1 Generation of anti-tumor chimeric antigen receptors incorporating T cell

2 signaling motifs

4	Lakshmi Balagopalan ^{1,*} , Taylor Moreno ¹⁺ , Haiying Qin ²⁺ , Jason Yi ¹ , Katherine M.
5	McIntire ¹ , Neriah Alvinez ¹ , Sandeep Pallikkuth ¹ , Mariah E. Lee ¹ , Hidehiro Yamane ¹ ,
6	Andy D. Tran ³ , Philippe Youkharibache ⁴ , Raul E. Cachau ⁵ , Naomi Taylor ² and
7	Lawrence E. Samelson ^{1,*}
8	
9	⁺ These authors contributed equally to this work
10	
11	¹ Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National
12	Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
13	
14	² Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute,
15	National Institutes of Health, Bethesda, MD, USA.
16	
17	³ Laboratory of Cancer Biology and Genetics (CCR Microscopy Core), National Cancer
18	Institute, National Institutes of Health, Bethesda, MD, USA.
19	
20	⁴ Cancer Data Science Laboratory, National Cancer Institute, National Institutes of
21	Health, Bethesda, MD, USA.
22	
23	⁵ Integrated Data Science Section, Research Technologies Branch, National Institute of
24	Allergy and Infectious Diseases, Bethesda, MD, US
25	
26	
27	* Address correspondence to:
28	balagopl@mail.nih.gov (L.B.), samelsonl@mail.nih.gov (L.E.S)
29	

30 Abstract

31

32	Chimeric antigen receptors (CAR) T cells have been successfully used to treat
33	lymphoma, leukemia, and multiple myeloma, but adverse effects due to cytokine
34	secretion, CAR-T cell exhaustion, and loss of target antigen have limited their potential.
35	Furthermore, while CARs have been designed to harness T Cell Receptor (TCR)
36	signaling, they are significantly less sensitive than TCRs, resulting in suboptimal
37	signaling. We have developed novel Chimeric Adapter Proteins (CAPs) that are
38	designed to trigger signaling downstream of the TCR ζ chain. CAPs are chimeric
39	molecules that contain adapter domains in tandem with the kinase domain of ZAP70,
40	fused to an extracellular targeting domain. We hypothesized that CAPs would be more
41	potent than CARs because kinetic proofreading steps that define the signaling threshold
42	and the inhibitory regulation of upstream molecules are bypassed. Indeed, second
43	generation CAPs exhibited high anti-tumor efficacy, and significantly enhanced long-
44	term in vivo tumor clearance in leukemia-bearing NSG mice as compared with
45	conventional CD19-28 ζ CAR-T. Mechanistically, CAPs were activated in an Lck-
46	independent manner and displayed slower phosphorylation kinetics and a longer
47	duration of signaling compared with 28ζ-CAR. The unique signaling properties of CAPs
48	may therefore be harnessed to improve the in vivo efficacy of T cells engineered to
49	express an anti-tumor chimeric receptor.
50	
51 52 53 54	Keywords: CAR, immunotherapy, TCR signaling, ZAP70

56 Introduction

57	Chimeric antigen receptors (CARs) are molecules composed of an antibody
58	fragment specific for a tumor antigen, fused to a transmembrane domain, a
59	costimulatory domain, and a T-cell-signaling moiety, typically the T cell receptor zeta
60	(TCR ζ) chain. Most notably, CARs have been transformative in eradicating lymphoma,
61	leukemia, and multiple myeloma (1-4). However, CAR efficacy in treating solid tumors
62	has been limited. CAR-T cell exhaustion, cytokine-mediated toxicity, and disease
63	relapse in situations where there is a low density of target antigen are several challenges
64	for the successful use of CAR-T immunotherapy (5). As such, improvement in current
65	CAR designs is a critical parameter that may be targeted to increase their efficacy.
66	CARs have been designed based on an attempt to harness TCR signaling.
67	However, despite many permutations, CARs remain significantly less sensitive than
68	TCRs (6). Unlike TCRs that can trigger T cell activation after the binding of as few as 1
69	to 10 ligands—a complex of agonist peptide and a molecule encoded by the major
70	histocompatibility complex (pMHCs) (7-9), CARs require thousands of surface antigen
71	molecules for productive signaling. Moreover, recent studies comparing TCR and CAR
72	signaling revealed a blunting of proximal signaling from CARs (6, 10, 11). In an attempt
73	to overcome these issues, we designed chimeric molecules with altered intracellular
74	signaling domains. We hypothesized that incorporation of downstream T cell signaling
75	molecules into the CAR design will allow for more sensitive and robust signaling. The
76	proposed recombinant <u>Chimeric Adapter Protein</u> (CAP) is designed to bypass the TCR ζ
77	chain used in current FDA-approved CARs. Our original CAPs are chimeric molecules

78	in which the extracellular targeting domain is linked to adapter domains in tandem with
79	the kinase domain of ZAP70, a critical T cell protein tyrosine kinase (PTK).
80	The generation of CAPs was based on observations that following T cell
81	activation, downstream adapter molecules form a distinct signaling cluster that
82	segregates from the TCR complex and the kinase ZAP-70 (12). From this observation,
83	we hypothesized that first, by linking the adapter proteins to ZAP70, an active adapter
84	cluster would be generated by bypassing the need for TCR subunit activation. Second,
85	direct triggering of the downstream signaling cascade via CAPs would bypass early
86	events at the TCR, which behave as proofreading steps. These events are postulated to
87	be required for crossing signaling thresholds before physiological T cell activation can
88	be achieved (13) . Thus, this type of bypass could potentially lead to a more sensitive and
89	potent activation of T cells.
90	Here, we have designed and generated novel CAPs that bypass the TCR ζ
91	domains used in current FDA-approved CAR designs. These CAPs fuse an extracellular
92	targeting domain to intracellular domains derived from downstream T cell signaling
93	proteins that we have identified in distinct signaling clusters. CAPs harboring an scFv

94 against CD19 (FMC63) and fused to LAT or SLP76 adapter moieties in tandem with the

95 ZAP70 kinase domain, were generated. Importantly though, T cells expressing CAPs

96 (CAP-Ts) containing adapter moieties promoted high levels of basal cytokine secretion

97 in an antigen-independent manner. Therefore, CAPs that exclusively contained ZAP70

98 domains were further developed and these constructs demonstrated low basal activation

and high antigen-specific cytokine production and cytotoxicity. First generation CAPs

