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Abstract

Autoimmune diseases affect 10% of the world’s population, and 1 in 200 people worldwide suffer 

from either multiple sclerosis (MS) or type 1 diabetes (T1D). While the targeted organ systems are 

different, MS and T1D share similarities in terms of autoreactive immune cells playing a critical 

role in pathogenesis. Both diseases can be managed only symptomatically without curative 

remission, and treatment options are limited and non-specific. Most current therapies cause some 

degree of systemic immune suppression, leaving the patients susceptible to opportunistic 

infections and other complications. Thus, there is considerable interest in the development of 

immunotherapies not associated with generalized immune suppression for these diseases. In this 

review we present current and preclinical strategies for MS and T1D treatment, emphasizing those 

aimed to modulate the immune response, including the most recent strategies for tolerance 

induction. A central focus is on the emerging approaches using nano- and microparticle (NMP) 

platforms, their evolution as immunotherapeutic carriers, including those incorporating specific 

antigens to induce tolerance and reduce unwanted generalized immune suppression.
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Multiple Sclerosis Burden, Pathology and Clinical Approaches

MS is an autoimmune disease that affects the central nervous system (CNS), has onset 

typically in the early 30s, and a higher prevalence in women than men [1–3]. Approximately 
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1 in 250 people are diagnosed with MS in the United States alone, and there has been a 5-

fold increase in the prevalence of MS since 1976 [4]. According to the National Multiple 

Sclerosis Society currently nearly one million people are living with MS in the United States 

and 2.3 million in the world. MS pathology consists of autoimmune-mediated demyelination 

whereby immune cells destroy the myelin sheath that surrounds axons and kill myelin 

producing oligodendrocytes [5, 6]. This leads to clinical symptoms including numbness, 

tingling, fatigue, and eventually paralysis [7]. Relapsing-remitting multiple sclerosis 

(RRMS), where clinical disease manifests as a series of relapses and remissions with 

worsening from baseline subsequent to each relapse, is the most common form of MS, 

which is diagnosed in over 85% of patients. In primary progressive MS (PPMS), symptoms 

worsen rapidly following disease onset [7]. The pathogenesis of MS has been partially 

elucidated. Initially, the blood brain barrier becomes permeable, which is a step involved in 

immune cell infiltration into the CNS as blood brain barrier permeability is associated with 

increased trans-endothelial migration of activated immune cells [8]. Although the 

mechanism leading to permeability is not clear, inflammatory cytokines produced by CNS 

resident cells are associated with this process through the disruption of cell-cell junctions 

[9]. To this end, the chemokine receptors CCR2, CCR5 and CCR6 have been linked to the 

migration of immune cells into the CNS [7]. This infiltration of immune cells results in 

white matter lesions, that expand with each relapse [7]. It is known that CNS destruction is 

mediated by proinflammatory T cells, macrophages, activated microglia and astrocytes, with 

B cells playing a role as well [5]. Resident CNS astrocytes and microglia contribute to 

disease progression by the production of inflammatory cytokines and neurotoxic factors. The 

phenotype of infiltrating immune cells varies based on how far the disease has progressed, 

with higher levels of T cells and B cells early in disease and “a smoldering inflammation”, 

resulting in the development of tertiary lymphoid structures with activated microglia/

macrophages in the CNS during chronic stages [7]. In the CNS microglia, recruited 

macrophages, dendritic cells (DCs) and B cells present autoantigen to T cells [10, 11]. The 

CD4+ T cells are typically T helper 17 (Th17) and Th1, and react to autoantigens that are 

part of the CNS such as myelin oligodendrocyte glycoprotein (MOG) and myelin basic 

protein (MBP). Th17 cells express the transcription factor RORγt and produce the 

proinflammatory cytokine interleukin-17a (IL-17a), while Th1 cells express Tbet and 

produce the proinflammatory cytokine IFN-γ. Numerous T helper cells express both RORγt 

and Tbet and produce IL17 and IFN-γ as well as GM-CSF [12–17]. T helper cell toxicity 

can be direct, through the release of neurotoxic cytokines or indirect by activation of 

macrophages [7]. CD8 T cells can secrete inflammatory cytokines such as GMCSF or 

directly kill oligodendrocytes through a granzyme b mediated mechanism [7]. The Th1 and 

Th17 response is hypothesized to be the driving force behind the preclinical mouse model of 

MS, experimental autoimmune encephalomyelitis (EAE), in a manner consistent with 

human MS [17, 18]. This is corroborated by the fact that defects in Th1 and Th17 cells 

prevent EAE onset [15, 16].

