intraperitoneal treatment with V15-TAG72-BBz reduces tumor burden of antigen-positive targets (OV90 engrafted tumors) to a greater extent than IDEC-TAG72-BBz CARs (FIGS. 14A-14B). Given this observation, the efficacy of repeat TAG72-BB ζ CAR T cell dosing compared with a single dose was evaluated and found to improve therapeutics responses (FIG. 14B). Compared with a single dose of TAG72-BB CAR T cells, repeat dosing over the course of over 50 days demonstrated more durable anti-tumor responses in the OV90 model (FIG. 14B).

Example 9: Validation that Humanized TAG72-BB ζ CAR T Cells Selectively Target TAG72-Positive Cells in OVCAR3 i.p. Model and Comparison of Persistence for TAG72-BBE CAR T Cells Administered as a Single Dosing Regimen

[0115] To evaluate efficacy of humanized TAG72-BBC CAR T cells to selective target TAG72-positive cells in the OVCAR3 i.p. model, humanized TAG72-BB ζ CAR T cells were delivered as a single dose and tumor size was evaluated over time.
[0116] Results
[0117] Endogenous surface TAG72 expression was analyzed by flow cytometry on OVCAR3 tumor cells. OVCAR3-ffluc tumors were then injected into the i.p. cavity of NSG mice, that were treated i.v. with a single dose of 5.0×10^{6} Mock, IDEC, or V15 variant TAG72 CART cells (FIG. 15A). Tumor burden of single dose treated mice was quantified by bioluminescent imaging and reported as flux
(photos/sec). Dashed vertical lines indicate time point of treatment with T cells. Interestingly, intravenously (i.v.) administered V15-TAG72-BBz CAR T cells, but not IDEC-TAG72-BBz CAR T cells, are able to mediate a robust anti-tumor response against OVCAR3 tumor bearing mice (FIG. 15B). This anti-tumor response in vivo of the V15-TAG72-BBz CARS was in part mediated by an increased proliferation compared to IDEC-TAG72-BBz, thus increasing the longevity of its response (FIG. 15C).

Example 10: Determination that Humanized

 TAG72-BBE CAR T Cells Design Affects Tumor Killing, T Cell Proliferation, Activation, Exhaustion, and Cytokine Production[0118] To evaluate the design of humanized TAG72 CAR T cells, a series of representative TAG72 CAR T cells was created featuring the V15 scFv and varying the linker, transmembrane, and costimulatory domains.

[0119] Results

[0120] All seven representative humanized TAG72-CAR T cells variants with the V15 scFv clone exhibited CAR expression stability (FIG. 16A). In an in vitro tumor killing activity, humanized TAG72-CAR T cells were grown in presence of either TAG72-positive (OVCAR3, OV90, and OVCAR8-sTn) or TAG72-negative (DU145, OVCAR8) ovarian cancer cells and the percentage of ovarian cancer cells killed was quantified. All seven representative humanized TAG72-CAR T cells variants showed potent and selective CAR-mediated killing of the TAG72-positive OVCAR3, OV90, and OVCAR8-sTn cells, with no detectable anti-tumor activity against the TAG72-negative DU145 and OVCAR8 cells (FIG. 16B). T cell proliferation varied
and was higher in the TAG72-positive OVCAR3, OV90, and OVCAR8-sTn cells than in the TAG72-negative DU145 and OVCAR8 cells (FIG. 16C). CD137+ activation indicator showed that the representative humanized TAG72-CAR T cells variants varied and was higher in the TAG72-positive OVCAR3, OV90, and OVCAR8-sTn cells than in the TAG72-negative DU145 and OVCAR8 cells (FIG. 16D). PD-1+ exhaustion indicator (72 hours) of CAR T cells against TAG72-negative (DU145, OVCAR8), and TAG72positive (OVCAR3, OV90, and OVCAR8-STn) expressing tumor cells (FIG. 16E).
[0121] Varying V15-CAR design also impacts in vitro cytokine production of TAG72-CAR T cells. In vitro IFN γ production (24 hours), of CAR T cells against TAG72negative (DU145, OVCAR8), and TAG72-positive (OVCAR3, OV90, OVCAR8-sTn) expressing tumor cells. While CARs with a CD28tm-BBz construct shows similar anti-tumor activity compared with the $\mathrm{CD} 4 \mathrm{tm}-\mathrm{BBz}$ construct, the CD28tm confers greater cytokine production in some TAG72-positive tumor cells (FIG. 17).
[0122] A real-time cytotoxicity assay was performed using xCelligence technology with OV90 cells and a few representative humanized TAG72-CAR T cells variants. The four T cells populations were plated at an effector to target ratio of 1-to-20 and observed for 10 days. Cell Index is indicative of live tumor count. All three representative humanized TAG72-CAR T cells variants demonstrated potent antitumor activity in this long-term killing assay (FIG. 18A). At the long-term killing assay endpoint, remaining cells were collected and analyzed by flow cytometry. T cell expansion was demonstrated for all three representative humanized TAG72-CAR T cells variants (FIG. 18B).