100 containing ZAP70 domains, and second-generation CAPs, containing ZAP70 and CD28

101	costimulatory domains, were further evaluated for their ability to eliminate CD19 ⁺
102	leukemia in a humanized NOD/scid/gamma (NSG) murine xenograft model. Second
103	generation CAPs exhibited high anti-tumor efficacy, and significantly enhanced long
104	term in vivo tumor clearance in leukemia-bearing NSG mice as compared with
105	conventional CD19-28ζ CAR-T.
106	The enhanced efficacy of CAPs was associated with distinct signaling properties.
107	Confocal and TIRF microscopy revealed a delayed recruitment of signaling molecules to
108	CAP microclusters together with a decreased magnitude of signaling at the CAP
109	immune synapse. Importantly, CAP signaling was maintained for a longer duration than
110	28ζ -CAR signaling. Moreover, the kinetics of activation of proximal signaling
111	molecules, as evaluated as by determining their phosphorylation status was prolonged
112	with CAP-induced signaling, We also found that CAPs but not CARs were activated in
113	an Lck-independent manner. Thus, the increased tumor clearance and persistence by
114	CAP-Ts may be due to the direct downstream activation of signaling molecules,
115	bypassing inhibitory signals and resulting in a lower level but longer duration of
116	signaling.
117	

119 **Results**

120 CAPs can bypass upstream proteins and signal to downstream proteins

121	CAPs are chimeric molecules that contain adapter domains in tandem with the
122	kinase domain of ZAP70, fused to an extracellular targeting domain. CAPs are designed
123	to enable adapter phosphorylation by ZAP70 upon engagement of the extracellular
124	domain. Adapter phosphorylation should then lead to activation of downstream signaling
125	cascades and T cell activation, by passing the TCR ζ chain used in current FDA-approved
126	CARs (Fig. 1A).
127	We first tested CAP potential using the adapter protein LAT. As a proof-of-
128	principle, a chimeric CD4-LAT construct was used as a backbone (14), fusing the C
129	terminus to the ZAP70 kinase domain (KD) to generate CD4-CAP (Fig. 1B). GFP tags
130	were incorporated at the C terminus of both constructs and GFP-tagged CD4-LAT and
131	CD4-CAP were expressed in Jurkat T cells. Consistent with previously published results
132	(14), we observed that CD4-LAT-GFP did not cluster on anti-CD4 coated coverslips. In
133	contrast, when CD4-CAP-GFP-expressing cells were dropped on anti-CD4 coated
134	coverslips, CD4-CAP displayed robust microcluster formation and cell spreading,
135	indicative of activation (Fig. 1 C). These microclusters colocalized with
136	phosphotyrosine (fig. S1A), confirming an initiation of T cell activation. Microclusters
137	did not form on anti-CD43 or anti-CD45 coated coverslips, indicating that binding of the
138	CD4 extracellular domain to anti-CD4 antibodies specifically mediated cluster formation
139	(fig. S1B). CD4-CAP-GFP microclusters did not colocalize with TCR ζ and ZAP70, but
140	colocalized with downstream signaling proteins including Grb2, SLP76 and PLC γ 1 (Fig.
141	1D), cytosolic proteins that are recruited to phosphorylated LAT molecules upon TCR-

142 mediated activation (15). These results indicate that in an *in vitro* Jurkat model,

143 engineered CAP molecules bypass the TCRζ chain and signal to downstream proteins in
144 a ligand-specific manner.

145

146	Screening of CD19-CAP constructs containing LAT, SLP76 and ZAP70 domains
147	We next generated CD19-CAPs by replacing the CD4 extracellular domain of
148	CD4-CAP with the anti-CD19 FMC63 moiety to generate CD19-CAP1 (Fig. 2A). The
149	LAT hinge and TM domains were also replaced with CD28 hinge and TM domains used
150	in the FDA-approved second-generation CD19-28 ζ CAR (16). To evaluate localization
151	of CD19-CAP1 and assess whether CD19 binding led to intracellular signals, CD19-
152	CAP1-GFP was generated and co-transfected with Grb2-Apple into Jurkat T cells. Upon
153	interaction with CD19-expressing Raji B cells, both CD19-CAP1-GFP and Grb2-Apple
154	showed robust recruitment to the immune synapse (Fig 2B), indicating that CD19-CAP1
155	can signal to downstream proteins in an antigen-dependent manner. However, Jurkat T
156	cells transfected with CD19-CAP1 showed high levels of basal CD69 expression
157	compared with mock transfected controls (fig. S2A), indicating that expression of CAP1
158	molecules cause high levels of tonic signaling. Though tonic signaling in T cells via the
159	endogenous TCR and self-peptide loaded MHCs is associated with homeostasis (17),
160	tonic signaling in CAR-Ts has been associated with adverse effects such as CAR-T
161	exhaustion, limiting efficacy (18) . In an attempt to decrease the tonic signaling observed
162	in CAP1, we designed CAPs in which the ZAP70 Interdomain B (IB) domain was
163	included, because fusion of the ZAP70 IB domain with the kinase domain (KD) has
164	been shown to regulate ZAP70 kinase domain activity (19). CD19-CAP2 included the

165	ZAP70 IB+KD fused with LAT. In CD19-CAP3, the LAT intracellular domain was
166	replaced with SLP76, based on previous observations that the SLP76 adapter is capable
167	of fully reconstituting LAT-deficient Jurkat T cells (20). In CD19-CAP3, the CD28
168	hinge and transmembrane domains were replaced with LAT sequences. Finally, CD19-
169	CAP4, including only the ZAP70 IB+KD domains, was generated (Fig. 2A). Cell
170	surface expression of these constructs was assessed in primary human T cells and a
171	construct similar to the FDA-approved CD19-4-1BB ζ CAR was used as a positive
172	control. While surface expression of all CAP constructs was significantly lower than that
173	of the 4-1BB ζ CAR positive control, differences in the relative cell surface expression
174	of the different CAP constructs were also detected. CAPs that contained either LAT
175	intracellular domains in tandem with ZAP70 domains (CAP1 and CAP2) or LAT TM
176	domain and SLP76 intracellular domain in tandem with ZAP70 domains (CAP3)
177	showed poor cell surface expression. However, CAP4, containing only intracellular
178	ZAP70 domains, showed the highest surface expression amongst the tested CAP
179	constructs (fig. S2B and C).
180	In an attempt to elucidate the characteristics that may have resulted in changes in
181	expression levels and function of the different CAP constructs, we performed structural
182	modeling. We found that the modification of the intracellular motif had a measurable

183 influence on the properties of the CAP models, mainly affecting transmembrane (TM)

184 domain stability. The major difference predicted by the modeling was that any

185 molecules containing LAT sequences (CAP1, CAP2, CAP3) were unstable and failed to

186 reach equilibrium using Molecular Dynamics. CAP4 was more stable (for details on

187 protocols of model generation go to Supplemental Methods).

