

### Anti-ART1 Monoclonal Antibody for Improved Anticancer Immunotherapy

#### Lead Inventors:

#### Brendon M. Stiles, M.D.

Professor and Chief of Thoracic Surgery & Surgical Oncology, Albert Einstein College of Medicine

Former Associate Professor of Cardiothoracic Surgery, Weill Cornell Medical College

#### Timothy E. McGraw, Ph.D.

Professor of Biochemistry in Cardiothoracic Surgery, Cardiothoracic Surgery, Weill Cornell Medical College Professor of Biochemistry, Biochemistry, Weill Cornell Medical College



#### **Business Development Contact:**

Brian Kelly Director, Technology Licensing

(646) 962-7041 bjk44@cornell.edu

## ICIs are the gold standard for NSCLC and other solid tumors, but few patients achieve a durable response



#### **Background & Unmet Need**

- In the KEYNOTE-189 trial, treatment-naïve NSCLC patients who received pembrolizumab (anti-PD-1) in addition to standard chemotherapy achieved a 48% objective response, compared to 19% in patients receiving chemotherapy alone
- However, only 0.5% of patients in the KEYNOTE-189 trial achieved a complete response, with only 34% of pembrolizumab-treated patients alive and progression-free at 12 months
- **Unmet Need:** While ICIs have improved outcomes for NSCLC, there remains a persistent unmet need for additional therapies that synergize with ICIs to prolong survival and deliver a durable response

# ART1 is an extracellular enzyme that modifies the ion channel P2X7R, causing constitutive opening and apoptosis



Adenosine 5-diphosphate (ADP)-ribosyltransferase-1 (ART1) is an enzyme with extracellular activity which catalyzes the transfer of ADP-ribose onto proteins in the local environment

A well-known target of ART1 is the P2X7 receptor (P2X7R), an ATP-gated ion channel which is essential for inflammatory responses, anti-tumor immunity, and immune memory

In the tumor microenvironment, cytosolic nicotinamide adenine dinucleotide (NAD<sup>+</sup>) is released extracellularly during cell stress, where it can be used by ART1 to catalyze the ribosylation of P2X7R

Mono-ADP-ribosylation of P2X7R results in constitutive activation, causing uncontrolled Ca<sup>2+</sup> release and eventual apoptosis in a process termed NAD-induced cell death (NICD)

# High ART1 expression is observed across numerous cancer types





# ART1 expression is associated with a reduction in CD8<sup>+</sup> T cells and poor prognosis



# 22C12 is a highly potent and specific anti-ART1 monoclonal antibody developed in collaboration with the Tri-I TDI



### **Weill Cornell Medicine**

HuLC: Humanized light chain. <sup>1</sup> 22C12 was found to have a fully human heavy chain variable region, but a murine light chain. Engineering of the light chain generated a fully humanized antibody. Tri-I TDI: Tri-Institutional Therapeutics Discovery Institute.

## Blockade of ART1 with 22C12 reduces tumor burden in the LLC1 orthotopic lung tumor model



## ART1 inhibition by 22C12 reduces tumor burden by increasing tumor infiltration of CD8+ T cells



Mechanistic data suggests that 22C12 may be an ideal combination partner for ICIs (e.g., PD-(L)1, CTLA4)

#### **Weill Cornell Medicine**

ICI: Immune Checkpoint Inhibitor. Wennerberg et al., Sci Trans Med., 2022.

### ART1 overexpression in human lung tumors correlates with lower frequencies of P2X7R<sup>+</sup> CD8<sup>+</sup> T cells



### 22C12 demonstrated further anti-tumor effects in a mouse model of melanoma



B16 Scr Cntrl Isotype

- In addition to NSCLC, human melanomas are shown to strongly express ART1 in the Human Protein Atlas
- Administration of mAb 22C12 significantly reduced the growth of subcutaneous B16 flank tumors (\*\*\*\*P ≤ 0.0001) compared to isotype controls, similar to that seen with ART1 knock-out
- Additional cancers with high ART1 expression include colorectal cancer and glioblastoma, suggesting the possibility of a multiple indication anti-ART1 drug franchise