$<210>$ SEQ ID NO 2
$<211>$ LENGTH: 10
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 2

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 12
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 3

$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 12
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 4

$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 22
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 5

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 39
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens

$<210>$ SEQ ID NO 7
$<211>$ LENGTH: 48
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 7

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 45
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 8

$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 129
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 9

Lys
$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 229
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 10

$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 229
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 11

$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 107
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 12

$<210>$ SEQ ID NO 13
$<211>$ LENGTH: 21
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 13

$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 28
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 15

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 22
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 16
Met Ala Leu Ile Val Leu Gly Gly Val Ala Gly Leu Leu Leu Phe Ile

10

10

Gly Leu Gly Ile Phe Phe

20
$<210>$ SEQ ID NO 17
$<211>$ LENGTH: 21
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 17

Ile Tyr Ile Trp Ala1							

$<210>$ SEQ ID NO 18
$<211>$ LENGTH: 23
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 18

$<210>$ SEQ ID NO 19
$<211>$ LENGTH: 24
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
<400> SEQUENCE: 19
Ile TYr Ile Trp Ala Pro Leu Ala Gly Thr Cys Gly Val Leu Leu Leu

5
1

Ser Leu Val Ile Thr Leu Tyr Cys

20
$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 27
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 20

$<210>$ SEQ ID NO 21
$<211>$ LENGTH: 112
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 21

$<210>$ SEQ ID NO 22
$<211>$ LENGTH: 41
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 22

$<210>$ SEQ ID NO 23
$<211>$ LENGTH: 41
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 23

$<210>$ SEQ ID NO 24
$<211>$ LENGTH: 42
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 24

$<210>$ SEQ ID NO 25
$<211>$ LENGTH: 42
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 25

$<210>$ SEQ ID NO 26
$<211>$ LENGTH: 923
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 26

