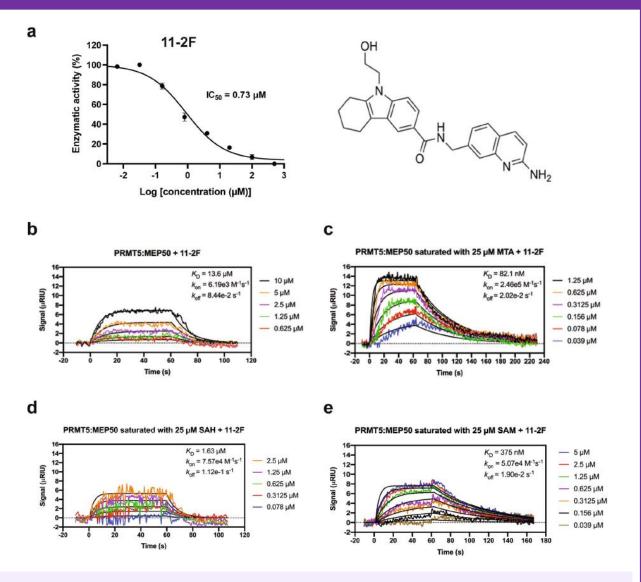
137. Small molecule inhibitors against Cancer-associated P (University of Florida)

5" KDDF GLOBAL C&D TECH FAIR

Asset Overview

Product Type	Small Molecule
Disease Area	Oncology
Indication	Cancer
Current Stage	Lead Optimization
Target	Protein arginine methyltransferase 5
МоА	inhibit protein arginine methyltransferase 5 activity in cellular processes
Brief Description	 These small molecules are inhibitors against protein arginine methyltransferase 5, which plays a role in tumor development and is overexpressed in several cancers, including lymphoma, glioblastoma, colorectal cancer, and prostate cancer. Inhibiting protein arginine methyltransferase 5 may be an effective treatment for inflammation and auto-immune disorders. Previously reported small molecule inhibitors of this protein have low potency or lack in vivo activity, limiting clinical applications. Researchers at the University of Florida have developed competitive compounds that inhibit protein arginine methyltransferase 5 activity in cellular processes. These small molecules have a 25-fold greater binding affinity and 40-fold greater efficacy than previous inhibitors of protein arginine methyltransferase 5. These small molecules are effective in vivo and have a high potency, making them strong therapeutic candidates for the treatments of cancer and autoimmune disorders.
Intellectual Property	US20220185792A1
Publication	Cryo-EM structure-based selection of computed ligand poses enables design of MTA-synergic PRMT5 inhibitors of better potency. Communications Biology, (2022)
Inventors	Chenglong Li, Xiaozhi Yang, Wei Zhou

Highlights

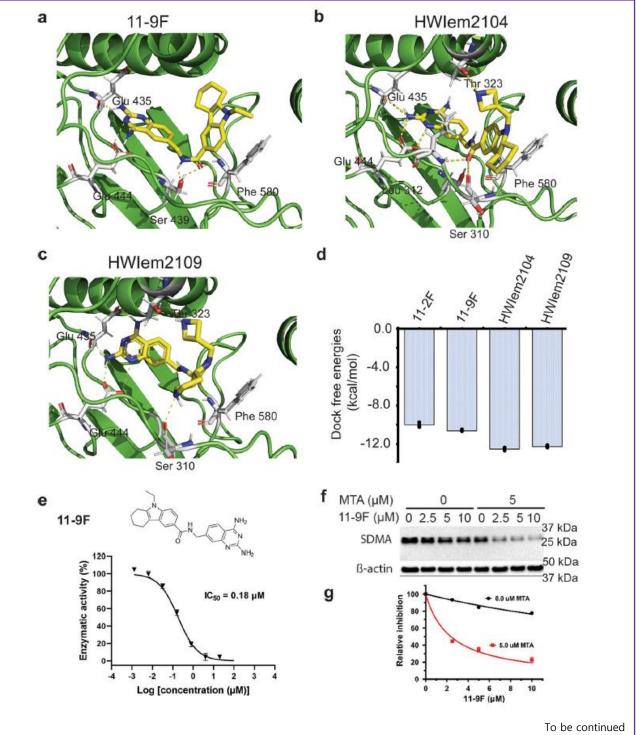

- Can be incorporated in pharmaceutically acceptable salts, solvates, hydrates, or drugs, facilitating the development of new therapeutics
- Active in vivo, making clinical applications feasible
- Have high binding affinity and efficacy, resulting in a higher potency than other inhibitors

137. Small molecule inhibitors against Cancer-associated P (University of Florida)

5" KDDF GLOBAL C&D TECH FAIR

Key Data

An inhibitor 11-2F of PRMT5 exhibits positive cooperativity with MTA


a Dose-dependent inhibition of enzyme activity by 11-2F. IC50 ~730 nM. The chemical structure of 11-2F is showed on the right. Errors: s.d., n = 3. b SPR of 11-2F binding and unbinding to PRMT5:MEP50 in the absence of MTA, leading to a calculated KD ~13.6 μ M. c SPR of 11-2F interaction with the enzyme in the presence of MTA. KD ~82 nM. The apparent positive coupling coefficient between 11-2F and MTA is ~166. d, e SPR of 11-2F binding to PRMT5:MEP50 complex in the presence of SAH (d) and SAM (e), showing much weaker affinity, 1.6 and 0.38 μ M, respectively, and thus much weaker synergy than MTA.

137. Small molecule inhibitors against Cancer-associated P (University of Florida)

5" KDDF GLOBAL CAD TECH FAIR

Key Data

137. Small molecule inhibitors against Cancer-associated P

5[™] KDDF GLOBAL CAD TECH FAIR

(University of Florida)

Key Data

Cryo-EM SBDD yields 11-2F analogs of higher potency in PRMT5 inhibition

Three different compounds were selected based on docking analysis. 11-9 F (a), HWIem2104 (b), and HWIem2109 (c) are showed in the binding pockets with key residues contributing to their stability. d Comparison of relative docking free energy among the four compounds. e The chemical structure of 11-9F (left) and its dose-dependent inhibition of PRMT5: MEP50 enzyme activity, yielding an IC50 ~ 180 nM. Error bars: s.d. (n = 3). f Western blotting of SDMA in cells treated with 11-9 F in different concentrations with 0 and 5.0 µM MTA. g Individual bands were digitized in ImageJ, calibrated against the actin bands, and then normalized against 0 µM 11-9 F in order to generate the two plots (red vs. black). Error bars: s.d., n= 3. The relative inhibition data were fitted with an equation I = 1/(1 + [L] / IC50) to IC50 of 2.4 (red trace) and 32.4 (black trace) µM, respectively. The coupling factor between MTA and 11-9F is ~10, an indicator of strong synergy.