

Marcelo Ehrlich, PhD & Eran Bacharach, PhD

Clinical Indication: Tumors with defects in IFN/JAK/STAT responses

- Size of target population: ~ 10 % of all cancers are suspected of having inactivating mutations in JAK-STAT signaling.
- Patients which relapse immunotherapy (acquired resistance to checkpoint immunotherapy: currently a population of unknown size) present defects in IFN/JAK/STAT signaling.
- We have identified gene-expression signatures for prediction of susceptibility to EHDV-TAU that may serve to calculate size of target population.
- We have verified the presence of this signature in sizable populations of different cancer cell types: e.g., bladder, melanoma, prostate cancers.

• • Promising innovation

Modality

 EHDV-TAU is a candidate stand-alone agent for oncolytic immune-virotherapy and promising agent for immunotherapy combinations.

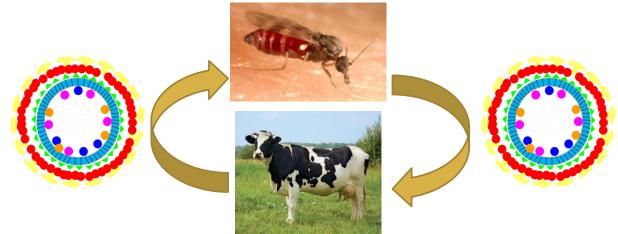
Stage of Development of EHDV-TAU

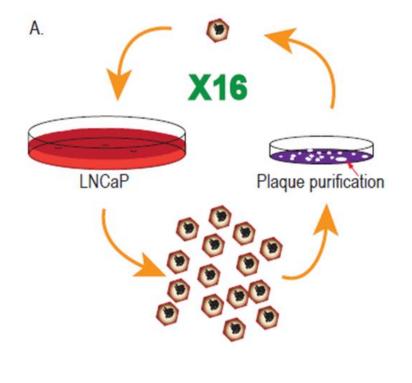
<u>In vitro experiments</u> with multiple cell lines (human and murine) of tumors of different origins. Experiments show that EHDV-TAU is:

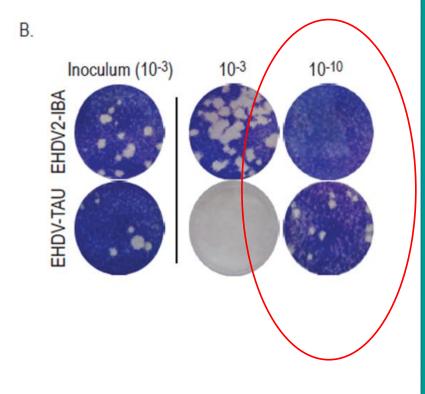
- Specific towards tumors defective in cell-autonomous immune responses;
- Potent;
- Kills cells by different processes including apoptosis and necroptosis,
- Stimulates secretion of immuno-stimulatory cytokines/chemokines.

In vivo experiments in pre-clinical models with immunocompetent and immunodeficient mice show that EHDV-TAU is:

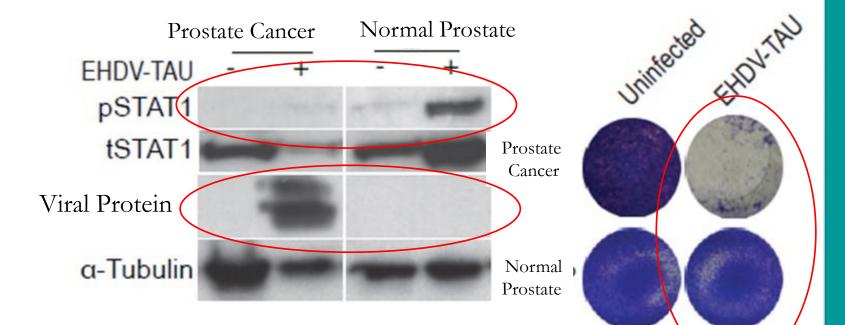
- Safe
- Efficient in inhibition of growth of directly-treated and distant tumors (abscopal effect)
- Capable of enhancing tumor-infiltration of immune-effector cells.


In silico gene expression analyses identify sizeable portions of patients with tumors of different origins that exhibit signature of predicted susceptibility to EHDV-TAU