	130					135					140			
$\begin{aligned} & \text { Ser } \\ & 145 \end{aligned}$		Gly G	Gly	Ser	$\begin{aligned} & \text { Gly } \\ & 150 \end{aligned}$	Gly	Gly	Gly		$\begin{aligned} & \text { Ser } \\ & 155 \end{aligned}$	Asp			$\begin{array}{r} \text { Met Ser } \\ 160 \end{array}$
Gln	Ser	Pro A	Asp	$\begin{aligned} & \text { Ser } \\ & 165 \end{aligned}$	Leu	Ala	Val	Ser	$\begin{aligned} & \text { Leu } \\ & 170 \end{aligned}$	Gly	Glu	Arg	Val	$\begin{aligned} & \text { Thr Leu } \\ & 175 \end{aligned}$
Asn	Cys	Lys $\begin{array}{r}\text { S } \\ 1\end{array}$	$\begin{aligned} & \text { Ser } \\ & 180 \end{aligned}$	Ser	Gln	Ser	Leu	$\begin{aligned} & \text { Leu } \\ & 185 \end{aligned}$	Tyr	er	Gly	Asn	$\begin{aligned} & \text { Gln } \\ & 190 \end{aligned}$	Lys Asn
Tyr	u	$\begin{aligned} & \text { Ala } \\ & 195 \end{aligned}$	Trp	Y	Gln	Gln	$\begin{aligned} & \text { Lys } \\ & 200 \end{aligned}$	Pro	Gly	Gln	Ser	$\begin{aligned} & \text { Pro } \\ & 205 \end{aligned}$	Lys	Leu Leu
Ile	$\begin{aligned} & \text { Tyr } \\ & 210 \end{aligned}$	$\operatorname{Trp} A$	Ala	Ser	la	$\begin{aligned} & \text { Arg } \\ & 215 \end{aligned}$	Glu	er	$1 y$	al	$\begin{aligned} & \text { Pro } \\ & 220 \end{aligned}$	Asp	Arg	Phe Ser
$\begin{aligned} & \text { Gly } \\ & 225 \end{aligned}$	Ser	Gly S	Ser	Gly	$\begin{aligned} & \text { Thr } \\ & 230 \end{aligned}$	Asp	Phe	Thr	Leu 1	$\begin{aligned} & \text { Thr } \\ & 235 \end{aligned}$	Ile	Ser	Ser	$\begin{array}{r} \text { Val } \mathrm{Gln} \\ 240 \end{array}$
Ala	Glu	Asp V	Val	$\begin{aligned} & \text { Ala } \\ & 245 \end{aligned}$	val	Tyr	Tyr	Cys	$\begin{aligned} & \mathrm{Gln} \\ & 250 \end{aligned}$	Gln	Tyr	Tyr	Ser	$\begin{aligned} & \text { Tyr Pro } \\ & 255 \end{aligned}$
Leu	Thr	Phe	$\begin{aligned} & \text { Gly } \\ & 260 \end{aligned}$	Ala	Gly	Thr	Lys	$\begin{aligned} & \text { Leu } \\ & 265 \end{aligned}$	lu	u	Lys	Glu	$\begin{aligned} & \text { Ser } \\ & 270 \end{aligned}$	Lys Tyr
Gly	O	$\begin{aligned} & \text { Pro } \\ & 275 \end{aligned}$	Cys	60	ro	Cys	$\begin{aligned} & \text { Pro } \\ & 280 \end{aligned}$	Gly	$1 Y$	$1 Y$	er	$\begin{aligned} & \text { ser } \\ & 285 \end{aligned}$	Gly	Gly Gly
Ser	$\begin{aligned} & \mathrm{Gly} \\ & 290 \end{aligned}$	Gly	Gln	ro A	Arg	$\begin{aligned} & \text { Glu } \\ & 295 \end{aligned}$	Pro	Gln	al	Tyr	$\begin{aligned} & \text { Thr } \\ & 300 \end{aligned}$	Leu	Pro	Pro Ser
$\begin{aligned} & \text { Gln } \\ & 305 \end{aligned}$	Glu.	Glu M	t	nr	$\begin{aligned} & \text { Lys } \\ & 310 \end{aligned}$	Asn	Gln	Val	Ser	$\begin{aligned} & \text { Leu } \\ & 315 \end{aligned}$	Thr	ys	u.	$\begin{array}{r} \text { al Lys } \\ 320 \end{array}$
Gly	Phe	Tyr P	co	$\begin{aligned} & \text { Ser } \\ & 325 \end{aligned}$	Asp	Ile	Ala	al	$\begin{aligned} & \text { Glu } \\ & 330 \end{aligned}$	Trp	Glu	Ser	Asn	$\begin{aligned} & \text { Gly Gln } \\ & 335 \end{aligned}$
