

FURTHER FASTER TOGETHER

LICENSING OPPORTUNITY: SMALL MOLECULE CDC7 KINASE INHIBITORS

July 2022

OPPORTUNITY OVERVIEW

- Potent, selective and orally bioavailable CDC7 inhibitors
- Lead pre-candidate chemistry developed in-house at the CRH *Therapeutic Innovation* laboratories
- Demonstrated target engagement in vivo in tumour models
 - potent tumour inhibition in DLBCL and renal xenograft models
 - Favourable PK
 - Predicted low human efficacious dose
- Strong IP position CoM patents filed on chemical cores of interest in major markets
 - Granted in US, GB, DE, FR, IT
- Available for licensing and collaborative partnership

CDC7 kinase – target hypothesis

- Cell division cycle 7-related kinase (CDC7) is a nuclear ser/thr kinase that is essential for initiation of DNA replication via MCM2 phosphorylation.
- CDC7 inhibition may selectively induce apoptotic cell death in cancer cells:
 - In normal/untransformed cells, inhibition of CDC7 leads to checkpoint activation and reversibly halts the cell cycle at G1,
 - In cancer cells, inhibition of CDC7 leads to progression through a defective S-phase and results in p53independent apoptosis.

Clinical rationale

- Over-expression of Cdc7 is broadly correlated with poor clinical outcomes in cancer patients with:
 - colorectal cancer (Melling N. et al. Diagn Pathol. 2015; 10: 125)
 - OVarian Carcinoma (Kulkarni A. et al. Clin Cancer Res 2009; 15:2417-2425)
 - breast cancer (Choschzick M. et al. Hum Pathol. 2010; 41(3):358-65)
 - lung adenocarcinoma (Datta A. et al. EMBO reports, 2017; 18:2030-2050)
 - oral squamous cell carcinoma (Cheng AN. et al. Cancer Lett. 2013; 337(2):218-25)
- In a study of 62 human cancer cell lines, Cdc7 was found to be increased in ~50%, and CDC7 overexpression was found in 90% of mutant p53 cell lines (Bonte et al., 2008, Neoplasia).
- CDC7 inhibition as a mechanism of action has been trialed in the clinic in at least 18 indications as of 2021 (source: Informa Pharma Intelligence)

•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
							•				

CRH CDC7 inhibitors in cancer models

Lead compounds are CRT'2199 (lead candidate) and CRT'2000 (second candidate) demonstrated potent tumour inhibition (TGI) in in nod/scid mice:

- A498 SC xenograft (renal cancer)
 - 55 TGI after 22 treatment days
- Pfeiffer SC xenograft (DLBCL)
 - 141% TGI after 21 treatment days
- Well tolerated at 40mg/kg and 80mg/kg p.o
 - No treatment related deaths

Pfeiffer 21 days	40 mg/kg BID		p value	80	p value		
	TGI ¹	TGI ²		TGI ¹	TGI ²	PR	
09	8	29	ns	41	138	16	<0.05
012	30	83	ns	70	191	52	<0.05
014	37	96	ns	74	191	58	<0.05
016	37	83	ns	84	189	71	<0.05
019	50	83	<0.05	89	147	71	<0.05
021	48	75	<0.05	90	141	71	<0.05

A498 23 days	40 mg/kg BID		p value	80 mg/	p value	
	TGI ¹	TGI ²		TGI ¹	TGI ²	
D15	25	32	ns	41	52	<0.05
D17	35	43	<0.05	42	52	<0.05
D20	33	38	<0.05	50	58	<0.05
D22	26	30	ns	48	55	<0.05

¹- %TGI =(1-T/C)*100 ²-%TGI = (1-{Tt/T0 / Ct/C0} / 1-{C0/Ct}) X 100 Percent Regression PR = (T0-Tt)/T0 x 100