188	The functionality of CAPs were then compared with a 4-1BBζ-CAR in standard
189	in vitro assays, evaluating cytotoxic activity and cytokine production. In a standard 4-
190	hour cytotoxicity assay, CARs and CAPs showed nearly equivalent tumor cell killing
191	(Fig. 2C). Of note, cells expressing CAP1, CAP2 and CAP3 displayed slightly elevated
192	antigen-independent cytoxicity, albeit <15%. In a standard overnight cytokine assay, T
193	cells expressing CAP1, CAP2 and CAP3 produced significantly higher levels of IFN γ
194	than the 4-1BB ζ positive control CART cells. Notably, antigen-independent IFN γ
195	production was also high in these groups indicating a high level of tonic signaling by
196	these CAPs. CAP4 was the only CAP molecule amongst those tested that showed robust
197	cytokine production, comparable with 4-1BBζ CAR T cells in a strictly antigen-
198	dependent manner (Fig. 2D). Moreover, cells expressing CAP4 displayed robust
199	proliferation, comparable with mock-transduced and 4-1BBζ CAR T cells (Fig. 2E).
200	This screening of CAP constructs indicates that CAP4 is the only CAP that is highly
201	functional in an antigen-dependent manner. Therefore, we focused our further
202	development of CAP constructs on the CAP4 backbone, which contained only ZAP70
203	domains in the intracellular region.
204	

205 Screening of CD19-CAP constructs containing ZAP70 domains

CAP4-modified constructs all contained the CD19scFv extracellular domain, the
 CD28 hinge and TM domain, and various ZAP70-containing intracellular domains (Fig.

- **3A)**. The CAP4.2 construct is identical to the original CAP4 construct but contains a
- 209 G4S linker between the CD28 TM domain and ZAP70-IB+KD domain, potentially
- affording more flexibility for the intracellular domain. Additionally, we designed CAP4

211	constructs that contained the CD28 costimulatory domain. In CAP4.6, the CD28
212	costimulatory domain was fused with the ZAP70 IB+KD domain. We also generated
213	CAP4.7, which includes full-length ZAP70, including the N-terminal SH2 domains,
214	because the N-terminus of ZAP70 plays an important role in regulating the threshold of
215	T cell signaling (21-23). Finally, CAP4.8 was designed to include a mutated CD28
216	signaling domain that cannot bind downstream signaling proteins (24). The four CAP4
217	constructs thus fall into two categories: generation 1 CAPs (CAP4.2 and CAP4.8) that
218	do not contain costimulatory capacity, and generation 2 CAPs (CAP4.6 and CAP4.7)
219	that have functional CD28 costimulatory capacity. Expression of these constructs was
220	tested in T cells with CD19-4-1BB ζ CAR as a positive control. Surface expression of all
221	CAP4 constructs, except for CAP4.7, which includes full-length ZAP70 and is
222	significantly larger than all other constructs tested, were similar. While CAP4.2, CAP4.6
223	and CAP4.7 expression were 25-30% lower than the 4-1BBζ-CAR, CAP4.7 expression
224	was ~70% lower than the positive control (fig. S3A and B). Evaluation of total cellular
225	expression of these constructs by western blotting of whole cell lysates under reducing
226	conditions showed expected mobilities (fig. S3C-E). Moreover, when expression of the
227	constructs in whole cell lysates was detected under non-reducing conditions without
228	DTT to evaluate oligomerization, we detected higher order protein complexes of CARs
229	and CAPs (fig. S3C-E). These data suggest that these chimeric molecules form
230	covalently-linked oligomers in cells under non-stimulated conditions.
231	The functionality of CAPs were then compared with a 4-1BBζ-CAR in standard
232	in vitro assays, evaluating cytotoxic activity and cytokine production. In a standard
233	overnight cytokine assay, all CAPs produced IL2 at levels comparable to the 4-1BB ζ

234	positive control CAR in response to target antigen (Fig. 3B). While CAP4.6-expressing
235	T cells produced elevated basal levels of IFN γ , all other CAPs produced IFN γ at levels
236	comparable with the 4-1BB ζ positive control CAR in a target antigen-dependent manner
237	(Fig. 3C). In a standard 4-hour cytotoxicity assay, CARs and all CAP4s showed
238	equivalent tumor cell killing in a strictly antigen-dependent manner (Fig. 3D). Finally, T
239	cells expressing CAP4s displayed robust proliferation, comparable with mock-
240	transduced and 4-1BBζ CAR-expressing T cells (Fig. 3E). Together, our in vitro
241	analyses indicate that addition of the CD28 costimulatory domain only increased
242	antigen-independent cytokine secretion in the presence of the ZAP70 IB+KD domains
243	alone. All other CAP4 constructs were highly functional in an antigen-dependent
244	manner.
245	
246	CD19-CAP4 constructs show robust efficacy in an <i>in vivo</i> NSG leukemia model
247	In order to further differentiate CAP4 candidates, we evaluated their in vivo
248	efficacy in an immunodeficient NOD/scid/gamma (NSG) mouse model (Fig. 4A). As
249	high levels of signaling by 28ζ-CARs are linked to T cell exhaustion in the setting of
250	high antigen density (11, 25, 26), we tested sub-curative doses of CAP4 versus 28ζ -
251	CAR T cells (3e6) in NSG mice engrafted with Nalm6 leukemia cells that express high
252	levels of CD19. Surface expression of 28ζ -CAR and CAPs were evaluated on the
253	transduced donor T cells prior to infusion in NSG mice. CAPs 4.2, 4.6 and 4.8 showed
254	similar levels of expression to 28 ζ -CAR, but surface expression of CAP4.7 was ~45%
255	lower than the positive control (fig. S4A). While the percentages of naïve, central
256	memory and offector T call subsets were similar in all groups 28% CAP transduced