Pro	1 l	n	$\begin{aligned} & \text { Asn } \\ & 340 \end{aligned}$	Tyr	s	ir	hr	$\begin{aligned} & \text { Pro } \\ & 345 \end{aligned}$	Pro	al	u	Asp	$\begin{aligned} & \text { Ser } \\ & 350 \end{aligned}$	Asp Gly
Ser	e	$\begin{aligned} & \text { Phe } \\ & 355 \end{aligned}$	Leu	Tyr		Arg	$\begin{aligned} & \text { Leu } \\ & 360 \end{aligned}$	Thr	al	Asp	Lys	$\begin{aligned} & \text { ser } \\ & 365 \end{aligned}$	Arg	Trp Gln
Glu	$\begin{aligned} & \text { Gly } \\ & 370 \end{aligned}$	Asn V	Val	he S	Ser	$\begin{aligned} & \text { Cys } \\ & 375 \end{aligned}$	Ser	Val	Met	His	$\begin{aligned} & \text { Glu } \\ & 380 \end{aligned}$	Ala	Leu	His Asn
$\begin{aligned} & \text { His } \\ & 385 \end{aligned}$	Tyr	r	n		$\begin{aligned} & \text { Ser } \\ & 390 \end{aligned}$	u	er	u	er L	$\begin{aligned} & \text { Leu } \\ & 395 \end{aligned}$	Gly	ys	Met	$\begin{array}{r} \text { Ala } \begin{array}{r} \text { Leu } \\ 400 \end{array} \end{array}$
Ile	Val	u	Y	$\begin{aligned} & \text { Gly } \\ & 405 \end{aligned}$	Val	Ala	Gly	u	$\begin{aligned} & \text { Leu } \\ & 410 \end{aligned}$	eu	Phe	Ile	Gly	$\begin{aligned} & \text { Leu Gly } \\ & 415 \end{aligned}$
Ile	e	e I	$\begin{aligned} & \text { Lys } \\ & 420 \end{aligned}$	Arg	Gly	Arg	Lys	$\begin{aligned} & \text { Lys } \\ & 425 \end{aligned}$	eu	eu	Tyr	Ile	$\begin{aligned} & \text { Phe } \\ & 430 \end{aligned}$	LYs Gln
Pro	Phe	$\begin{aligned} & \text { Met } \\ & 435 \end{aligned}$	Arg	Pro V	Val	Gln	$\begin{aligned} & \text { Thr } \\ & 440 \end{aligned}$	Thr	Gln	Glu	Glu	$\begin{aligned} & \text { Asp } \\ & 445 \end{aligned}$	Gly	Cys ser
Cys	$\begin{aligned} & \text { Arg } \\ & 450 \end{aligned}$	Phe	Pro	Glu	Glu	$\begin{aligned} & \text { Glu } \\ & 455 \end{aligned}$	Glu	Gly	Gly	Cys	$\begin{aligned} & \mathrm{Glu} \\ & 460 \end{aligned}$	Leu	Gly	Gly Gly
$\begin{aligned} & \text { Arg } \\ & 465 \end{aligned}$	Val	Lys	,	er	$\begin{aligned} & \text { Arg } \\ & 470 \end{aligned}$	Ser	$1 a$	sp	1 a	$\begin{aligned} & \text { Pro } \\ & 475 \end{aligned}$	Ala	Tyr	Gln	$\begin{array}{r} \text { Gln } G l y \\ 480 \end{array}$
Gln	Asn	Gln	u	$\begin{aligned} & \text { Tyr } \\ & 485 \end{aligned}$	Asn	Glu	Leu	Asn	$\begin{aligned} & \text { Leu } \\ & 490 \end{aligned}$	Gly	Arg	Arg	Glu	$\begin{aligned} & \text { Glu Tyr } \\ & 495 \end{aligned}$
Asp	Val	Leu	$\begin{aligned} & \text { Asp } \\ & 500 \end{aligned}$	Lys		Arg	Gly	$\begin{aligned} & \text { Arg } \\ & 505 \end{aligned}$	Asp	Pro	Glu	Met	$\begin{gathered} \mathrm{Gly} \\ 510 \end{gathered}$	Gly Lys
Pro	Arg	$\begin{aligned} & \text { Arg } \\ & 515 \end{aligned}$	Lys	Asn	Pro	Gln	$\begin{aligned} & \mathrm{Glu} \\ & 520 \end{aligned}$	Gly	Leu	Tyr	Asn	$\begin{aligned} & \mathrm{Glu} \\ & 525 \end{aligned}$	Leu	Gln Lys
Asp	$\begin{aligned} & \text { Lys } \\ & 530 \end{aligned}$	Met	Ala	Glu	Ala	$\begin{aligned} & \text { Tyr } \\ & 535 \end{aligned}$	Ser	Glu	Ile	Gly	Met 540	Lys	Gly	Glu Arg

