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Pompe disease cells

Cas9-ribonucleoprotein-based genome editors can correct two
distinct mutant alleles within a single human cell precisely

» Pompe disease is a rare autosomal recessive genetic disease
(mutations from both parent carriers have to be inherited by the
offspring to see symptoms) that typically affects children during
development but can also present as an adult. Pompe disease is
characterized by a lack of functional acid alpha-glucosidase (GAA)
enzyme. The lack of GAA leads to a glycogen buildup in cells
throughout the body, which results in muscular weakness and
wasting. Newborns in which the disease is misdiagnosed rarely
survive past one year.

+  UW-Madison researchers have developed a complexed CRISPR-Cas
system (STmplex; P170309US01) for treating patients with inherited
autosomal recessive conditions. The work focuses on Pompe disease.
The inventors identified new guide RNA target sites and repair
templates that could be used for gene therapy strategies and cell
therapeutic strategies.

+ The inventors demonstrated successful editing of fibroblast and
induced pluripotent stem cells from three Pompe patients at UW
Hospital having heterozygous mutations. Using their complexed
CRISPR-Cas technology markedly increased editing precision (18.4-
fold) in two different cell lines (HEK and hPSC), easing concerns about
off-target effects.

US20200140858A1

Design of efficacious somatic cell genome editing strategies for
recessive and polygenic diseases. Nat Commun. (2020)

Krishanu Saha, Jared Matthew Carlson-Stevermer, Lucille Katherine
Kohlenberg

P Highlights

+ Paired with complexed CRISPR-Cas (STmplex), precise-to-imprecise editing ratios were

improved 18.4-fold.

+ Intervention utilizing multiple gene correction within the same human cell is possible.

+ Rapid improvements in glycogen processing is observed (as short as 24 hours).


https://www.warf.org/technologies/summary/P170309US01.cmsx
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A combined in vitro and in silico strategy to evaluate the efficacy of

different gene correction therapeutic strategies
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a Schematic indicating the modeling approach in which samples from patients are collected ex vivo are then genome-edited
in vitro. Genotypes and phenotype outcomes from the in vitro studies are inputs for an in silico model that simulates the
delivery of the therapeutic in vivo as well as tissue morphogenesis. The results of the in silico model can ultimately guide
dosing and formulation decisions. b Editing strategy for gene correction of Pompe-diseased induced pluripotent stem cells
(iPSCs). Pompe disease is caused by two defective copies of the acid-a-glucosidase (GAA) gene. This enzyme is responsible
for breakdown of glycogen within lysosomes inside cells. Without GAA, glycogen build up can cause downstream health
issues. After correction, GAA expresses a functional protein leading to a reduction in glycogen. The schematic indicates the
editing locations within GAA locus and CRISPR gene correction strategy. In the Pompe patient-derived line, cells harbor
compound heterozygous mutations in GAA. Allele one, a1, contains a point mutation that causes a premature stop codon
(GAA:c.[1441=2237G>A]) while allele two, a2, carries a one base pair deletion (GAA:c.[1441delT;2237=]). For the CRISPR
gene correction strategy, single guide RNAs (sgRNAs; the predicted DNA double-strand break by SpyCas9 is denoted by the
arrowhead) were designed to be specific to only the diseased allele by containing the mutant bases (red) within the seed
region. Single-stranded oligonucleotides (ssODNs) used for genomic repair contained the wildtype sequence at the mutation
site (blue) as well as a silent mutation “wobble” to remove the PAM site (green) to prevent re-cutting of the corrected allele
while preserving the amino acid sequence of GAA.
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Gene correction of two distinct mutant alleles
within a single human cell
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a ArrayEdit-based isolation of iPSC clones corrected at either or both loci. CRISPR STmplex design for the gene correction
of compound heterozygous mutations. STmplexes targeting 1441delT mutant were labeled with an AlexaFluor488
compound while STmplexes targeting the 2237G>A mutation were labeled with an AlexaFluor647. These ribonucleoprotein
genome editors were mixed prior to transfecting into cells and subsequently plated on the ArrayEdit platform to conduct
high-content analysis (see Supplementary Fig. 1). b Left: LysoSensor quantification per uFeature of two mock transfections
after 7 days of growth. Normal control hPSCs were significantly more intense than unedited, Pompe diseased iPSCs on
ArrayEdit. Bottom right: the growth rate of unedited and control hPSCs following a mock transfection to establish a
baseline for growth. Growth rates were calculated by measuring the per-day change in the number of cells of the p
Feature. Top right: LysoSensor intensity was plotted against growth rate per p Feature to identify edited colonies. Dashed
lines indicate regions of interest. (n = 145 independent cell lines). ¢ Magnification of quadrant Il from (b). M Features in
this region were selected for genomic analysis to isolate edited clones. (n = 17 independent cell lines). d Sanger
sequencing traces of corrected cell lines. The unedited line contains mutations at both alleles: 1441delT mutation causes a
breakdown of sequence trace, whereas a single point mutation demonstrates a heterozygosity 2237G>A locus. SpyCas9 cut
site is denoted by a dotted line. e Karyotypes of all isolated gene-corrected lines as well as unedited cells. No
abnormalities were detected at a band resolution of 500. f Immunocytochemistry of pluripotency markers in gene-
corrected lines. All lines were positive for pluripotency markers NANOG and TRA-1-60 (scale bar: 100 pm). g Schematic of
long PCR covering both SpyCas9 cut sites. Arrows denote primers. The expected PCR amplicon is 7959 bp in length. h Gel
analysis of long-range PCR described in (g) in each isolated cell line. No significant deviances from the expected length
were detected, and no other notable bands were observed. WA09 control cells are hPSCs.
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Derivation, empirical training, and validation of in silico gene therapy
efficacy model for Pompe disease correction in a developing infant
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a Schematic showing enzymatic cross-correction of somatic tissues by injected rhGAA (enzyme replacement therapy, ERT).
For a given developing liver of a patient, progenitor cells proliferate and can asymmetrically divide into mature cells.
Injected rhGAA is absorbed by the liver as well as striated muscle tissue (both heart and skeletal muscle). b Percentage of
normal cardiac tissue within a heart of a Pompe diseased infant after one year of biweekly ERT at 20 mg/kg. Percentages
of normal skeletal muscle tissue and hepatocytes are in Supplementary Fig. 9. ¢ Schematic for in silico gene editing model
for previously published precise correction of a single base pair in mouse disease models, d Flowchart for training and
validating the GETEM model using previously published studies of in vivo somatic cell genome editing of a mouse liver by
intravenous injection. e (top) Absolute change of edited cells over time predicted by the GETEM for the studies utilized in
(d). For studies that employed selection in the liver, arrows indicate the time at which the selective pressure favoring
edited cells was applied (for Fah—/— models, this indicates the removal of NTBC supplementation in the diet; and, for Otc
editing, this indicates the induction of a high protein diet.). f Validation of the model using additional published editing
strategies. Arrows on days 21 and 24 indicate removal of selection pressure on the treated mice as per published
experimental protocol. Arrow on day 2 in the mRNA LNP indicates redosing of the LNP. (n represents biological replicates
as previously reported in the literature, mean +* s.d). g Percentage of total sequencing reads from primary fibroblasts of
Pompe diseased patients that were treated with STmplexes targeting W746X D645N or R660H GAA mutations. Results
indicate gene correction and imprecise editing for three different mutations. h Percentage of edited alleles that are
precisely edited in (g).
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In vivo somatic cell gene correction strategies involve tradeoffs
between efficiency, precision, progenitor affinity, and editor stability
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between efficiency, precision, progenitor affinity, and editor stability