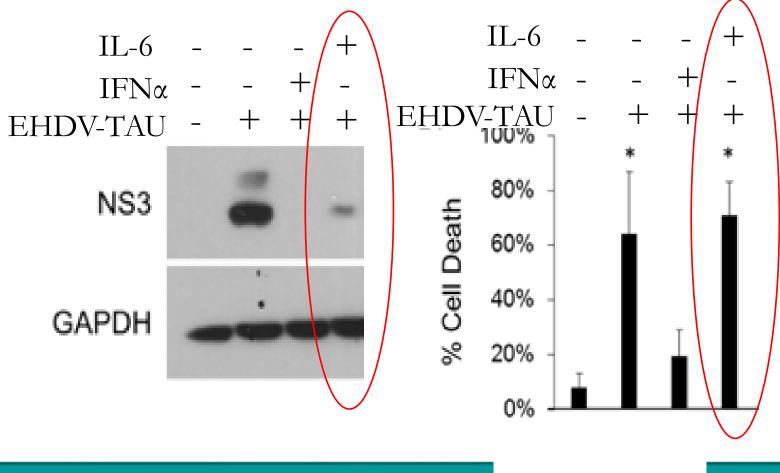


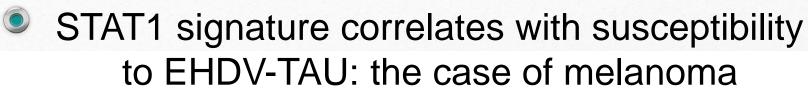

Our novel agent: Epizootic Hemorrhagic Disease Virus-Tel Aviv University

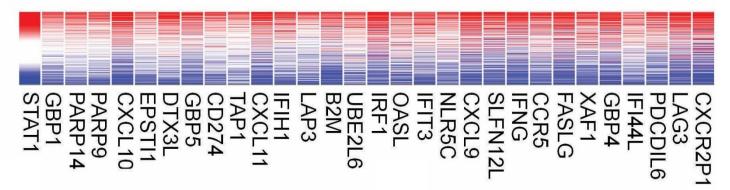
- Veterinary Arbovirus (no pre-existing neutralizing immunity, no host-to-host transmission)
- In vitro evolution in interferon-defective human cancer cells
- Kills cancer cells through different processes (apoptosis, necroptosis)
- Replicates to high titers in cancer cells but not normal cells
- Potent stimulator of immunity (e.g., via dsRNA genome or cytolytic cell death)
- Kills subset of immunocompetent cells via Oncolysis By Non-Productive Viral Infection (ONPVI)
- Stimulates secretion of immune-modulatory cytokines/chemokines


In vitro evolution results in million-fold increase in titer in human cancer cells

Danziger et al., 2016

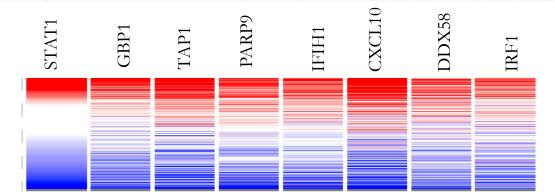



Shown to be effective against a variety of tumors: Prostate, Melanoma, Bladder, Ovarian, Lung, Breast, Glioblastoma, Astrocytoma, Osteosarcoma


Danziger et al., 2016

Uniqueness: Kills a subset of cancer cells by Oncolysis by Non-Productive Viral Infection (ONPVI) in presence of inflammatory cytokines

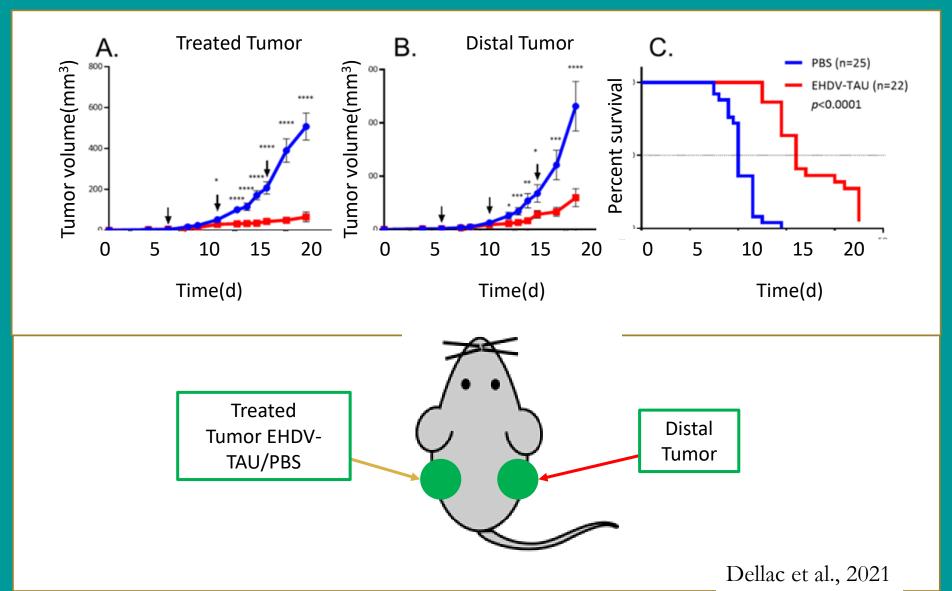
Danziger et al., 2018

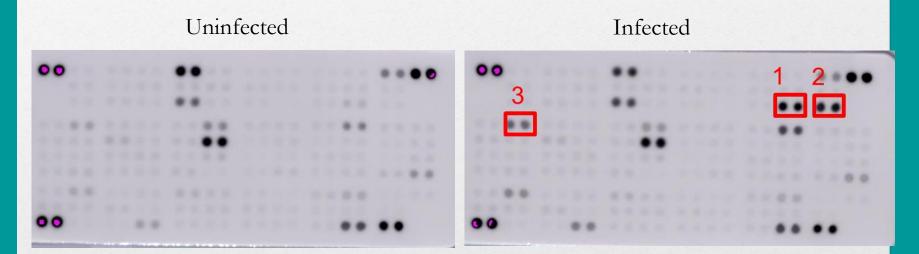


702 genes with Spearman's Correlation Coefficient > 0.5

Correlated Gene	Cytoband S	pearman's Correlation	p-Value
APOL6	22q12.3	0.889842704	4.48E-125
GBP1	1p22.2	0.878994185	3.70E-118
PARP9	3q21.1	0.846922468	4.62E-101
CXCL10	4q21.1	0.829799532	1.80E-93