$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
<400> SEQUENCE: 27

$<210>$ SEQ ID NO 28
$<211>$ LENGTH: 354
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 28

Leu Cys His Pro Asn Cys Thr Tyr Gly Cys Thr Gly Pro Gly Leu Glu
305
310
$<210>$ SEQ ID NO 29
$<211>$ LENGTH: 576
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 29

$<210>$ SEQ ID NO 30
$<211>$ LENGTH: 576
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 30

$<210>$ SEQ ID NO 31
$<211>$ LENGTH: 576
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 31

$<210>$ SEQ ID NO 32
$<211>$ LENGTH: 576
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 32

$<210>$ SEQ ID NO 33
$<211>$ LENGTH: 246
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 33

$<210>$ SEQ ID NO 34
$<211>$ LENGTH: 246
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 34

$<210>$ SEQ ID NO 35
$<211>$ LENGTH: 554
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 35

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
485
$<210>$ SEQ ID NO 36
$<211>$ LENGTH: 554
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 36

$<210>$ SEQ ID NO 37
$<211>$ LENGTH: 554
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 37

				485					490					495
Gln	Glu	Gly	$\begin{aligned} & \text { Leu } \\ & 500 \end{aligned}$	Tyr	Asn	Glu	Leu	$\begin{aligned} & \mathrm{Gln} \\ & 505 \end{aligned}$	Lys	Asp	Lys	Met	$\begin{aligned} & \text { Ala } \\ & 510 \end{aligned}$	Glu Ala
Tyr	Ser	$\begin{aligned} & \text { Glu } \\ & 515 \end{aligned}$	Ile	Gly	Met	Lys	$\begin{aligned} & \text { Gly } \\ & 520 \end{aligned}$	Glu	Arg	Arg	Arg	$\begin{aligned} & \text { Gly } \\ & 525 \end{aligned}$	Lys	Gly His
Asp	$\begin{aligned} & \text { Gly } \\ & 530 \end{aligned}$	Leu	Tyr	Gln	Gly	$\begin{aligned} & \text { Leu } \\ & 5.35 \end{aligned}$	Ser	Thr	Ala	Thr	$\begin{aligned} & \text { Lys } \\ & 540 \end{aligned}$	Asp	Thr	Tyr Asp
Ala 545	Leu	His	Met	Gln	$\begin{aligned} & \text { Ala } \\ & 550 \end{aligned}$	Leu	Pro	Pro	Arg					

$<210>$ SEQ ID NO 38
$<211>$ LENGTH: 554
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 38