257	donor T cells exhibited higher levels of the CD25 (IL2R α) activation marker as
258	compared to T cells transduced with the different CAP constructs (fig. S4B and C).
259	These data suggest that CAP-transduced T cells may have a lower level of basal
260	signaling than 28ζ-CAR T cells.
261	28ζ -CAR-Ts and all tested CAP4-Ts exhibited early efficacy in reducing tumor
262	burden as compared with mock-transduced T cells (Fig. 4B and C). Notably though, by
263	day 30, mice treated with 28ζ -CAR, CAP4.2, and CAP4.8 relapsed, while CAP4.6 and
264	CAP4.7-treated mice achieved a more durable tumor regression. Flow cytometry
265	analyses of peripheral blood T cells at 30 days following tumor injection revealed a
266	higher percentage of CD3 ⁺ T cells in CAP4.7-treated mice as compared with 28ζ -CAR
267	positive control (Fig. 4D). Interestingly, detectable surface CAR and CAP expression in
268	all groups was low (means of <25%), potentially due to internalization after activation
269	(Fig. 4E) (27). We also assessed the differentiation states of the adoptively transferred
270	T cells, as phenotype has been shown to strongly correlate with antitumor potency (28,
271	29). Analyses of T cell subsets in peripheral blood revealed a higher percentage of
272	central memory cells (T _{cm} CD62L ⁺ CD45RA ⁻), and fewer effector memory cells (T _{em}
273	CD62L ⁻ CD45RA ⁻) in CAP4.7-Ts as compared with 28ζ -CAR-Ts (Fig. 4F). These
274	trends were also observed in flow analyses of spleen at Day 44 (Fig. 4 G-I). Thus
275	CAP4.7-Ts induce a more durable remission, associated with a more enhanced
276	accumulation of central memory T cell populations compared with T cells transduced
277	with the conventional 28ζ -CAR vector.
278	We next sought to compare CAP4 constructs with 4-1BB ζ -CAR, because 4-
279	1BBC -CAR T-cells have been suggested to exhibit less exhaustion and better

280	persistence than 28ζ -CAR T-cells (18). As seen in the previous experiment, surface
281	expression of 4-1BBζ-CAR and CAPs 4.2, 4.6 and 4.8 were similar, with lower surface
282	expression of CAP4.7 (fig. S5A). Donor T cells transduced with 4-1BB ζ -CAR and
283	CAPs showed similar levels of CD25 surface expression as well as similar percentages
284	of naïve, central memory, and effector memory T cell subsets (fig. S5B and C). 4-1BB ζ
285	-CAR and all CAPs tested were able to eradicated the engrafted leukemia, but tumors
286	returned in mice treated with first generation CAP (CAP4.2 and CAP4.8). Notably
287	though, we detected durable tumor control in mice treated with T cells transduced with
288	4-1BBζ -CAR and second-generation CAPs (CAP4.6 and CAP4.7; fig. S5D and E).
289	Flow cytometry analyses of peripheral blood at Day 34, the time when tumor control
290	began to diverge, showed that CD3 ⁺ cells were present at higher levels in 4-1BB ζ -CAR
291	and CAP4.7-treated mice compared to other CAPs (fig. S5F). However, detectable
292	surface CAP expression on all CAP groups was lower than the 4-1BB ζ -CAR T-cell
293	control (fig. S5G). Analyses of T cell differentiation states in the spleen showed similar
294	results and a higher percentage of T_{cm} and lower percentage of T_{em} in CAP4.7-Ts
295	compared with 4-1BB ζ -CAR-Ts (fig. S5H-J). Taken together, these <i>in vivo</i>
296	experiments demonstrate that second generation CAPs exhibit efficacy, mediating
297	durable remissions of Nalm6 leukemia. Moreover, CAP4.7-Ts despite having the lowest
298	expression of a CAP molecule at the initiation of the <i>in vivo</i> experiment, have the best
299	expansion and least differentiated profile compared with both 28 ζ and 4-1BB ζ -CAR T
300	cells.
201	We conducted structural modeling to gain insights into the functional differences

We conducted structural modeling to gain insights into the functional differences
 between the CAP4 constructs. Molecular models were generated using a previously

303	described protocol (30) . The results of this analysis suggest that minor changes in the
304	intracellular domain significantly impact the transmembrane domain. CAP4.2 appears to
305	be less stable due to the GGGS linker while the inclusion of the CD28 intracellular
306	domain appears to have a stabilizing effect in CAP4.6, CAP4.7 and CAP4.8. While a
307	quantitative comparison of the models is difficult due to the lack of experimental
308	structural information for full-length CAR-Ts, we explored the use of AlphaFold as a
309	means of generating partial models of the different CAPs. AlphaFold proved helpful for
310	the generation of ZAP70-based dimers. We used these statistically better-predicted
311	regions and combined them with our previous models to generate suitable chimeras to
312	further assess the effect of sequence modifications on CAR stability. Renditions of the
313	models are presented in fig. S6. The Buried Solvent Accessible Area value (BSAS),
314	which correlates with molecule stability, varies widely for the CAP4 series, with the
315	CAP4.2 construct exhibiting the lowest BSAS value of 549.8Å ² . CAP4.6, CAP4.7, and
316	CAP4.8 all had higher BSAS values, with CAP4.7 having the highest BSAS value
317	(1372.3 Å ² , fig. S6F). Importantly, BSAS values correlated with the experimental data,
318	with CAP4.7 appearing to exhibit the most stability, comparable to previously reported
319	data for FMC-63 28ζ and Hu19-CD8-28ζ CARs (30).
320	

321 Immune Synapses and microclusters generated by CAP4.7 and 28-ζ constructs

322 show distinct properties

To begin to assess the mechanisms accounting for the efficacy of second

324 generation CAPs (CAP4.6 and CAP4.7), we first evaluated their subcellular localization

325 by microscopy in the context of the immunological synapse (IS) and microclusters.

