

(University of Florida)

Asset Overview

Product Type	Gene therapy
Disease Area	Oncology
Indication	Pancreatic Cancer
Current Stage	Lead Optimization
Target	Pancreatic islet cells
МоА	shRNA reduces thymidylate synthase (TS) levels, significantly decreasing the progression of pancreatic neuroendocrine tumors (PanNETs).
Brief Description	 This treatment employs an AAV-TS vector that specifically targets pancreatic islet cells. The vector contains small hairpin RNA (shRNA) molecules and releases them into identified pancreatic islet cells. This reduces thymidylate synthase (TS) levels, significantly decreasing the progression of pancreatic neuroendocrine tumors (PanNETs). TS acts as a biomarker and therapeutic target. Although TS plays a central role in DNA synthesis/repair and is essential for cell proliferation, high levels of TS correlate strongly with tumorigenesis, poor therapeutic outcomes, and low overall survival rates in cancer patients. A mouse with an hTS/Men1 (-/-) allele established a model to replicate the human disease of PanNET to test how the interfering RNA targeted the TS.
Intellectual Property	US20190256858A1
Publication	Thymidylate synthase accelerates Men1-mediated pancreatic tumor progression and reduces survival. JCI insight, (2022)
Inventors	Kyungah Maeng, Maria Zajac-Kaye

Highlights

- Overexpression of hTS in inactivated Men1 islet cells shortened the latency for tumor development and reduced survival of both hTS/Men1+/- and hTS/Men1-/- mice.
- High TS levels shortened survival of hTS/Men1-/- and hTS/Men1+/- mice extends inventor's
 previous work showing that TS expression in patients with TS-positive gastro-enteropancreatic
 neuroendocrine tumors had worse outcome in comparison with patients with negligible TS
 expression as determined by univariate and multivariate survival analysis.
- Changes in the level of the cell cycle regulator p21Cip1 by high TS levels and changes of p18INK4c level by deregulation of menin activity may trigger entry to G1/S phase and thus increase islet cell proliferation and tumor progression.
- Elevated TS participates directly in promoting PanNET tumorigenesis using 3 different Men1-mutant animal models. These data emphasize the importance of development of a new class of TS inhibitors to block TS catalytic activity without feedback induction of TS levels.

5" KDDF GLOBAL CaD TECH FAIR

(University of Florida)

Key Data

The conversion of dUMP to dTMP with thymidylate synthetase

AAV-TS shRNA inhibits PanNET progression

scAAV-mIP-GFP-shRNA constructs:

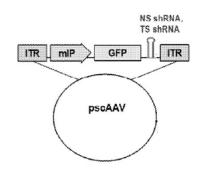


Figure 7A

 FIG. 7A shows a vector map of scAAVmIP-GFP-NSshRNA and scAAV-mIP-GFP-TSshRNA (containing SEQ ID NO:1 and 2) construct.

ScAAV-mIP-GFP-shRNA

1x10¹¹ vg/mouse i.p

1x10¹¹ vg/mouse i.p

Age (Month)

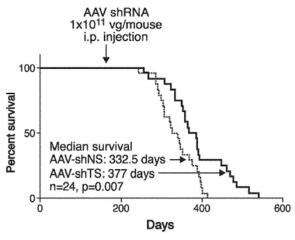
hTS/Men1^{-/-}
GEMMs

Normal Hyperplasia

Luciferase Imaging

Survival analysis

Figure 7B


 FIG. 7B shows schematics of scAAV-mIP-GFP-NSshRNA (AAV-shNS) or scAAV-mIP-GFP-TSshRNA (AAV-shTS) treatment in hTS/Men1^{-/-} mice.

(University of Florida)

Key Data

AAV-TS shRNA inhibits PanNET progression

• FIG. 7C shows survival analysis of pancreas tissues from hTS/Men1 mice after TS shRNA injection (n=24 per group).

Figure 7C

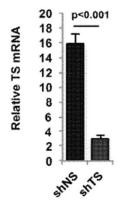


FIG. 7D shows TS mRNA expression levels in tumors

Figure 7D

(University of Florida)

Key Data

AAV-TS shRNA inhibits PanNET progression

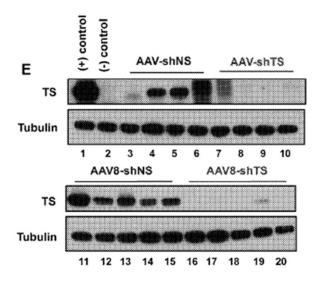


Figure 7E

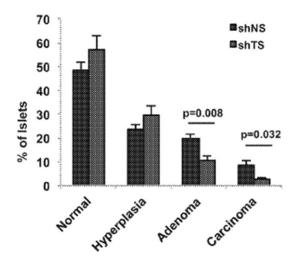


Figure 7F

 FIG. 7F shows the percentage of islet tumor lesion (n=9 per group).