$\begin{aligned} & \text { Gln } \\ & 1 \end{aligned}$	Val	Gln		$\begin{aligned} & \text { Val } \\ & 5 \end{aligned}$	$\text { Gln } \mathrm{S}$	Ser	Gly	Ala	$\begin{aligned} & \text { Glu } \\ & 10 \end{aligned}$	al	Lys		Pro	$\begin{aligned} & \text { Gly } \\ & 15 \end{aligned}$	
Ser	Val	Lys	$\begin{aligned} & \text { Val S } \\ & 20 \end{aligned}$	Ser	Cys I	Lys A	Ala	$\begin{aligned} & \text { Ser } \\ & 25 \end{aligned}$	Gly	Tyr	Thr	Phe	$\begin{aligned} & \text { Thr } \\ & 30 \end{aligned}$	Asp	His
Ala	Ile	$\begin{aligned} & \mathrm{His} \\ & 35 \end{aligned}$	Trp V	Val	Arg	$\mathrm{Gln} \mathrm{~A}$	$\begin{aligned} & \text { Ala } \\ & 40 \end{aligned}$	Pro	Gly	Gln	Arg	$\begin{aligned} & \text { Leu } \\ & 45 \end{aligned}$	Glu.	Trp	Met
Gly	$\begin{aligned} & \text { Tyr } \\ & 50 \end{aligned}$	Phe	er	ro	Gly	$\begin{aligned} & \text { Asn } 7 \\ & 55 \end{aligned}$	Asp	sp	Phe	Lys	$\begin{aligned} & \text { Tyr } \\ & 60 \end{aligned}$	Ser	Gln	LYs	Phe
$\begin{aligned} & \mathrm{Gln} \\ & 65 \end{aligned}$	Gly	g	1		$\begin{aligned} & \text { Ile I } \\ & 70 \end{aligned}$	r	la	p		$\begin{aligned} & \text { Ser } \\ & 75 \end{aligned}$	Ala	Ser	Thr	Ala	$\begin{aligned} & \text { Tyr } \\ & 80 \end{aligned}$
Met	Glu	Leu		$\begin{aligned} & \text { Ser } \\ & 85 \end{aligned}$	Leu A	Arg	er	lu	Asp 90	Thr	Ala	al	Tyr	Phe 95	Cys
Thr	Arg	Ser	$\begin{aligned} & \text { Leu A } \\ & 100 \end{aligned}$	Asn	Met	Ala	Tyr	$\begin{aligned} & \text { Trp } \\ & 105 \end{aligned}$	Gly	Gln	Gly	Thr	$\begin{aligned} & \text { Leu } \\ & 110 \end{aligned}$	Val	Thr
Val	r	$\begin{aligned} & \text { Ser } \\ & 115 \end{aligned}$	Gly		rum		$\begin{aligned} & \mathrm{Gly} \\ & 120 \end{aligned}$	Gly	Gly	er	Gly	$\begin{aligned} & \text { Gly } \\ & 125 \end{aligned}$	Gly	Ser	Gly
Gly	$\begin{aligned} & \mathrm{Gl} \mathrm{I}_{\mathrm{C}} \\ & 130 \end{aligned}$	Gly	er	r	Asp	$\begin{aligned} & \text { Ile V } \\ & 135 \end{aligned}$	Val	Met	Thr	Gln	$\begin{aligned} & \text { Ser } \\ & 140 \end{aligned}$	Pro	Asp	Ser	Leu
$\begin{aligned} & \text { Ala } \\ & 145 \end{aligned}$	Val	Ser	eu	$1 Y$	$\begin{aligned} & \text { Glu } A \\ & 150 \end{aligned}$	Arg	$1 a$	hr	$1 e$	$\begin{aligned} & \text { Asn } \\ & 155 \end{aligned}$	Cys	Lys	Ser	Ser	$\begin{aligned} & \text { Gln } \\ & 160 \end{aligned}$
Ser	Leu	Leu	$\begin{aligned} \text { Tyr } \\ 1 \\ 1 \end{aligned}$	$\begin{aligned} & \text { Ser } \\ & 165 \end{aligned}$	Ser A	Asn	er	Lys	$\begin{aligned} & \text { Asn } \\ & 170 \end{aligned}$	Tyr	Leu	Ala	$\operatorname{Tr} p$	$\begin{aligned} & \text { Tyr } \\ & 175 \end{aligned}$	Gln
Gln	Lys	ro	$\begin{aligned} & \text { Gly G } \\ & 180 \end{aligned}$	Gln	$\text { ro } \mathrm{F}$	Pro L	Lys	$\begin{aligned} & \text { Leu } \\ & 185 \end{aligned}$	Leu	Ile	Tyr	Trp	$\begin{gathered} \text { Ala } \\ 190 \end{gathered}$	Ser	Thr
Arg	Glu.	$\begin{aligned} & \text { Ser } \\ & 195 \end{aligned}$	Gly	Val	Pro		$\begin{aligned} & \text { Arg } \\ & 200 \end{aligned}$	Phe	Ser	Gly	Ser	$\begin{aligned} & \text { Gly } \\ & 205 \end{aligned}$	Ser	Gly	Thr
Asp	Phe 210	Thr	Leu T	Thr	le	Ser S 215	Ser	Leu	Gln	Ala	$\begin{aligned} & \text { Glu } \\ & 220 \end{aligned}$	Asp	Val	Ala	Val
$\begin{aligned} & \text { TYr } \\ & 225 \end{aligned}$	TYr	Cys	1 n	n	$\begin{aligned} & \text { Pro } \\ & 230 \end{aligned}$	$y r$	er	yr	ro	$\begin{aligned} & \text { Leu } \\ & 235 \end{aligned}$	er	he	Gly	Ala	$\begin{aligned} & \text { Gly } \\ & 240 \end{aligned}$
Thr	Lys	Leu	$\begin{gathered} \text { Glu } \\ \\ 2 \end{gathered}$	$\begin{aligned} & \text { Leu } \\ & 245 \end{aligned}$	Lys	Glu	er	Lys	$\begin{aligned} & \text { Tyr } \\ & 250 \end{aligned}$	Gly	Pro	Pro	Cys	$\begin{aligned} & \text { Pro } \\ & 255 \end{aligned}$	Pro
Cys	Pro	Gly	$\begin{aligned} & \text { Gly } \\ & 260 \end{aligned}$	Gly	Ser	Ser	Gly	$\begin{aligned} & \text { Gly } \\ & 265 \end{aligned}$	Gly	Ser	Gly	Gly	$\begin{aligned} & \text { Gln } \\ & 270 \end{aligned}$	Pro	Arg
Glu	Pro	$\begin{aligned} & \text { Gln } \\ & 275 \end{aligned}$	Val T	Tyr	Thr	Leu	$\begin{aligned} & \text { Pro } \\ & 280 \end{aligned}$	Pro	Ser	Gln	Glu	$\begin{aligned} & \text { Glu } \\ & 285 \end{aligned}$	Met	Thr	Lys