326	Lentiviral constructs encoding GFP-tagged 28ζ -CAR and CAP4.7 constructs were
327	generated and expressed in Jurkat T cells harboring ZAP70-Apple. These Jurkats were
328	incubated on coverslips loaded with CD19-expressing Raji B cells. Cell conjugates were
329	then fixed after 10 minutes and immunostained for phospho-SLP76 (pSLP76) to
330	evaluate proximal signaling. This method allowed us to visualize both the chimeric
331	molecules and proximal signaling proteins at the IS. Robust recruitment of both 28ζ -
332	CAR and CAP4.7 at the IS was observed at this time point, with equivalent synapse
333	volumes of CAR and CAP (Fig. 5A and B). By contrast, ZAP70 and pSLP76 were
334	present at significantly lower levels in the CAP4.7 synapse (Fig. 5C). When intensity at
335	the IS was normalized to the total cellular intensity of the corresponding protein, pSLP
336	was still recruited at significantly lower levels at the CAP4.7 IS (Fig. 5D). Thus, CAP-
337	expressing cells efficiently form synapses and recruit CAP molecules to the IS at similar
338	levels to 28ζ-CAR, albeit with recruitment of lower levels of phosphorylated proximal
339	signaling molecules at CAP synapses.
340	To investigate whether the lower amount of proximal signaling proteins at CAP
341	synapses was due to a change in recruitment kinetics, we next evaluated recruitment of
342	signaling molecules in live cell imaging experiments at CAR/CAP microclusters. We
343	transfected GFP-tagged CAR and CAP cells with ZAP-Apple or Grb2-Apple and
344	evaluated recruitment of Apple-tagged proteins to GFP microclusters formed on CD19-
345	Fc-coated coverslips by TIRF microscopy and imaged cells at room temp (21 °C), to
346	slow down microcluster formation kinetics. Quantification of fluorescent intensities
347	showed that ZAP and Grb2 were recruited to 28ζ -CAR microclusters with similar

348 kinetics (~30sec for ZAP70 to 28ζ-CAR and ~60 sec for Grb2 to 28ζ-CAR) as

367	Signaling downstream of CAPs and 28ζ -CAR differ in strength and kinetics
366	
365	CAR signaling.
364	microclusters is delayed, CAP signaling is maintained for a longer duration than 28ζ -
363	IS decreased and the kinetics of recruitment of signaling molecules to CAP
362	and K). Together these data indicate that while the magnitude of signaling at the CAP
361	significantly longer periods of time compared with 28ζ -CAR microclusters (Fig. 5 J
360	microclusters as well as Grb2 recruited to CAP microclusters, accumulated for
359	shorter than the 61 sec lag observed for Grb2 to be recruited to the CAP. Second, CAP
358	28ζ-Grb2 lag (49.54) to yield a value of 21.28 sec for ZAP-Grb2, which is considerably
357	This parameter can be extracted by subtracting the 28ζ -ZAP (28.26 sec) lag from the
356	is compared with the corresponding ZAP-Grb2 kinetic lag in 28ζ–CAR expressing cells.
355	kinetics of Grb2 becomes even more apparent when the CAP-Grb2 kinetic lag (61 sec)
354	intensities (Fig. 5H and I). The difference between CAR and CAP in recruitment
353	assessed from the kinetic lag measurements of the differences in half-max fluorescent
352	microclusters. First, recruitment of Grb2 molecules to CAP microclusters was delayed as
351	of ZAP70 to the CAP IS (Fig. 5G). Two additional differences were observed at CAP
350	recruitment to CAP microclusters was not observed, consistent with reduced recruitment
349	previously reported for recruitment to TCR ζ (12) (Fig. 5E and F). ZAP-Apple

To assess the extent to which CAPs engage the signaling machinery of the TCR
complex relative to a CAR, the kinetics of activation of a panel of proximal signaling
molecules were evaluated as a function of their phosphorylation status. Jurkat T cells
that had been lentivirally transduced with 28ζ -CAR, CAP4.6 or CAP4.7 constructs

272	• 1 • 1 • 1	CD10 /		10 V.	$\mathbf{T} \mathbf{Z} \mathbf{Z} \mathbf{C} \mathbf{O} \mathbf{A} = \mathbf{A} \mathbf{C} \mathbf{O} \mathbf{A}$
$\langle 1 \rangle$	were inclubated with	(1) 9-negative	(narental) or ((1) 9-n 0s1ft	ve K hh/ farget cells
572	were measured with	CD17 negutive	(purchai) or c		ve 12302 turget cents.

373 Phosphorylation of the chimeric receptors themselves was detected using a phospho-

- 374 TCRζ antibody. 28ζ -CAR phosphorylation (pCAR) peaked early at 2 min and showed
- 375 rapid dephosphorylation (Fig. 6A and B). In contrast, CAP phosphorylation (pCAP) as
- 376 detected by phospho-ZAP, showed slower and more stable phosphorylation kinetics.
- 377 CAP4.6 had high basal rates of phosphorylation that increased upon stimulation, while
- 378 CAP4.7 had no detectable basal signaling and absolute levels of phosphorylation were
- 379 much lower than that of CAP4.6. Importantly though, phosphorylation kinetics were
- 380 similar between both CAPs; they showed peak phosphorylation at 15 min after which

381 both CAPs showed slow rates of dephosphorylation. Thus, rates of phosphorylation

- 382 onset and dephosphorylation of CAPs were lower than for 28ζ-CAR (Fig. 6C and D)
- and CAPs remain phosphorylated for a longer duration.
- We next evaluated TCR proximal signaling events (Fig. 6A). Both CAR and
- 385 CAP molecules induced sequential phosphorylation of Lck, LAT, SLP76, PLC_{γ1}, Akt
- and ERK, all of which are involved in the classic TCR signaling pathway. Similar to the
- 387 phosophorylation data for the chimeric receptors themselves, signaling molecules
- remained phosphorylated for a longer duration in CAP-stimulated cells (Fig. 6B). While
- 389 signaling levels of the more proximal molecules (Lck, LAT, SLP76 and PLCγ1) were
- 390 higher in 28ζ -CAR than CAPs, those of more distal molecules, Erk and Akt, were
- 391 higher in CAPs and remained elevated for an extended time period (Fig. 6B and fig.
- 392 S7A). We also evaluated whether the signaling molecules included as components in the
- 393 chimeric receptors (TCRζ for 28ζ -CAR and ZAP70 for CAPs) were phosphorylated in
- 394 the cell. Unexpectedly, only CAP4.7 induced high levels of endogenous TCR ζ