a In silico Gene Therapy Efficacy Model (GETEM) for Pompe disease correction in a developing infant. Schematic showing
gene correction for two diseased alleles in a liver indicating correction of alleles, a1 and a2, by genome editors 1 and 2 to
form gene-corrected cells capable of secreting GAA to enzymatically correct other unedited cells. Secreted GAA is also
absorbed by striated muscle tissue (both heart and skeletal muscle). b Percentage of normal cardiac tissue within a
developing heart of a Pompe diseased infant after the administration of six doses of genome editors at 23.9 mg/kg. c Cell
numbers indicating growth of diseased, normal, and precisely-edited cells in the gene-edited liver depot after the
administration of 6 doses of genome editors at 23.9 mg/kg. d Distribution of genotypes in the gene-edited liver depot
after the administration of 6 doses of genome editors at 23.9 mg/kg. e Sensitivity analysis of the model indicating the
absolute values of parameter sensitivity of tissue morphogenesis factors, genome editor factors, and cell/tissue biology
intrinsic factors. f Tradeoff between genome editor efficiency and genome editor stability, focusing on the percentage of
enzymatically cross-corrected heart tissue. Heatmap indicates that lower efficiency editors could be efficacious if the
extracellular editor stability increases. g Tradeoff between genome editor efficiency and precision, focusing on the
percentage of enzymatically cross-corrected heart tissue. Heatmap indicates that lower efficiency editors can be
efficacious if higher precision editors are used. h Tradeoff between increasing genome editor dose and progenitor affinity,
focusing on the percentage of enzymatically cross-corrected heart tissue. i Using GETEM, heatmap indicating tradeoff in
heart muscle correction in the developing infant between the degradation rates of GAA in the serum and cellular GAA,
indicating that stabilization of GAA in the serum can improve clinical outcome (gray arrowhead indicates pre-stabilization,
black arrowhead indicates post-stabilization).
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Durable gene-corrected cell therapy for Pompe disease requires

persistent proliferative cells
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Durable gene-corrected cell therapy for Pompe disease requires

persistent proliferative cells

a Plots showing the degree of phenotypically normal cardiac tissue when either 10 billion non-proliferative single- or
double-corrected cells are dosed or 0.1 billion proliferative single- or double-corrected cells are dosed. For these plots, the
GAA production for double-corrected cells is 150% excess that of single corrected cells for four different half-lives of
dosed cells. For long-lasting correction, proliferative progenitor cells need to have a half-life exceeding 100 days. b
Heatmap showing the proliferative cell dose (assuming double-corrected cells with 75% excess GAA production compared
to single-corrected cells) against the half-life of dosed cells. If the dosed cells have a half-life similar to endogenous
hepatocytes, a 75 million cell dose is sufficient for matching ERT. ¢ Heatmap showing the proliferative cell dose (assuming
that the dosed cells have 250-day half-life) against the GAA production rate of dosed cells, demonstrating that dose has a
higher effect on therapeutic efficacy than GAA production gained from double correction. d Heatmap showing that the
GAA production against the half-life of the dosed cells (assuming that 250 million cells were dosed), indicating that the
half-life of the dosed cells has a higher effect on therapeutic efficacy than the GAA production gained from double
correction. e Sensitivity analysis for model parameters relevant to cell therapy. In addition to growth and differentiation
rates of the transplanted cells, outcomes are highly sensitive to the proliferative cell half-life, cell dose and excess GAA
produced by double gene correction. These later parameters, relevant to the design of therapy with autologous gene-
corrected cells, are bolded.
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