

# Inhibitors of MALT1 for the Treatment of Lymphomas



| Therapeutic Area | Oncology       | Indications       | Diffuse Large B-Cell Lymphoma |
|------------------|----------------|-------------------|-------------------------------|
| Modality         | Small Molecule | Development Stage | Hit to Lead/Lead Optimization |

#### Overview

#### Background

- Mucosa-associated lymphoid tissue lymphoma translocation
   1 (MALT1) is a critical mediator of B-Cell receptor signaling
- MALT1 mediates NF-kB signaling by functioning as a scaffold protein and protease to trigger downstream signals
- 70% of patients with activated B cell-like (ABC) DLBCL show a gain or amplification of MALT1
- The protease activity of MALT1 has been shown to be essential for the survival of ABC DLBCL cell lines that rely on constitutive NF-kB signaling
- Unmet Need: Selective MALT1 inhibitors as lead therapeutic candidates for ABC DLBCL

#### **Technology Advantages**

- MALT1's pivotal role in ABC DLBCL and its potential as a therapeutic target drove the development of effective substrate-mimetic compounds, suppressing tumor cells in vitro and in vivo.
- Reduction in serum IL-10 levels correlated with drug pharmacokinetics and MALT1 inhibition, suggesting a potential pharmacodynamic biomarker. MALT1 inhibition also revealed insights into JAK/STAT signaling and immune response modulation. Both covalent and allosteric inhibitors showed promising potency and selectivity for further development.

# Key Data

#### Three promising approaches for therapeutic MALT1 inhibition

A



В



C



#### Peptidomimetic Approach

- Compound 3 is a substratemimetic peptidic covalent irreversible inhibitor of MALT1
- Compound 3 suppresses the growth of ABC
   DLBCL tumors in vivo

#### Peptidomimetic Approach

- Lead compound JH-XI-26 recruits an
   E3 ubiquitin ligase to target MALT1 for degradation
- JH-XI-26 decreases MALT1 levels and inhibits MALT1 scaffolding activity

E

#### Allosteric Approach

- DS-01-121-02 and JH-XII-135 are 2 series of allosteric inhibitors (quinolines and thiazolopyridines)
- Significant effects on a PD marker of MALT1 inhibition upon oral dosing in mice

# Inhibition of ABC DLBCL tumor growth in vivo



- Tumor growth curve for xenografts of the ABC DLBCL cell lines TMD8 (from NOD-SCID mice; n = 9/group) and OCI-Ly3 (from NSG mice; n = 10/group) following compound 3 treatment.
- Mice were treated with 30 mg/kg b.i.d. compound 3 or the same dose of vehicle for 16 or 24 consecutive days, respectively.



- Bioluminescence signal intensity quantification.
- Data represent the mean  $\pm$  SEM. \*P  $\leq$  0.05, \*\*P  $\leq$  0.01, \*\*\*P< 0.001, and P = 0.02, by unpaired, 2-tailed Student's t test.

### IP Status & Publication(s)

#### **Intellectual Property**

# Patent Number US 9592223 B2 (2017.03.14) US 10711036 B2 (2020.07.14)

US 10711036 B2 (2020.07.14)
US 10689366 B2 (2020.06.23)
US 11248007 B2 (2022.02.15)

#### Patent Family

PCT, US, EP, JP

PCT, KR, US, EP, JP, CN, CA, AU
PCT, US, EP, JP
PCT, US, EP, JP

## Publication(s)

- Hatcher at al. (2019) Peptide-based covalent inhibitors of MALT1 paracaspase. Bioorganic & Medicinal Chemistry Letters
- Scott at al. (2019) Quinoline and thiazolopyridine allosteric inhibitors of MALT1. Bioorganic & Medicinal Chemistry Letters
- Fontan at al. (2018) Specific covalent inhibition of MALT1 paracaspase suppresses B cell lymphoma growth. Journal of Clinical Investigation