## Utilization of an ART1 mAb in PD-(L)1-refractory patients may represent a ~56 K addressable patient population

Epidemiology: Incidence of Advanced Cancer per Year (K)



| Indication                    | 2022 Overall Incidence <sup>1</sup> | Advanced<br>Stage Rate <sup>2</sup> | PD-(L)1 Treatment Rate <sup>3</sup> | Treatment<br>Resistance Rate⁴ | Incident Addressable<br>Patients |
|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------|----------------------------------|
| Non-Small Cell Lung<br>Cancer | ~197 K                              | ~70%                                | ~44%                                | ~52%                          | ~32 K                            |
| Colorectal Cancer             | ~151 K                              | ~55%                                | ~44%                                | ~56%                          | ~20 K                            |
| Melanoma                      | ~100 K                              | ~14%                                | ~44%                                | ~66%                          | ~4 K                             |



<sup>1</sup> ACS Cancer Facts & Figures 2022 <sup>2</sup> Estimations based on SEER 2000-2019 Data on Regional and Distant tumor sites. <sup>3</sup> Estimation based on overall cancer patients predicted to be eligible for PD-(L)1 Treatment, Haslam et al. *JAMA Netw Open.* 2019. <sup>4</sup> Estimation based on Overall Response Rate (ORR) reported in Keytruda Prescribing Information.

# Advanced, PD-(L)1 resistant NSCLC/CRC/Melanoma patients may represent a ~\$6.7 B U.S. market opportunity



# Research related to ART1 and associated pathways is limited, suggesting ART1i represents an innovative MOA



#### **Competitive Landscape Summary**

- ART1 is a novel target there are currently no known candidates in development targeting ART1 or its associated pathway
- Mono-PARPS (e.g., PARP7i / PARP14i) also target NAD+-utilizing enzymes but do not act directly on the ART1 pathway
- Candidates targeting P2X7R (the ligand-gated channel downstream of ART1) target a non-functional form and act via a separate MOA from ART1

### **Weill Cornell Medicine**

# The ART1 program is supported by a robust IP strategy and several peer-reviewed publications

#### **IP Status & Publications**

- Intellectual Property:
  - PCT Patent Application (PCT/US23/62151): "Targeting ART1 for Cancer Immunotherapy". Priority date: Feb 7, 2022.
  - Cornell Docket: D-9386
- Publications:
  - <u>Wennerberg et al.</u> "The ART of tumor immune escape." Oncoimmunology. 2022.
  - <u>Wennerberg et al</u>. "Expression of the mono-ADP-ribosyltransferase ART1 by tumor cells mediates immune resistance in non– small cell lung cancer." Science Translational Medicine. 2022.
  - <u>Chen et al.</u> "ART1, an extracellular ADP-ribosyltransferase, is over-expressed in non-small cell lung cancer and facilitates cancer cell survival by immune-mediated mechanisms" *Journal of Thoracic Oncology.* 2016.
  - The Tri-I TDI has produced an extensive preclinical data package that is available under CDA
- Press Releases:
  - "<u>A Potential New Target for Cancer Immunotherapies</u>" *Weill Cornell Medicine Newsroom.* Published Mar 16, 2022.
  - "Enzyme Could be New Target for Immunotherapies" Cornell Chronical. Published Mar 17, 2022.

WCM is seeking partners to perform additional IND-enabling studies and advance 22C12 into the clinic

**Development Status & Next Steps** 

#### **Development Achievements**

 $\checkmark$ 

Development of 22C12 using the AlivaMab mouse



*In vitro* validation of 22C12 affinity for ART1 and blockade of ART1 activity

 $\checkmark$ 

Demonstration of activity against lung cancer and melanoma models *in vivo* in mice

 $\checkmark$ 

Confirmation of P2X7R downregulation, ART1 upregulation in human NSCLC

#### **Next Steps**



License anti-ART1 mAbs to an established company with the capabilities and resources to drive clinical development

### **Summary of Inventors**



Brendon M. Stiles, M.D. Professor and Chief of Thoracic Surgery & Surgical Oncology, Albert Einstein College of Medicine

Former Associate Professor of Cardiothoracic Surgery, Weill Cornell Medical College



#### **Timothy E. McGraw, Ph.D.** Professor of Biochemistry in Cardiothoracic Surgery, Cardiothoracic Surgery, Weill Cornell Medical College

Professor of Biochemistry, Biochemistry, Weill Cornell Medical College