Therapeutic options for MS are minimal and there is no cure. Corticosteroids, such as 

methylprednisolone, can provide transient relief of inflammation during relapse. However, 

broad immunosuppressants are not viable for long-term management due to poor 

tolerability, ineffective disease control and susceptibility to opportunistic infections [19–22]. 
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Other approaches seek to limit trafficking of immune cells into the CNS, either by 

decreasing blood brain barrier trafficking or preventing egress from secondary lymphoid 

organs [20, 23–26]. Treatment with interferon β, which has known immunoregulatory 

properties, can be given alone or in conjunction with glatiramer acetate, a random mixture of 

synthetic peptides highly represented in MBP. Interferon-β treatment results in decreased 

lymphocyte trafficking across the blood brain barrier and glatiramer acetate binds to MHC 

II, competing with presentation of actual myelin antigens [23, 27, 28]. However, response 

rate is low, with only a 30–50% reduction in relapse rate [24, 29]. Natalizumab, a 

monoclonal antibody targeting integrin α4 is another treatment which impedes leukocyte 

trafficking into the CNS and resulted in one third the number of relapsed compared to 

placebo control and 20% relapse rate overall [25, 30]. Conversely, Fingolimod (FTY720), a 

sphingosine-1-phosphate receptor inhibitor, blocks egress from lymph nodes, stopping 

autoreactive cells from trafficking to the CNS and treatment dropped relapse rate to 15% 

over a two year study [26, 31]. However, preventing trafficking with Natalizumab or 

Fingolimod may cause progressive multifocal leukoencephalopathy, a life-threatening 

opportunistic viral infection of the CNS [21, 32]. Among therapies with anti-CD20 

antibodies, which deplete circulating immature and mature B cells, but not plasma cells, 

Ocrelizumab, a humanized monoclonal antibody, showed success, including in slowing MS 

disease progression as relapse rate was 46% lower than in IFN-β treatment [33]. However, 

Ocrelizumab increases the risk of upper respiratory infections 40% vs 33% over IFN- β 
treatment, oral herpes virus 2.3% vs 0.4% in placebo, and risk of breast cancer was 2.3% 

compared to 0.8% in placebo group [34]. Additional antibody therapies have shown promise 

in treatment of MS, including anti-CD52 (B and T cell depletion), and anti-CD25 (targets 

IL-2 receptor and Treg cells), but all have side effects related to immune suppression, such 

as infections in the brain [19, 35, 36]. In terms of antigen-specific treatments, a clinical trial 

was conducted attempting to treat with MBP83–99, however the trial was halted after disease 

worsened in some patients [37].

Type 1 Diabetes Burden, Pathology and Clinical Approaches

In T1D autoimmunity often manifests in early childhood, with 490,000 children with T1D 

under the age of 15 worldwide. Less frequently, onset occurs later in adulthood [38, 39]. 

Disease incidence is increasing, with current estimates suggesting approximately 40,000 

new cases annually in the United States alone [39]. T1D is characterized by hyperglycemia 

due to lack of insulin, which leads to clinical manifestations such as polyuria, polydipsia, 

mental obtundation, weight loss, nausea, vomiting, abdominal pain, and fatigue. Sequelae of 

chronic hyperglycemic state include diabetic neuropathy, retinopathy, nephropathy, ulcers, 

and vasculopathies that can ultimately end with amputation. Injection of exogenous insulin 

is the primary treatment used to manage T1D [40]. Although insulin supplementation 

therapy affords moderate disease management, T1D patients experience a number of 

comorbid complications, which include chronic, potentially life-threatening, kidney disease 

in 30% of patients, and a 10 times higher risk of developing cardiovascular diseases [41–43].

T1D is classically characterized by CD4+ and CD8+ T cell mediated destruction of insulin-

producing β-cells in the pancreas. The innate immune system also plays a role in the 

pathogenesis, as macrophages and DCs have been observed surrounding the pancreatic islets 
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and present antigen to autoreactive T cells [40]. Stage 1 is associated with the presence of 

autoreactive cells and β-cell loss, stage 2, with autoreactive cells, β-cell loss and 

hyperglycemia, and stage 3 with autoreactive cells, β-cell loss, hyperglycemia and clinical 

symptoms. Stage 1 and 2 can last for years before symptomatic presentation, making it 

difficult to detect disease before critical β-cell loss from autoimmune attack. Awareness of 

genetic risk factors and advances in diagnostic procedures have made preventative 

treatments conceivable before the destruction of a critical mass of β-cells [44]. In particular, 

children with the HLA-DR4-DQ8 and HLA-DR3-DQ2 haplotypes are more likely to 

generate autoantibodies for insulin and glutamic acid decarboxylase 65-kilodalton isoform 

(GAD65) [40, 41].

Therapeutic options.