Asn	$\begin{aligned} & \text { Gln } \\ & 290 \end{aligned}$	Val	Ser	Leu	Thr	$\begin{aligned} & \text { Cys } \\ & 295 \end{aligned}$	Leu	Val	Lys	Gly	$\begin{aligned} & \text { Phe } \\ & 300 \end{aligned}$	Tyr Pro	Se	Asp
Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn Asn	Tyr	Lys
305					310					315				320
Thr	Thr	Pro	Pro	$\begin{aligned} & \text { Val } \\ & 325 \end{aligned}$	Leu	Asp	Ser	Asp	$\begin{aligned} & \text { Gly } \\ & 330 \end{aligned}$	Ser	Phe	Phe Leu	$\begin{aligned} & \text { Tyr } \\ & 335 \end{aligned}$	Ser
Arg I	Leu	Thr	$\begin{aligned} & \text { Val } \\ & 340 \end{aligned}$	Asp	Lys	Ser	Arg	$\begin{aligned} & \text { Trp } \\ & 345 \end{aligned}$	Gln	Glu	Gly	$\begin{array}{r} \text { Asn } \begin{array}{r} \mathrm{Val} \\ 350 \end{array} \end{array}$		Ser
Cys	Ser	$\begin{aligned} & \text { Val } \\ & 355 \end{aligned}$	Met	His	Glu	Ala	$\begin{aligned} & \text { Leu } \\ & 360 \end{aligned}$	His	Asn	His	Tyr	$\begin{aligned} & \text { Thr Gln } \\ & 365 \end{aligned}$		Ser
Leu	$\begin{aligned} & \text { Ser } \\ & 370 \end{aligned}$	Leu	Ser	Leu	Gly	$\begin{aligned} & \text { Lys } \\ & 375 \end{aligned}$	Met	Ala		Ile	$\begin{aligned} & \mathrm{Val} \\ & 380 \end{aligned}$	Leu Gly		Val
$\begin{aligned} & \text { Ala } \\ & 385 \end{aligned}$	Gly	Leu	Leu	Leu	Phe 390	Ile	Gly	Leu	Gly	$\begin{aligned} & \text { Ile } \\ & 395 \end{aligned}$	Phe	Phe Lys	Arg	$\begin{aligned} & \text { Gly } \\ & 400 \end{aligned}$
Arg	Lys	Lys	Leu	$\begin{aligned} & \text { Leu } \\ & 405 \end{aligned}$	Tyr	Ile	Phe	Lys	$\begin{aligned} & \text { Gln } \\ & 410 \end{aligned}$	Pro	Phe	Met Arg	$\begin{aligned} & \text { Pro } \\ & 415 \end{aligned}$	Val
Gln	Thr	Thr	$\begin{aligned} & \mathrm{Gln} \\ & 420 \end{aligned}$	Glu	Glu	Asp	Gly	$\begin{aligned} & \text { Cys } \\ & 425 \end{aligned}$	Ser	Cys	Arg	$\begin{array}{r} \text { Phe Pro } \\ 430 \end{array}$	Glu	Glu
Glu	Glu	$\begin{aligned} & \mathrm{Gly} \\ & 435 \end{aligned}$	Gly	Cys	Glu	Leu	$\begin{aligned} & \text { Gly } \\ & 440 \end{aligned}$	Gly	Gly	Arg	Val	Lys Phe 445		Arg
Ser	$\begin{aligned} & \text { Ala } \\ & 450 \end{aligned}$	Asp	Ala	Pro	Ala	$\begin{aligned} & \text { Tyr } \\ & 455 \end{aligned}$	Gln	Gln	Gly	Gln	$\begin{aligned} & \text { Asn } \\ & 460 \end{aligned}$	Gln Leu		Asn
$\begin{aligned} & \text { Glu } \\ & 465 \end{aligned}$	Leu.	Asn	Leu	Gly	$\begin{aligned} & \text { Arg } \\ & 470 \end{aligned}$	Arg	Glu	Glu	Tyr	$\begin{aligned} & \text { Asp } \\ & 475 \end{aligned}$	Val	Leu Asp	Lys	$\begin{aligned} & \text { Arg } \\ & 480 \end{aligned}$
Arg	Gly	Arg	Asp	$\begin{aligned} & \text { Pro } \\ & 485 \end{aligned}$	Glu	Met	Gly	Gly	$\begin{aligned} & \text { Lys } \\ & 490 \end{aligned}$	Pro	Arg	Arg Lys	$\begin{aligned} & \text { Asn } \\ & 495 \end{aligned}$	Pro
Gln	Glu	Gly	Leu 500	Tyr	Asn	Glu	Leu	$\begin{aligned} & \text { Gln } \\ & 505 \end{aligned}$	Lys	Asp	Lys	$\text { Met Ala } \begin{array}{r} \text { 510 } \end{array}$	Glu	Ala
Tyr	Ser	$\begin{aligned} & \text { Glu } \\ & 515 \end{aligned}$	Ile	Gly	Met	Lys	$\begin{aligned} & \text { Gly } \\ & 520 \end{aligned}$	Glu	Arg	Arg	Arg	$\begin{aligned} & \text { Gly Lys } \\ & 525 \end{aligned}$	Gly	His
Asp	$\begin{aligned} & \text { Gly } \\ & 530 \end{aligned}$	Leu	Tyr	Gln	Gly	$\begin{aligned} & \text { Leu } \\ & 535 \end{aligned}$	Ser	Thr	Ala	Thr	$\begin{aligned} & \text { Lys } \\ & 540 \end{aligned}$	Asp Thr	Tyr	Asp
$\begin{gathered} \text { Ala } \\ 545 \end{gathered}$	Leu	His	Met	Gln	$\begin{aligned} & \text { Ala } \\ & 550 \end{aligned}$	Leu	Pro Pr	Pro	Arg					