395	phosphorylation (fig. S7B and C). As expected, 28ζ-CAR induced high levels of
396	endogenous ZAP70 phosphorylation, but surprisingly, a low level of endogenous ZAP70
397	phosphorylation was also observed downstream of CAPs (fig. S7B and C). Together
398	these data indicate that although CAPs show slower kinetics and lower magnitude of
399	phosphorylation than 28ζ -CAR, the CAPs themselves as well as downstream signaling
400	proteins remain activated for a longer duration. These signaling properties are consistent
401	with the functionality of these cells: 28ζ -CAR exhibited strong effector function but
402	decreased persistence, while second-generation CAPs showed better persistence and
403	long-term tumor control.
404	
405	CAPs can propagate signals in the absence of Lck
406	To more fully elucidate the mechanism(s) of CAP activation, we next examined
407	the requirements for proximal signaling molecules in the initiation and signaling of 28ζ -
408	CAR and CAPs. To this end, we compared 28ζ-CAR and CAP signaling in Jurkat cell
409	lines that were deficient in either Lck or ZAP70 expression. In the case of 28ζ-CAR,
410	CAR phosphorylation itself was reduced by Lck deficiency, but not significantly
411	affected by the lack of ZAP70. Interestingly though, phosphorylation of signaling
412	molecules (ZAP70, LAT, SLP76, PLCγ1, Erk) downstream of 28ζ-CAR showed a
413	higher dependence on ZAP70 than Lck, indicating the presence of Lck-independent
414	CAR activation (Fig. 7A and B). In comparison, in CAP-transduced cells,
415	phosphorylation of the CAP molecules themselves (CAP4.6 and CAP4.7) as well as
416	signaling of proximal signaling molecules did not require Lck. Surprisingly, loss of
417	ZAP70 had a deleterious effect on phosphorylation of CAP4.7, as well as

418	phosphorylation	of downstream proximal	molecules (LAT, SLP	76, PLC γ 1), indicating a
-----	-----------------	------------------------	---------------------	-----------------------------------

- 419 requirement for endogenous ZAP70 in the activation of CAP4.7 (Fig. 7A and B). While
- 420 CAP4.6 also showed a partial requirement for endogenous ZAP70 in the
- 421 phosphorylation of LAT, SLP76, and PLCγ1, signaling was maintained. Because a
- 422 robust phosphorylation of endogenous TCRζ was detected downstream of CAP4.7 (fig.
- 423 S8A), we investigated the requirement of endogenous TCR in CAP4.7 signaling by
- 424 expressing 28ζ-CAR and CAP4.7 in a TCRβ KO Jurkat cell line. Neither 28ζ-CAR nor
- 425 CAP4.7 showed a requirement for endogenous TCR (Fig. 7A).
- 426 Low levels of 28ζ -CAR activation and normal levels of CAP activation in the
- 427 absence of Lck was intriguing. To determine if any other Src family kinase (SFK) was
- 428 responsible for initiation of Lck-independent 28ζ-CAR and CAP signaling, we used the

429 pan-Src kinase inhibitor PP1. Upon PP1 treatment, 28ζ-CAR and CAP4.7

- 430 phosphorylation and downstream signaling were abrogated in both WT and Lck KO
- 431 backgrounds (Fig. 7C and fig. S8A). As Lck and Fyn are the main SFKs in T cells (31),
- 432 these data strongly suggest that a Src family kinase, most likely Fyn, is responsible for
- 433 Lck-independent 28ζ-CAR and CAP activation.
- 434

435 Lck is a driver of CAR and CAP Degradation

436 In the course of our kinetics study of CAR and CAP phosphorylation in **Figure**

- 437 6, we observed that CAR and CAP expression were significantly downregulated
- 438 following antigen recognition as has been previously reported for CAR-Ts (27). While
- 439 studying CARs and CAPs in various mutant Jurkat cell lines, we also noted that
- 440 degradation of 28ζ-CAR and CAPs did not occur to the same extent in Lck KO cells

- 441 (fig. S8B). It has been proposed that CAR-T cell persistence and functionality can be
- 442 enhanced by blocking antigen-induced CAR degradation (32). Therefore, we examined
- 443 28ζ-CAR and CAP degradation upon antigen encounter in WT and Lck KO cells. Both
- 444 28ζ-CAR and CAP expression in WT Jurkat cells was decreased by 60% after
- 445 encountering antigen in a 30 min time course. In contrast, degradation of 28ζ-CAR and
- 446 CAP was significantly reduced in Lck-deficient Jurkat cells (Fig. 8). These results point
- to Lck as a major driver of CAR and CAP degradation upon antigen encounter.

Discussion 449

450	CARs have transformed the treatment of blood cancers, but treatment of solid
451	tumors and tumors with low antigen have been less successful due to poor persistence
452	and decreased responsiveness $(5, 33)$. A major caveat is the inefficient proximal
453	signaling propagated by CARs (6, 10, 11) compared with TCRs. Attempts to improve
454	the signaling properties of CARs by incorporating native TCR elements have shown
455	promise in preclinical models (34-37). We focused on incorporating signaling molecules
456	further downstream of the TCR to increase the sensitivity of a CAR molecule and
457	achieve better efficacy. To this end we constructed Chimeric Adapter Proteins (CAPs)
458	that contain the adapters LAT or SLP76 in tandem with the ZAP70 kinase domain. We
459	found that inclusion of adapter proteins caused high antigen-independent activation of T
460	cells, while chimeric molecules containing intracellular ZAP70 domains alone displayed
461	low basal and high antigen-dependent signaling. We proceeded to evaluate these latter
462	ZAP-CARs, labeled CAP4s. While CAP4s appeared similar in <i>in vitro</i> assays, second
463	generation CAP4s (CAP4.6 and CAP4.7) outperformed 28ζ-CARs for persistent tumor
464	clearance in an <i>in vivo</i> model of leukemia.
465	CAPs were designed on the rationale that triggering signaling downstream of the
466	TCR ζ chain would have the advantage of being more potent because they would bypass
467	the kinetic proofreading steps that define the signaling threshold (McKeithan PNAS
468	1995) and the inhibitory regulation of upstream molecules subject to negative regulation
469	by inhibitory proteins such as PD1 (38). Other recent studies have observed benefits of
470	incorporating downstream TCR signaling components in CAR design (11, 39). In the

incorporating downstream TCR signaling components in CAR design (11, 39). In the

471 context of CAP, antigen engagement would more directly activate the CAP ZAP70