To date, there is no cure for T1D. However, a myriad of immunological therapies have been 

explored with limited success. Numerous clinical trials have sought to establish immune 

tolerance by repeated administration of T1D autoantigen, often employing the primary 

autoantigen insulin [45–48]. Other treatment options include monoclonal antibodies, which 

have been used in multiple clinical trials, including anti-CD20 [49] and anti-CD3 (T cell 

depletion) [50]. In the clinical trial using anti-CD20, patients were diagnosed with T1D if 

one circulating autoantibody was present and treatment was initiated 90 days following 

diagnosis with four total treatments over a one year timeframe. One year following anti-

CD20 therapy, C peptide level increased to 0.56 pmol/mL compared to 0.47 pmol/mL in 

placebo control and patients required lower levels of exogenous insulin than placebo group 

[49]. The study using anti-CD3 also treated newly diabetic patients defined by the presence 

of autoantibodies and the need for injection of insulin, with onset of treatment began within 

12 weeks of diagnosis. Treatment resulted in slower decline in C-peptide level compared to 

placebo control with with 40% patients who received anti-CD3 having a preservation of 

baseline C-peptide levels [50]. Other immunomodulatory therapies included an antibody 

hybrid consisting of a fusion of anti-CTLA4 (coinhibition) to the Fc region [51]. Similar to 

anti-CD20 and anti-CD3 studies patients were recently diagnosed with T1D via 

autoantibody levels and were treated at approximately 90 days post diagnosis. Results of this 

study showed a delayed reduction in C-peptide level with 32% of patients below the 

threshold of 0.2nmol/L compared to 43% in placebo control [51]. Additionally, a 

combination of the anti-thymocyte globulin (ATG), cyclophosphamide and granulocyte-

colony stimulating factor (G-CSF) with hematopoietic stem cell transplant has shown some 

success in patients were recently diagnosed with T1D. Diagnosis took place no more than 

six weeks prior to enrollment based on anti-GAD65 antibodies and C-peptide in the serum. 

The treatment regimen was as follows: cyclophosphamide injection followed by ATG 

treatment for five days, stem cell transplant, and G-CSF injection five days following 

transplant. Patients became insulin independent following treatment, but after an initial rise 

C-peptide level eventually decreased, but levels remained higher than at diagnosis and some 

patients eventually progressed to an insulin-dependent state [52]. It is believed that the 

mechanism of treatment is ablation and reconstitution the immune system thus inhibiting β-

cell destruction resulting in the return to normoglycemia [52]. In a similar study, treating 

patients who were diabetic for over a year, with ATG and G-CSF showed moderate success 

in a recent clinical trial, through increased C-peptide levels, with levels of 0.28 nmol/l/min 
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higher than control, indicating improved insulin production, however patients remained 

dependent on exogenous insulin [53]. A preservation of regulatory T (Treg) cells may be 

associated with greater β-cell function [53]. A continuation of this study has recently revived 

optimism as a new two year clinical trial with low dose ATG resulted in preservation of 

insulin production in patients with new onset T1D defined by the presence of at least one 

T1D autoantibody [54]. C-peptide levels were significantly higher two years post treatment 

in the ATG treated patients. Other treatments using transferred cells rather than suppressive 

factors, including Treg cells and tolerogenic DCs, have shown promise in clinical trials [55, 

56]. The study utilizing Treg cells treated newly diabetic patients based on autoantibody 

level and the majority of treated patients were able to maintain elevated C-peptide levels for 

over two years following the initiation of the study [55]. In contrast, the clinical trial using 

tolerogenic DCs treated patients with insulin dependence for more than five years and had 

no detectable C-peptide at the onset of treatment. Following injection of 10 million DCs, C-

peptide was detectable for over two years in some patients and treatment was tolerated over 

that timespan [56].

Commonalities in multiple sclerosis and type 1 diabetes

There are several similarities in disease progression and pathogenesis of MS and T1D. Often 

the diagnosis does not take place until late, as the clinical manifestations appear at stage 

three in T1D, and similarly, MS patients are not typically diagnosed until after their first 

clinical attack [7, 40]. For this reason, there is often lasting damage caused by the immune 

system before symptomatic presentation and diagnosis, making the burden of the disease 

more severe. Co-occurrence of these autoimmune diseases is also common. A nation-wide 

study in Denmark identified that T1D patients are at a three times greater risk for developing 

MS than healthy individuals [57]. Along this line, both diseases have genetic risk factors 

associated with the HLA, although the haplotypes vary by disease [41, 58]. There are also 

non-HLA associated genetic risk factors such as T-cell alleles IL-2 and protein tyrosine 

phosphatase, non-receptor type 22 (PTPN22) in MS and T1D, respectively. In addition to 

genetics, environment also plays a role in disease development, with smoking and viral 

exposure increasing the risk of both MS and T1D [7, 40].

In terms of pathogenesis, in both diseases autoreactive T cells play an important role, 

targeting autoantigens on β-cells in the pancreas in T1D, and myelin in the CNS in MS [7, 

40]. Autoantibody production indicates the contribution of B cells to both diseases. The 

contribution of innate immune cells is evidenced by the presence of macrophages and DCs 

surrounding the islets of Langerhans in T1D and by the infiltrating macrophages playing a 

role in myelin destruction in MS.