Pre-candidate molecule profiles

Pharmacodynamics

• Lead compound CRT'2199 and backup CRT'2000 deliver potent, orally

bioavailable CDC7 inhibition

Molecule ID	<u>CRT'2199</u>	<u>CRT'2000</u>				
Potency						
Enzyme IC ₅₀	4 nM	4 nM				
CTG Phenotypic (SW48) EC ₅₀	371 nM	1.3 μM				
CTG Phenotypic (COLO205) EC ₅₀	399 nM	1.1 μΜ				
Biomarker (SW48, pMCM2 ELISA, SAP93) EC ₅₀	76 nM	202 nM				
ADME						
PPB (% Bound)	86.3 (m), 93.8 (h)	20 (m) 50 (h)				
Permeability (Caco-2)	P _{A-B} : 7.3x10 ⁻⁶ cm/s P _{B-A} : 46.7x10 ⁻⁶ cm/s ER: 6.4	PA-B: 1.2x10-6 cm/s PB-A: 21.4x10-6 cm/s ER: 18.4				
CYP450s	$IC_{50} \ge 25 \ \mu M$ for all isozymes	$IC_{50} \ge 25 \ \mu M$ for all isozymes				

•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•

Pre-candidate molecule profiles

Pharmacokinetics

- Lead compound CRT'2199 and backup CRT'2000 deliver potent CDC7 inhibition with favourable PK and low toxicity and a low predicted human dose.
- Low predicted human dose
- In vitro and non-GLP MTD/DRF in rat
 - Favourable tox and tolerability

Molecule Identity	CRT'7461	<u>CRT'2199</u>	<u>CRT'2000</u>	LY3177833		
Pharmacokinetics: SD male rats; 1	mg/kg IV, 3 mg/kg P()				
Cl b mL/min/kg	6	3	20	10		
T1/2 h	5.6	5.6	5.7	3.7		
Vss L/kg	0.9	0.5	1.7	2.7		
%F ро	53	38	39	174		
PD Biomarker						
ln vitro potency SW48, pMCM2 ELISA (SAP93) EC ₅₀	135 nM	76 nM	202 nM	1.4 μM		
PK/PD in mouse xenografts						
<i>In vivo</i> free EC _{50,} nM / 24 h % Inh Colo205 model SW48 model	115 / nd 39 / nd	2 / 83% 67 / 65%	12 / 74% 70 / 84%	nd / 88% 610 / nd		
Estimated Human Pharmacokin	etics: single species	s allometry from rat	and free concentra	tion ≥ free EC90		
Cl b mL/min/kg	Not testsd	0.7	4.9	2.4		
T1/2 h	Not testsd	7.9	4	12.8		
Vss L/kg	Not testsd	0.5	1.7	2.7		
%F ро	Not testsd	38	39	100		
Predicted human efficacious dose						
Based on free MEC <i>ca. in vivo</i> Colo205 free EC ₉₀	Not testsd	64 mg QD 17 mg BID	120 mg BID	nd		
Based on free MEC <i>ca</i> . in vivo SW48 free EC ₉₀	Not tested	557 mg BID	690 mg BID	1470 mg BID		

Available data

Further data packages are available under CDA, including:

- SW48 colon xenograft head-to head: Eli Lily LY3177833 vs CRT'461 (early lead)
- Eurofins Panlabs 210 cell line panel (CRT'461 vs LY3177833) apoptosis and GI₅₀
- Oncolines 102 cell line panel (inc competitor compounds head-to-head)
 - Response profiling
- In-house CRISPR KO drug-gene interaction cell line screen
 - Response profiling and sensitisation profiling in colon cancer lines
- 19 cell line rare cancers IC50 and drug combination screen (inc competitor compounds head-to-head)
- Comprehensive rat tox

•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•			•	•	•	•	•	•	•		•
•		•	•						•	•	
•			•	•	•			•	•		•
•											
•											
		•	•		•				•	•	•
		-	-	-	-	-	-	-	-	-	-

Competitor landscape

- 11 CDC7 inhibitor compounds have entered the clinic; none has progressed to phase III
 - First Phase I entry: 2009; most recent Phase I entry: 2021 more planned
- Trailed indications vary within oncology there is a lack of clear disease positioning for CDC7 as a target