472	kinase domain, leading to phosphorylation of critical adapter proteins. These designs
473	represent examples of engineering innovations that have been guided by in-depth
474	biochemical, structural and imaging studies of proximal T cell signaling (12, 15, 21, 23,
475	40, 41). Some of the advantages displayed by CAP4-Ts are their lower tonic signaling
476	than 28ζ-CAR-Ts, reduced T cell differentiation profiles, increased expansion, and
477	finally, a more durable in vivo tumor response; these are all properties that suggest
478	significant benefits for translation to clinical settings.
479	Testing of CAPs and CARs in an in vivo model of leukemia revealed striking
480	differences between first and second-generation CAPs. Second-generation CAPs that
481	included a functional CD28 costimulatory domain showed more persistent tumor
482	regression in vivo, indicating that the signaling properties conferred by the CD28
483	costimulatory domain are required for persistent CAP-T cell function. These
484	observations mirror the differences observed between first and second-generation CARs.
485	Both CD28 and 4–1BB costimulatory domains in second generation CAR designs
486	extended T cell survival compared to first generation CARs, but with different
487	characteristics. 28ζ-CARs exhibit higher activity against antigen-low leukemias while
488	BBζ-CAR appear to result in a higher persistence (26, 42). In our study second
489	generation CAPs were designed with the 28ζ-CAR backbone, and include the CD28
490	hinge, TM, and costimulatory domain. Importantly, they show more durable control of
491	tumor progression than the parent CD28 ζ -CAR. Thus, signaling properties conferred by
492	ZAP70 domains are responsible for the higher efficacy of second-generation CAPs, with
493	full-length ZAP70 in the CAP4.7 design resulting in the highest T cell expansion and
494	lowest level of terminal differentiation.

495	Second-generation CAPs showed similar in vivo efficacy to 4-1BBζ CAR. While
496	tumor regression and T cell expansion were similar between 4-1BB ζ CAR-Ts and
497	second-generation CAP-Ts, surface expression of CAPs was downregulated while that
498	of 4-1BBζ-CAR persisted. This decrease in CAR expression, potentially providing
499	transient rest-a context that has recently been found to restore function in exhausted
500	CAR T cells (43), may account for the less differentiated profile of second-generation
501	CAP expressing cells. Incorporation of the 4-1BB domain in CAP designs will allow for
502	a more direct comparison, assessing whether 4-1BB modulates surface CAR expression
503	and more importantly, long-term persistence and function.
504	Elucidating the signaling properties of chimeric molecules used in
505	immunotherapy is key to understanding differences in the clinical outcomes of patients
506	treated with these different constructs. Several studies have recently been performed to
507	compare CAR and TCR signaling and have shown that CARs have higher and more
508	rapid signaling kinetics compared to TCR signaling (11, 44-47), with 28ζ-CAR showing
509	faster activation and a larger magnitude of signaling than 4-1BBζ-CAR (47). Using both
510	microscopy and biochemistry we observed that CAPs and downstream signaling
511	proteins exhibit lower levels of phosphorylation but remain activated for longer
512	durations compared with 28ζ -CAR. Thus, CAP signaling more closely resembles the
513	moderate and prolonged signaling that characterizes the TCR. These signaling properties
514	of CAPs provide insights into their enhanced in vivo performance and suggest that
515	reduced signal strength and prolonged signaling kinetics are advantageous for chimeric
516	receptor designs.

517	Though CAR-T therapy has been successful in the clinic, requirements for CAR
518	signaling itself has not been well-defined. To this end we attempted to identify
519	molecules important for CAR and CAP signaling. Both 28ζ -CAR and CAP4s displayed
520	TCR- and Lck-independent signaling. While TCR-independent CAR signaling has been
521	previously reported (48), the observation that CAPs, and to a lesser extent 28ζ -CAR,
522	can be triggered without Lck is a novel observation with translational potential. Lck is
523	associated with an exhausted phenotype in 28ζ -CARs, because treating 28ζ -CAR-Ts
524	with the Lck inhibitor Dasatinib, or generating conditions wherein Lck is
525	dephosphorylated, reduce the exhausted phenotype (43, 49, 50). Thus, the combination
526	of CAP expression and Lck deletion/inhibition may provide an innovative approach to
527	generate T cells expressing an effective chimeric immunotherapy receptor that
528	undergoes lower levels of degradation and where the resulting T cells exhibit lower
529	terminal differentiation and exhaustion.
530	In conclusion, our study demonstrates that chimeric receptors that take advantage
531	of signaling molecules in the TCR signaling cascade generate potent and persistent T
532	cell responses against tumors. Incorporation of TCR proximal signaling molecules in
533	CAR designs may provide a new tool in the immunotherapy arsenal.
534	
535	

536 Methods

537

538 CAR Lentiviral Vector production and T cell transduction

- 539 FMC63-4-1BBζ and FMC63-28ζ–CAR constructs have been previously described.
- 540 CAP constructs were designed and synthesized followed by cloning into the same
- 541 lentiviral parent transfer plasmids (pELNS) by VectorBuilder Inc.
- 542 CAR or CAP-encoding lentiviral particles were either produced by VectorBuilder Inc or
- 543 by transient transfection of the Lenti-X 293T lentiviral packaging cell line modified
- from a previously described method. Briefly, Lenti-X 293T cells were plated into poly-
- 545 D-lysine-coated 15-cm plates (BD Biosciences). The following day, Lenti-X 293T cells
- 546 were transfected using Lipofectamine 3000 (Thermo Fisher Scientific) with plasmids
- 547 encoding the bivalent CAR along with packaging and envelope vectors (pMDLg/pRRE,
- 548 pMD-2G, and pRSV-Rev). Lentiviral supernatants were harvested at 24 and 48 hr post-
- transfection, centrifuged at 3,000 rpm for 10 min to remove cell debris, frozen on dry
- 550 ice, and stored at -80° C.
- 551 Human peripheral blood mononuclear cells (PBMCs) from normal donors were obtained
- with an NIH-approved protocol and activated with CD3 and CD28 microbeads at a ratio
- 553 of 1:3 (Dynabeads Human T-Expander CD3/CD28, Thermo Fisher Scientific, catalog
- no. 11141D) in AIM-V media containing 40 IU/mL recombinant IL-2 and 5% FBS for
- 555 24 hr. Activated T cells were resuspended at 2 million cells per 2 mL lentiviral
- supernatant plus 1 mL fresh AIM-V media with 10 µg/mL protamine sulfate and 100
- 557 IU/mL IL-2 in 6-well plates. Plates were centrifuged at $1,000 \times g$ for 2 hr at 32°C and
- 558 incubated overnight at 37°C. A second transduction was performed on the following day
- 559 by repeating the same transduction procedure described earlier. The CD3:CD28 beads

5	66	0	were remov	ed on t	the th	nird o	day	foll	owing	transducti	on, a	ind	the	cells	were	cultured	l at
							~		()								

- 561 300,000 cells per milliliter in AIM-V medium containing 100 IU/mL IL-2, with fresh
- 562 IL-2-containing media added every 2–3 days until harvest on day 8 or 9.
- 563 Cytotoxicity Assay
- 564 5E4 of target tumor cells in 100 µL RPMI media were loaded into a 96-well plate
- 565 (Corning BioCoat Poly-L-Lysine 96-Well Clear TC-Treated Flat Bottom Assay Plate).
- 566 CAR/CAP-T cells were added into the designated well at the indicated ratio. Samples
- 567 were loaded in triplicate and included T cell-only and tumor-cell-only controls. After 4-
- 568 6 hr in a 37°C incubator, the plate was scanned for luciferase to monitor cell lysis. The
- 569 percentage of cell killing at each time point was determined relative to baseline.