Biomaterials and particle-based drug delivery and immune modulation

Biomaterials have been well established as an approach to mediate controlled release of 

drugs, peptides, and proteins in the pharmaceutical industry due to their advantages over 

soluble bolus drug administration [59]. The shortcomings of bolus drugs include rapid renal 

clearance, short half-life, and potentially fatal off-target side effects. Biomaterial systems 

can overcome these pitfalls by facilitating sustained release, localization of drug cargo to 
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cells, organs, or systems of interest to improve therapeutic response, minimize drug load 

required, and mitigate adverse systemic reactions.

Building on this work, biomaterial platforms have been recently extended to 

immunomodulatory approaches [60]. Specifically, nano- and microparticles (NMPs) based 

therapies have shown promise in recent years in restoring homeostatic immunity. NMPs can 

encapsulate or have immunomodulatory factors conjugated to their surface and can be 

delivered in a diverse manner including systemically or locally. Formulation of NMPs and 

the route of administration influence the effectiveness and the type of immunomodulation 

[60–62]. Intravenous and intraperitoneal injections provide better trafficking to the liver and 

spleen [62, 63], while subcutaneous injection may require the addition of recruitment 

factors, if the NMP system contains particles that are designed to be phagocytized, but are 

not small enough to drain passively [64]. With proper trafficking, subcutaneous delivery may 

be clinically favorable because of the ease and safety of administration compared to repeated 

bolus intravenous delivery. Furthermore, controlled-release biomaterial systems can extend 

the window of immunomodulation resulting in a reduced dosing frequency, however using 

biomaterials can decrease the sterility of the injection via in introduction of endotoxin. In 

addition, encapsulation allows for greater control of release kinetics. Control of release may 

be useful if it is desired to give a small dose over a long period of time rather than a quick 

acting dose, although too slow release could decrease efficacy. Additionally, synthetic 

biomaterials are tailorable and can be coupled with ligands or antibodies for surface 

receptors to target delivery of immunomodulatory agents to specific cell subsets, as it has 

been done with α-CD11c, α-DEC205 [65], α-CD40 for DCs [65, 66] and α-CD4 or α-CD8 

for T cells [67, 68].

A specific type of treatment that has benefitted from the use of biomaterials is DC therapy. 

In this line, a NMP approach can alter DC phenotype in vivo, thus bypassing the need for ex 
vivo manipulation, which has drawbacks, including high cost, poor yield and low levels of 

regional lymph node homing following re-administration [69–72]. NMPs are also attractive 

for intracellular delivery to DCs and other antigen-presenting cells (APCs) given that they 

can be readily phagocytosed if less than ~ 5 μm in diameter [73].

It has been shown that poly(lactic-co-glycolic acid) (PLGA) NMPs themselves can have 

immunosuppressive effects in certain contexts via two distinct mechanisms. In this work, 

bone marrow derived DCs treated with empty PLGA MPs had reduced expression of MHC 

II, CD80 and CD86 due to degradation byproduct, lactic acid [74]. Furthermore, early 

intravenous treatment with high molecular weight PLGA NPs, without additional factors, 

resulted in delay in EAE scores with a concomitant shift of neutrophils away from the CNS 

to the liver (Table), thus altering trafficking rather than the direct suppression shown by 

Allen et al. [75].

Efforts to avoid off target effects associated with broad immunosuppression have recently 

emphasized antigen (Ag) specific approaches. The advantages of such strategies include less 

systemic immune suppression, the ability to modulate specific immune populations and 

potential for lower dosing amount and frequency [96, 97]. In this approach only the 

autoreactive immune cells are targeted. In the case of MS and T1D, such treatments aim to 
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induce tolerance or change primarily the phenotype of Ag-specific T cells. To accomplish an 

Ag-specific response, treatments have focused on APCs, including DCs and macrophages, 

given the pivotal role of these cells in promoting the immune response of T cells [61, 66, 79, 

93, 98–102]. Tolerogenic DCs have been found to favor generation of Treg cells in specific 

environments, which further suppress autoreactive T cells, ultimately preventing or reversing 

disease [103]. In addition, APCs can induce anergy by presenting antigen without the proper 

costimulatory factors or in the context of coinhibitory receptors such as CTLA-4 and PD-1 

[104, 105].