PANTHER Pathways	Fold Enrichment	+/-	raw P value	FDR
T cell activation	9.33	+	1.99E-15	3.27E-13
Inflammation	4.77	+	3.44E-13	2.82E-11
JAK/STAT signaling	10.43	+	2.73E-04	7.45E-03
			Dellac et al., 2021	

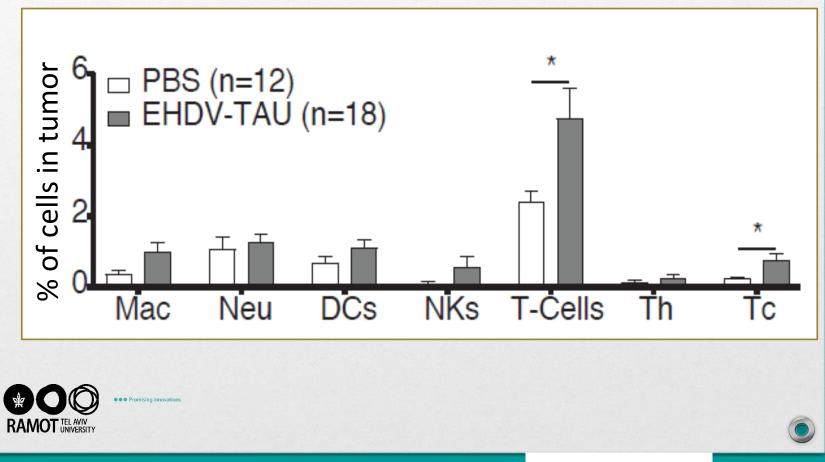

STAT1 signature in Bladder Cancer


550 genes with Spearman's correlation > 0.5

	GBP1	1p22.2	0.856195	8.85E-117				
	PARP9	3q21.1	0.855037	3.89E-116				
	IFIH1	2q24.2	0.847893	2.74E-112				
	CXCL10	4q21.1	0.828691	7.35E-103				
PANTHER Pathways			Fold Enrichment raw P value					
T cell act	ivation			10.18	2.86E-16			
Inflammation mediated by chemokine and cytokine								
signaling pathway				5.06	1.46E-13			
Interleukin signaling pathway				5.21	9.07E-06			
JAK/STAT signaling pathway				13.65	1.75E-05			

In-vivo oncolysis and safety: Direct and abscopal anti-tumor effects that prolong survival

Immuno-stimulation: Induces secretion of NK, Neutrophil and T-cell activating chemokines from infected cancer cells. Activates immune *cells exvivo*



Cytokine array identifies: CXCL1, CXCL2 and CXCL10 secretion by infected cells

Dellac et al., 2021

EHDV-TAU enhances immune-infiltrate (e.g. cytotoxic T-cells) in treated tumors

Dellac et al., 2021

(

Bibliographic references of the project:

- 1. Shai B, Schmukler E, Yaniv R, Ziv N, Horn G, Bumbarov V, et al. Epizootic hemorrhagic disease virus induces and benefits from cell stress, autophagy, and apoptosis. J Virol. 2013;87(24):13397-408.
- Danziger O, Shai B, Sabo Y, Bacharach E, Ehrlich M. Combined genetic and epigenetic interferences with interferon signaling expose prostate cancer cells to viral infection. Oncotarget. 2016;7(32):52115-34..
- 3. Danziger O, Pupko T, Bacharach E, Ehrlich M. Interleukin-6 and Interferon-alpha Signaling via JAK1-STAT Differentially Regulate Oncolytic versus Cytoprotective Antiviral States. Front Immunol. 2018;9:94.
- 4. Dellac S, Ben-Dov H, Raanan A, Saleem H, Zamostiano R, Semyatich R, et al. Constitutive low expression of antiviral effectors sensitizes melanoma cells to a novel oncolytic virus. Int J Cancer. 2021;148(9):2321-34
- 5. Ehrlich M, Bacharach E. Oncolytic Virotherapy: The Cancer Cell Side. Cancers (Basel). 2021;13(5).
- 6. Barer L, Schröder SK, Weiskirchen R, Bacharach E, Ehrlich M. Lipocalin-2 regulates the expression of interferon-stimulated genes and the susceptibility of prostate cancer cells to oncolytic virus infection. Eur J Cell Biol. 2023;102(2):151328