Trial Phase	Trial Status	Sponsor	Oncology Indication	Trial ID	Last Modified	•	•	•	•	
I/II	Terminated	Sierra Oncology {ProNAi Therapeutics}	Colorectal	282965	2021	•	•	•	•	
I.	Terminated	Nerviano Medical Sciences	Unspecified Solid Tumor	124689	2012	•	•	•	•	
I	Terminated	Nerviano Medical Sciences	Unspecified Solid Tumor	118903	2012					
1/11	Terminated	Bristol-Myers Squibb Exelixis	Unspecified Solid Tumor	107633	2018	•	•	•	•	•
1/11	Terminated	Bristol-Myers Squibb Exelixis	Leukemia, Acute Lymphocytic; Leukemia, Acute Myelogenous; Leukemia, Chronic Myelogenous; Myelodysplastic Syndrome	102286	2012		:	:	:	
П	Planned	Zai Lab	Unspecified Cancer	417813	2022					
I	Planned	Lin BioScience	Leukemia, Acute Lymphocytic; Leukemia, Acute Myelogenous; Leukemia, Chronic Myelogenous; Myelodysplastic Syndrome	297560	2021	•	•	•	•	•
I	Open	Sino Biopharm/Chia Tai Tianqing Pharma	Unspecified Solid Tumor	408880	2021	•	•	•	•	•
I	Open	Zai Lab	Unspecified Cancer	395004	2021					
I	Open	Carna Biosciences	Unspecified Solid Tumor	378012	2021	•			•	
I	Open	Cancer Research UK	Bladder; Breast; Colorectal; Esophageal; Head/Neck; Lung, Non-Small Cell; Ovarian; Pancreas; Renal	298491	2021	•	•	•	•	•
I	Completed	Takeda/Takeda Oncology	Colorectal; Endometrial; Esophageal; Lung, Non-Small Cell; Ovarian; Unspecified Solid Tumor	334678	2021	•	•	•	•	•
П	Completed	Takeda/Takeda Oncology	Colorectal; Esophageal; Lung, Non-Small Cell; Pancreas; Unspecified Solid Tumor	307792	2022	•	•	•	•	•
I	Completed	Takeda/Takeda Oncology	Bile Duct (Cholangiocarcinoma); Bladder; Cervical; Esophageal; Gallbladder; Liver; Pancreas	274253	2021	•	•	•	•	•
I	Completed	Nerviano Medical Sciences	Unspecified Cancer	104319	2014					

Intellectual Property

Composition of matter patents filed on two chemical series

Structural approach enabled development of entirely novel chemical classes of CDC7 inhibitors.

- Chemical cores of interest are free from encumbrance
- Lead and backup chemical series covered by composition of matter claims
- First patent family WO 2018/055402
 - PCT filing date 22 September 2017 (US priority application no. US62/398,068)
 - Publication date: 29 March 2018;
- Second patent family WO 2018/087527
 - PCTfiling date: 7 November 2016 (GB priority application no. GB1618845.0)
- Publication date: 17 May 2018
- Both patent families are granted in USA, Great Britain, Germany, Spain, France, Italy.

•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	

•		CANCER RESEARCH HORIZONS	•••	• • •	· · ·		· · · · · · · · · · · · · · · · · · ·	•	•••	· · · · · · · · · · · · · · · · · · ·	• • •	· · ·	•	••• ••• •••	• • •	• • • • • •	•	•		•	• •	•	•
•••	FURTHER SI	Immary	•••	• • •	· ·	•	•••	• •	•••	•••	•	•••	•	•••	•	•••	•	•	•	•	•••	•	• • •
• • • •	•	Potent pre-candidate chemistry – back up compounds available	•	• • •	· · ·																		•
· · · ·	•	Sub-10nM enzyme IC ₅₀ Favourable PK and toxicity	•	• • •	· · ·						Tŀ	ΗA	N	K	Y(Эl	J						•
•••	•	Patents filed on CoM of chemical cores of interest	•	•	•••				Fo	or fu To	rthe ר סrqu	r info Torqu il.Jac	orma uil Ja :ksor	ation cksc n@ca	, ple on, Pl ance	ase hD r.or	con g.uk	tact					•
•••	•	 granted in US, GB, DE, FR, IT Available for licensing and collaborative partnerships 	•	•	•••																		•
· ·	•	Further data is available	•	•	· · ·																		•
•••	••••		•••	•	•••	•	•••	•	•••	•••	•	•••	•	•••	•	•••	•			•	• •	•	•
• •				•		•	• •		• •			• •	•	• •	•	• •	•						•