NMP Strategies for MS/EAE and T1D treatment using non-antigen-specific 

immune modulators

There has been significant effort in developing NMP-based strategies that seek to modulate 

broadly immune cells, either systemically or locally, creating a suppressive phenotype or 

delivering factors to block Th1 or Th17 responses, but not in an Ag-specific manner (Fig 

1a). Several such strategies have been reported successful in ameliorating or inhibiting EAE, 

by dampening the Th1 and Th17 responses or increasing the number of Treg cells. Some 

NMP treatments seek to enhance delivery of immunosuppressants that are currently FDA 

approved such as glucocorticoids, with the goal of lowering the dose needed, which may 

reduce off target effects and toxicity. Such a strategy delivered the glucocorticoid 

betamethasone, using an inorganic-organic NP formulation consisting of a complex of 

zirconium dioxide, flavin mononucleotide and betamethasone phosphate (Table) [78]. In 
vitro experiments showed uptake by murine bone marrow derived macrophages and 

consequent downregulation of MHCII, CD86, TNFα and IL-1β [78]. When cultured with 

human monocytes an anti-inflammatory phenotypes with decreased IL-1β mRNA and 

increased arginase 1 expression was observed [78]. When injected intraperitoneally in vivo, 

betamethasone NPs similarly decreased MHCII and CD86 expression and TNFα secretion 

on macrophages following lipopolysaccharide challenge, and intraperitoneal injection for 

three consecutive days of EAE mice at a clinical score of two, halted disease progression in 

a macrophage-dependent manner [78].

The STING pathway has been also targeted using a polyethylenimine (PEI) NP 

encapsulating cyclic dinucleotide GMP (c-diGMP) administered i.v. in prophylactic and 

therapeutic manners in EAE-induced mice, and was found to reduce disease severity [106]. 

This treatment resulted in production of indoleamine 2, 3 dioxygenase (IDO) in 

hematopoietic cells and reduced IDO expression in neurons [106].

Another treatment employed the agonist for the metabotropic glutamate receptor-4 

(mGluR4) N-phenyl-7-(hydroxyimino)cyclopropaβchromen-1a-carboxamide (PHCCC), 

encapsulated in PLGA. The treatment slowed EAE development (Table) [76], likely through 

modulating DC activity, given that mice lacking mGluR4 develop more severe EAE and 

mGluR4 activation was shown to restrain DC-dependent induction of pathogenic Th17 cells 

in EAE [107, 108]. High levels of glutamate are seen in EAE and are associated with Th17 

response in disease. It is believed that mGluR4 binding limits this response by modulating 

metabolism, resulting in skewing of T cell phenotype towards Th2 and Treg cells.
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Treatments that directly modulate T cell responses have been also explored. An example is 

the treatment of EAE-induced mice by i.p. administration on the day of induction with 

hyperforin-conjugated gold NPs. Hyperforin is an herbal compound with anti-inflammatory 

properties. The treatment resulted in reduced EAE severity with increased Foxp3+ Treg cells 

and decreased in Th1 and Th17 cells (Table) [109]. A potential drawback is the possibility 

for liver toxicity following gold NP treatment [110].

A cationic NP using PLGA and a polymethacrylate/dimethylaminoethyl bond has a more 

neutral zeta potential and improved cellular internalization or endosomal escape [77]. A 

single intramuscular injection of NPs containing plasmid encoding mouse IL-10, augmented 

plasma IL-10 levels and reduced IFN-γ levels for up to six weeks in a model of 

streptozotocin-induced T1D (Table) [77]. In another approach anti-sense oligonucleotides 

for CD40, CD80, and CD86 were encapsulated in NMPs and blocked the activation of DCs 

and ameliorated disease in a mouse model of recent-onset T1D (Table) [79]. Draining lymph 

nodes from the site of injection had increased total numbers of CD25+Foxp3+ Treg cells 

[79].

NMP strategies to modulate the immune response in a manner independent of the disease-

specific autoantigens have shown some promise in preclinical studies both for MS and T1D. 

Such strategies involved immunomodulators and may cause overall dampening the immune 

response, but multiple factors dictate whether this is the case. The dose and route of 

administration can determine if there is immunosuppression as a relatively small dose 

delivered subcutaneously would not be expected to have systemic effect. The half-life of a 

therapeutic is also a factor in whether a treatment is systemically immunosuppressive as a 

treatment cleared rapidly may not have a lasting effect. In addition, delivering NMPs to 

disease-relevant tissues or lymph nodes can provide a milieu with disease specific antigen to 

eliminate the need for the delivery of exogenous antigen [79, 111]. However, targeting 

NMPs to the pancreas or CNS for the localization of treatment represents a substantial 

challenge. For this reason, the addition of antigen to an immunomodulatory treatment may 

provide benefit in some therapeutic approaches. Additionally, antigen specificity could 

potentially reduce the opportunity for systemically dampening the immune response, which 

is a concern regarding opportunistic infections and off-target effects.

Antigen-Specific NMP strategies for MS/EAE and T1D

While Ag-nonspecific immune modulation shows promise, use of disease-associated antigen 

may produce generalized immune suppression. The first attempts in this direction were by 

coupling antigens with NMPs for antigen delivery to extend its circulation time. Further 

studies employed NMP platforms delivering antigens in combination with immune 

modulatory factors.

