

avß6-binding Peptides for Tumour Targeting and Imaging

Therapeutic Area	Oncology	Indications	Cancer
Modality	Peptide	Development Stage	Hit to Lead/Lead Optimization

Overview

Background

- The integrin avß6 is an exciting emerging target for both imaging and therapy across many common tumour types.
- Each year an estimated 279,000 avß6-positive tumours are diagnosed in the US & UK alone.
- The epithelial-specific integrin $\alpha\nu\beta6$ binds to RGD motifs in its ligands including fibronectin, tenascin and the latency-associated peptide (LAP) of TGF β .
- Antibody-mediated blockade of $\alpha\nu\beta6$ has been demonstrated to inhibit tumour growth in vivo.
- In patients, elevated $\alpha v \beta 6$ expression has been correlated with poor prognosis including in colorectal, ovarian and lung cancers.

Technology Advantages

- Novel and proprietary peptides with high affinity and selectivity for integrin $\alpha v \beta 6$
- Lead peptide selectively targets $\alpha \nu \beta 6+\nu e$ tumours and fibrotic lesions in vivo for imaging and therapy
- Toxin-labelled A20FMDV2 controls or clears in vivo murine xenograft pancreatic tumours
- Clinical efficacy as PET tracer in solid tumour patients

Key Data

Therapy with the $\alpha\nu\beta6$ -blocking 264RAD antibody significantly improves survival in immunocompetent transgenic mice bearing $\alpha\nu\beta6$ -expressing PDAC tumours

Treatment of PDAC-bearing KDC mice with 264RAD and immunohistochemical analysis. (A) Representative immunohistochemical analysis of $\alpha\nu\beta6$ expression in normal, PanIN, and PDAC from PdxCre+KRasLSL-G12D/+Dusp6-/- (KDC) mice. (B) The 264RAD-treated mice showed significantly increased overall survival in comparison with isotype control treated animals (log-rank test p = 0.028; HR: 4.92; 95% CI: 1.04–23.28)

264RAD antibody therapy reduces the growth of pancreatic human xenograft tumours

Treatment of mice bearing 100 mm3 CFPac1/PS1 subcutaneous tumours with 264RAD demonstrated significantly reduced tumour growth, compared with isotype control ($p \le 0.0001$)

IP Status & Publication(s)

Intellectual Property

Patent Number
US 9650416 B2 (2017.05.16)
EP 3615563 B1 (2020.09.23)

Patent Family
PCT. US. EP. JP. CA

PCT, US, EP, JP, CA PCT, KR, US, EP, JP, CN, CA, AU

Publication(s)

• Marshall, J. F. et al. (2019). The integrin ανβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. The Journal of Pathology, 249(3), 332–342.