$<210>$ SEQ ID NO 39
$<211>$ LENGTH: 119
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 39

Thr Arg Ser Leu Asn Met Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr | 100 |
| :--- |
| 105 |

Val Ser Ser Gly Ser Thr Ser

| 115 |
| ---: | :--- |

$<210>$ SEQ ID NO 40
$<211>$ LENGTH: 115
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 40

$<210>$ SEQ ID NO 41
$<211>$ LENGTH: 22
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 41
Met Leu Leu Leu Val Thr Ser Leu Leu Leu Cys Glu Leu Pro His Pro
1

A
Ala Phe Leu Leu Ile Pro
10

What is claimed is:

1. A nucleic acid molecule comprising a nucleotide sequence encoding a chimeric antigen receptor (CAR), wherein the chimeric antigen receptor comprises: an scFv targeting Tag-72, a spacer, a transmembrane domain, a CD28 or 41-BB co-stimulatory domain, and a CD3 signaling domain.
2. The nucleic acid molecule of claim 1 , wherein the transmembrane domain is selected from: a CD4 transmembrane domain or variant thereof having 1-5 amino acid modifications, a CD8 transmembrane domain or variant thereof having 1-5 amino acid modifications, a CD28 transmembrane domain or a variant thereof having 1-5 amino acid modifications.
3. The nucleic acid molecule of claim 1, wherein the TAG72 scFV is selected from IDEC, V15 and V59 V15.
4. The nucleic acid molecule of claim 1, wherein the transmembrane domain is a CD4 transmembrane domain or variant thereof having 1-5 amino acid modifications.
5. The nucleic acid molecule of claim 1, wherein the transmembrane domain is a CD4 transmembrane domain.
6. The nucleic acid molecule of claim $\mathbf{1}$, wherein the chimeric antigen receptor comprises a transmembrane domain selected from: a CD4 transmembrane domain or variant thereof having 1-2 amino acid modifications, a CD8 transmembrane domain or variant thereof having 1-2 amino acid modifications, a CD28 transmembrane domain or a variant thereof having 1-2 amino acid modifications,
7. The nucleic acid molecule of claim 1, wherein the spacer region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2-12 or a variant thereof having 1-5 amino acid modifications.
$\mathbf{8}$. The nucleic acid molecule of claim $\mathbf{1}$, wherein the spacer comprises an IgG hinge region.
8. The nucleic acid molecule of claim 1 , wherein the spacer comprises 10-50 amino acids.
9. The nucleic acid molecule of claim 1 , wherein the $4-1 \mathrm{BB}$ costimulatory domain comprises the amino acid sequence of SEQ ID NO: 24 or a variant thereof having 1-5 amino acid modifications.
10. The nucleic acid molecule of claim 1, wherein the CD3 signaling domain comprises the amino acid sequence of SEQ ID NO:21.
11. The nucleic acid molecule of claim 1 , wherein a linker of 3 to 15 amino acids is located between the $4-1 \mathrm{BB}$ costimulatory domain and the CD3 signaling domain or variant thereof
12. The nucleic acid molecule of claim 1 , wherein the CAR comprises the amino acid sequence of SEQ ID NO: 29 or a variant thereof having 1-5 amino acid modifications.
13. The nucleic acid molecule of claim 7 , wherein the scFv comprises the amino acid sequence of SEQ ID NO:1, 31 or 32.
14. An expression vector comprising the nucleic acid molecule of claim 1.
15. A viral vector comprising the nucleic acid molecule of claim 1,
16. A population of human T cells transduced by a vector comprising the nucleic acid molecule of claim 1.
17. The population of human T cells of claim 17, wherein the population of human T cells comprise central memory T cells.
18. A method of treating solid tumor in a patient comprising administering a population of autologous or allogeneic human T cells transduced by a vector comprising the nucleic acid molecule of claim $\mathbf{1}$, wherein the solid tumor comprises cells expressing Tag-72.
19. The method of claim 19 , wherein the chimeric antigen receptor is administered locally or systemically.
20. The method of claim 1, wherein the TAG72-expressing cells are ovarian cancer cells.
21. The method of claim 19, wherein the chimeric antigen receptor is administered by single or repeat dosing.

[^0]: MLLLVTSLLLCELPHPAFLLIPQVQLVQSGAEVVKPGASVKISCKASGYTFTDHAIHWVKQNPG QRLEWIGYFSPGNDDFKYNERFKGKATLTADTSASTAYVELSSLRSEDTAVYFCTRSLNMAYWG QGTLVTVSSGSTSGGGSGGGSGGGGSSDIVMSOSPDSLAVSLGERVTLNCKSSQSLLYSGNOKN YIAWYQQKPGQSPKLLIYWASARESGVPDRFSGSGSGGDFTLTISSVQAEDVAVYYCQQYYSYP LTFGAGTKLELKESKYGPPCPPCPGGGSSGGGSGGQPREPOVYTIPPSSQEEMTKNOVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHN HYTOKSLSISLGKMALIVLGGVAGLILEIGLGIFFKRGRKKLLYIEKOP FMRPVOTTQEEDGCS CRFPEEEEGGCELGGGRVKFSRSADAPAYOOGONQLYNELNLGRREEYDVLDKRRGRDPEMGGK PRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR LEGGGEGRGSLLTCGDVEENPGPRMPPPRLIFFLLFLTPMEVRPEEPLVVKVEEGDNAVLQCLK GTSDGPTQQLTWSRESPLKPFLKLSLGLPGLGIHMRPLAIWLFI FNVSQQMGGFYLCQPGPPSE KAWQPGWTVNVEGSGELFRWNVSDLGGLGCGLKNRSSEGPSSPSGKLMSPKLYVWAKDRPEIWE GEPPCVPPRDSLNQSLSQDLTMAPGSTLWLSCGVPPDSVSRGPLSWTHVHPKGPKSLLSLLELKD DRPARDMWVMETGLLLPRATAQDAGKYYCHRGNLTMSFHLEITARPVLWHWLLRTGGWKVSAVT LAYLIFCLCSLVGILHLQRALVLRRKR