Antigen-Specific NMP strategies for MS/EAE

Initial strategies used NMPs for delivery of antigens alone (Fig 1b), such as proteolipid 

protein (PLP139–151). PLP139–151 conjugated to PLGA NMP surface and administered i.v. 

prevented relapses in the relapsing-remitting EAE model in SJL mice, when administered 
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either prophylactically or therapeutically, with the effect being dependent on phagocytosis of 

peptide-conjugated MPs by MARCO+ marginal zone macrophages in the spleen (Table) 

[62]. Additionally, increased numbers of Treg cells, and elevated T cell anergy was observed 

[62]. The same group showed that when PLP139–151 peptide surface conjugated to PLGA/

poly(ethylene-alt-maleic anhydride) (PEMA) NPs and administered intravenously, prevented 

EAE with prophylactic administration and attenuated disease when administered at the peak 

of EAE (Table) [80]. Although intravenous delivery of this formulation had success in 

treating relapsing/remitting EAE, subcutaneous administration of the same formulation 

failed to have the same success, which may be due to differences in NP trafficking [80].

Encapsulation of antigen showed superiority to surface conjugation by avoiding potential for 

antibody binding to exposed antigen [116]. Furthermore, encapsulation rather than surface 

conjugation to PLGA/ PEMA NPs was more efficient in treating EAE in prophylactic and 

therapeutic setups, when administered i.v. [63]. Along this line, encapsulation of 

recombinant human basic myelin protein (rhMBP) in poly (ε-caprolactone) (PCL) NPs and 

subcutaneous prophylactic administration resulted in reduction of disease scores of 

MOG35–55–induced EAE (Table) [83]. The dose of encapsulated peptide can also have an 

effect, with the high level of encapsulated peptide PLP139–151 having significantly higher 

efficacy versus low level (Table) [81]. Response to delivered antigen can be a major concern, 

as there is demonstrated potential to exacerbate disease, as seen in the halted phase II 

clinical trial treating with MBP83–99 [37].

NMP platforms delivering antigens in combination with immunomodulatory factors have 

been also explored in EAE (Fig 1c). One example is the surface conjugation of the aryl 

hydrocarbon receptor (Ahr) ligand 2–1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid 

methyl ester (ITE) to thio-polyethylene glycol (PEG)-coated gold NP, conjugated together 

with the EAE-specific antigen MOG35–55. The treatment initiated at EAE induction and 

consisted of weekly intraperitoneal injections effectively suppressed EAE (Table) [94]. It 

was postulated that the NPs containing myelin antigen and ITE promoted tolerogenic DCs 

and Treg cell expansion [94], in line with the previous data showing that ITE-Ahr induces 

tolerogenic DCs and Treg cell differentiation, and inhibits Th1 and Th17 cell function to 

suppress EAE [112–115].

Other treatments co-encapsulated immunomodulators such as rapamycin with antigen for 

the treatment of EAE. Rapamycin is known to block the mTOR pathway causing anti-

inflammatory effects and blocking B and T cell proliferation [117–121]. Subcutaneous and 

intravenous injection of PLP139–151 and rapamycin co-encapsulated in PLGA NPs blocked 

EAE and prevented relapse in an antigen dependent manner in SJL mice (Table) [87]. In 

another study, a rapamycin-antigen co-encapsulated formulation was explored in MOG35–55/

CFA-induced EAE model. Rapamycin and MOG35–55 peptide encapsulated in PLGA MPs 

and injected intra-nodally into the inguinal lymph nodes prevented and treated EAE in an 

antigen-specific manner through increased numbers of Foxp3+ Treg cells (Table) [89]. 

These treatments demonstrate the strong immunomodulatory effect of rapamycin in 

conjunction with antigen. Another immunomodulator, dexamethasone co-encapsulated with 

MOG35–55 in acetylated dextran MPs, successfully treated EAE in a therapeutic regimen 

with decreased splenocyte production of IL-17 [122].
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Other immunomodulatory factors such as cytokines have also been explored. EAE was 

moderately suppressed by subcutaneous administration of PLGA NPs loaded with IL-10 and 

PLP1139–151, both in prophylactic or therapeutic treatment regimens (Table) [90]. This 

formulation demonstrates the possibility of suppressing EAE using a subcutaneous delivery 

of immunomodulatory factors encapsulated in PLGA NPs for controlled release [90]. 

However, the antigen-specificity of the treatment was not investigated [90]. Another 

formulation utilized the antigen PLP139–151 conjugated to PLGA NPs, together with 

cytokine TGF-β to form an antigen coupled PLG-PLP139–151-TGF-β NP system (Table) 

[88]. In vitro treatment downregulated costimulatory molecules CD80, CD86 and MHCII in 
vitro, and in vivo administration intravenously or subcutaneously, in prophylactic or 

therapeutic regimens resulted in reduction of EAE scores [88].

We developed a dual multi-factor MP system consisting of (1) unphagocytosable 30 μm MPs 

separately loaded with GM-CSF and TGF-β plus (1) phagocytosable 1 μm MPs loaded with 

Vitamin D3 and MOG35–55 (Fig 1D). This treatment administered subcutaneously blocked 

EAE progression when administration occurred in a semi-therapeutic fashion post EAE 

induction (Table) [64]. In the CNS of mice treated with this dual multi-factor MP system 

there was a reduction in pathogenic T cells expressing both Rorγt and Tbet and lower levels 

of the cytokines IL-17, IFN-γ and GM-CSF compared to mice treated with unloaded MPs, 

as well as reduced CD80 on macrophages/microglia [64]. The number and frequency of 

MHC II+ and CD86+ DCs in the draining lymph nodes were reduced in mice treated with 

dual multi-factor MP-MOG35–55 versus an irrelevant antigen (OVA323–339) dual multi-factor 

MP, demonstrating the dependence on antigen. Localized low dose subcutaneous delivery, 

controlled release of specific factors, and retention at the injection site are all advantages of 

this dual multi-factor MP system [64], compared to soluble administration. The combination 

of phagocytosable antigen-MP with the phagocytosable vitamin D3 MP allows intracellular 

delivery of antigen and vitamin D3 to act on its intracellular receptor and potentially induce 

tolerization of DCs. Unphagocytosable GM-CSF MP allows the recruitment of DCs and 

precursors, and TGF-β MP allows tolerization on the recruited DCs, both assuring slow and 

durable release. In addition, the subcutaneous delivery assures less off-target effects 

compared to i.v. administration.

NMP formulations that utilize antigen in combination with low doses of tolerogenic factors 

show promise by avoiding systemic immune suppression. This is likely due to the low doses 

of immunomodulatory factors and antigen specificity. The ability to avoid rapid release or 

release at an undesired location is valuable because it reduces the likelihood of off-target 

effects, which is a concern when administering immunosuppressive factors. However, one 

potentially major drawback of Ag-specific treatments is difficulty in selecting the most 

efficacious antigen because not all patients have the same autoreactive response. As it has 

been shown that some patients have autoantibodies for MBP, while others react to MOG or 

PLP. To this end, simultaneous NP-mediated delivery of multiple antigens showed higher 

efficiency in EAE treatment compared to single antigens [123].

Kwiatkowski et al. Page 10

Adv Healthc Mater. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Antigen-Specific NMP strategies for T1D treatment

Antigen-Specific NMP platforms have been developed for T1D. Using an artificial antigen 

presenting approach, one group utilized iron oxide NMPs coated with the islet-specific 

peptide glucose-6-phosphatase catalytic subunit-related protein (IGRP13–25)-MHCI or II to 

modulate CD8+ and CD4+ T cells [85, 86]. When 4 week old pre-diabetic, NOD mice were 

injected intravenously every two weeks for six weeks and then every third week for the 

remainder of the study, normoglycemia was prolonged (Table) [86]. Additionally, diabetic 

mice were able to return to normoglycemia following the treatment. Similarly, intravenous 

injection of surface conjugated IGRP13–25-MHCII NPs in 10-week-old pre-diabetic mice 

prevented T1D. Mice showed more TR1 cells expressing CD49b, LAG-3, ICOS and TGF-β 
[85] and the treatment was dependent on the specific antigen and MHCII presentation to 

maintain efficacy (Table) [85]. The versatility of this NMP platform was highlighted by the 

multitude of immune-related conditions that can be treated by changing the antigen, 

including collagen-induced arthritis and EAE, which similarly demonstrated robust 

mitigation of diseases [85]. In contrast to IGRP13–25, heat shock protein 65–6xP227 loaded 

in NPs formulated from RGD and mannose modified chitosan. These NPs were able prevent 

T1D when delivered orally to 4 week old NOD mice and uptake by DCs was seen in the 

Peyers patches (Table) [84]. In addition, treatment was concomitant with an increase in Treg 

cells and a decrease in Th1 cells in the pancreatic draining lymph node. This study was 

notable in the demonstrated efficacy of NMP-based delivery of antigen to the gut [84].

Another T1D associated antigen used in NMPs formulations was BDC2.5 mimotope peptide 

(p31). Mimotope peptide p31 encapsulated or conjugated to PLGA or PLGA/PEMA NMPs 

were used to treat NOD.SCID induced with diabetes using adoptive transfer of BDC2.5 and 

NY8.3 antigen-specific cells. Intravenously delivered NMPs prevented hyperglycemia for up 

to 50 days post transfer [82]. Intra-islet Foxp3+ Treg cells were identified, which likely 

tolerized CD4+ and/or CD8+ T cells, through an increase in expression of the coinhibitory 

molecules PD-1 and CTLA4 [82]. NP-mediated delivery of an insulin hybrid peptide 

(2.5HIP), consisting of an insulin C-peptide fragment fused to a peptide from chromogranin 

A (ChgA), known to be recognized by BDC-2.5 T cells, also prevented diabetes in an 

adoptive transfer model by decreasing IFN-γ producing T cells and increasing FoxP3+ T 

cells [124].

In addition to administering antigen NMPs alone, combinatorial approaches have been used 

for T1D [60]. Some approaches have explored antigen delivery in combination with pro-

tolerogenic factors to modulate antigen-specific immune tolerance. Co-delivery of the Ahr 

ligand ITE and proinsulin via PEG-coated gold NMPs showed efficiency in prophylactic 

treatment of 8-week-old NOD mice (Table) [95]. Prevention overlapped with an increase in 

Foxp3+ Treg cells in the pancreatic lymph node and diminished expression of Th1 and Th17 

gene signatures. DCs showed anti-inflammatory phenotypes with reduced surface expression 

of CD40, CD80 and MHCII and expression of genes encoding the inflammatory cytokines 

IL-12 and IL-6 [95].

Other combinatorial treatments were engineered to augment cellular recruitment through 

incorporation of chemotactic factors. A macroscopic hydrogel loaded with GM-CSF and 
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CpG together with PLGA NMPs encapsulating denatured insulin prevented T1D in 40% of 

the NOD mice when injected at 8 weeks of age (Table) [93]. The efficacy was dependent on 

antigen. In a parallel approach, without CpG, an alginate hydrogel containing GM-CSF and 

PLGA NMPs encapsulating the T1D-specific peptide BDC2.5. show increased Foxp3+ Treg 

cells in the hydrogel, suggesting that this is a viable approach to augment antigen-specific 

Treg cell numbers [125]. Using the dual multi-factor MP system consisting of (1) 

unphagocytosable 30 μm MPs separately loaded with GM-CSF or TGF-β, plus (1) 

phagocytosable 1 μm MPs loaded with Vitamin D3 or insulin B9–23 (Table) [91], delivered 

agents intracellularly to the locally recruited DCs. The results demonstrated that two 

subcutaneous injections of the combinatorial NMP system in 4-week-old NOD mice 

prevented T1D in 40% of treated NOD mice [91]. A modification of this system increased 

the amounts of TGF-β and GM-CSF and used denatured insulin as antigen (Table) [92]. 

Encapsulation, antigen, tolerogenic and recruitment factors were all required, otherwise the 

treatment was no longer effective. When the new formulation was administered weekly via 

subcutaneous injection, for three weeks, followed by four monthly booster injections, it was 

able to delay T1D onset in 8-week-old NOD mice, with 60% of mice remaining diabetes-

free [92]. This delay in onset was associated with increased PD-1 on CD4+ and CD8+ T cells 

as well as an increase in CD11b+ CD11c+ DCs in the draining lymph nodes. Additionally, 

three subcutaneous administrations during the week of onset, followed by weekly booster 

injections for three weeks, temporarily reversed T1D in recent onset diabetes, for up to 100 

days [92].

Conclusions

The prevalence of the debilitating autoimmune diseases MS and T1D continues to rise and a 

cure yet to be found. There has been an uptick in exploration of biomaterial strategies for 

autoimmune disease, with NMP therapies having demonstrated particular promise as 

vehicles for drug and antigen delivery to specific cells and organs of interest. The studies 

discussed above suggest that a curative therapy that modulates immunity without the need 

for systemic immunosuppression is possible, using antigen-specific strategies both in MS 

and T1D. Clinical trials will be needed to validate the benefit of NMP approaches in treating 

MS and T1D. Looking forward, coupling immunotherapy with regeneration could reduce 

the failure rate of treatments. In MS for example, clemastine fumarate, a medication for 

allergic rhinitis and urticaria, has been shown in a double-blind crossover clinical trial to 

increase remyelination [126]. Similarly in EAE mice clemastine accelerate remyelination 

[127–129]. Regeneration may also be necessary in T1D. Along this line, reprograming of α-

cells with the transcription factors, pancreas/duodenum homeobox protein 1 (PDX1) and V-

maf musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA) to produce insulin is 

an option that has been explored. When human α-cells are transduced with these 

transcription factors it enabled these cells to produce insulin [130]. Thus the key to 

unlocking a durable cure may be through coupling antigen-specific immunotherapies with 

regeneration.
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Figure. Representative methods of alleviating autoimmunity with NMPs.
A) NMPs that deliver immunomodulators to DCs in order to create a tolerized phenotype, B) 

delivery of autoantigen for presentation by DCs, C) delivery of both immunomodulators and 

antigen, to tolerize DCs which will then present the autoantigen in a tolerogenic context, and 

D) delivery of recruitment factors to increase DC recruitment to the injection site where 

autoantigen is taken up and immunomodulators induce a tolerogenic phenotype, after which 

DCs traffic to draining lymph nodes.
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