570 Analysis of Cytokine Production

- 571 K562 or K562 CD19 target tumor cells and transduced CAR/CAP⁺ T cells were washed
- 572 3 times with PBS and resuspended in RPMI at 1E6 cells per milliliter. 100 μ L (1 × 10⁵)
- 573 tumor cell suspension and 100 μL CAR-T cell suspension was loaded into each well of a
- 574 96-well plate with T cell-only and tumor-cell-only controls in triplicates. After 18 hr in a
- 575 37°C incubator, a culture supernatant was harvested for detection of the cytokines using
- 576 ELISA (R&D Systems).

577 Flow Cytometry

- 578 Cells were washed twice with PBS and stained with either Live/Dead UV L34962or
- 579 Live/Dead Violet L34955 (Thermo Fisher Scientific) for 30 minutes at 4°C in the dark.
- 580 Cells were washed in FACS buffer (PBS supplemented with 2% BSA), Fc blocking was
- 581 performed with a combination of antibodies diluted in FACS buffer with Brilliant Violet
- 582 Stain Buffer (BD Biosciences) for 30 minutes at 4°C in the dark. Surface expression of

- 583 CD19-CAR was detected with PE-anti-FMC63 scFv Antibody, Mouse IgG1
- 584 (Y45) (Acro Biosystems FM3-HPY53). The following antibodies were used on cells
- isolated from bleeds and spleen/bone marrow of NSG treated mice: CD3 APC R700
- 586 (BD 565119), CD4 BB700 (BD 566392), CD8 APC Cy7 (BioLegend 344714), PD1 PE-
- 587 Cy7 (BioLegend 329918), Tim3 AF647 (BD 565558), LAG3 BV605 (BioLegend
- 588 369324), CD62L BV650 (BD 583808), CD45RA BV786 (BD 565419). Cells were
- 589 washed in FACS buffer and analyzed by flow cytometry. If cells were not able to be
- analyzed on the same day, they were fixed in 4% PFA and analyzed by flow cytometry
- the next day. Flow cytometry was performed on a BD FACS Symphony or BD LSRII
- and analyzed with <u>FlowJo</u> software version 10.5 or greater (Tree Star).

593 In Vivo Studies

- All animal procedures reported in this study that were performed by NCI-CCR affiliated
- staff were approved by the NCI Animal Care and Use Committee (ACUC) and in
- accordance with federal regulatory requirements and standards. All components of the
- 597 intramural NIH ACU program are accredited by AAALAC International. Nalm6 cells
- 598 expressing GFP and luciferase were intravenously (i.v.) injected into NSG
- 599 <u>mice</u> (NOD.Cg-*PrkdcscidIl2rgtm1Wjl/*SzJ; Jackson Laboratories). Leukemia was
- 600 detected using the Xenogen IVIS Lumina (Caliper Life Sciences). Mice were injected
- 601 intraperitoneally with 3 mg D-luciferin (Caliper Life Sciences) and were imaged 4 min
- 602 later with an exposure time of 30 s for NALM6 and 2 min for PDXs. Living Image
- 603 Version 4.1 software (Caliper Life Sciences) was used to analyze the bioluminescent
- signal flux for each mouse as photons per second per square centimeter per steradian.

606 Protein Structure Modeling

607 Refer to Supplemental Methods

608 Imaging experiments

- 609 Lentiviral constructs utilized include 28ζ CAR-GFP and CAP4.7-GFP and were
- 610 generated by VectorBuilder. DNA constructs include Zap70-Apple and Grb2-Apple
- 611 which were described previously (Yi et al., 2019). For the fixed cell imaging
- 612 experiments, Raji B cells were resuspended in serum-free RPMI and allowed to adhere
- to a Poly-L-Lysine coated coverslip at 37C for 1 hour. CAR or CAP T cells were
- 614 pipetted onto them and incubated for 10 minutes. Cells were then fixed with 4%
- 615 paraformaldehyde for 30 minutes, washed 3x with 1X PBS. Samples were permeabilized

616 in 0.1% Triton-X-100 for 3 min and then incubated in a blocking solution consisting of

617 10% FBS (Sigma-Aldrich), 0.01% sodium azide (Sigma-Aldrich), and 1 × PBS for 1 h at

618 room temperature (RT). After three washes in $1 \times PBS$, the cells were stained with

619 primary antibody in blocking solution (anti-SLP-76 pY128 from BD Biosciences,

620 catalog no. 558367 was used at 15μ g/ml) for 1 h at RT, followed by secondary antibody

621 in blocking solution (isotype-specific Alexa Fluor-conjugated secondary antibody was

622 used at 1:1000-fold dilution) for 45 min at RT. Samples were then imaged using a

623 spinning disk confocal microscope (Nikon Ti with a Yokogawa CSU-X1 head) operated

- 624 by the Andor iQ3 software. Acquisitions were performed using a 100× objective (CF1
- 625 PlanApo λ 1.45 NA oil), and an EMCCD iXon897 camera (Andor). For immune
- 626 synapse image analysis, 28ζ-CAR-GFP and CAP4.7-GFP labeled immune synapses in
- 627 fixed-cell images were manually segmented using the 'Label' function in the napari

628 image viewer (51). Intensity and volume measurements quantified using a custom

- 629 Python script using the *scikit-image* library (52).
- 630 For the live cell TIRF imaging experiments, coverslips were coated with 10ug/ml anti-CD19 antibodies to
- trigger CAR and CAP T cell activation. Live cell imaging performed as previously described and
- 632 lag times were calculated as previously described (Yi et al., 2019). The accumulation
- 633 time' (τ_{Accum}) of microcluster intensity vs time traces were determined using an in-
- 634 house written MATLAB (Mathworks Inc.) program. For these, the program utilizes the
- 635 local slope (by calculating the first derivative) of the background corrected intensity
- 636 curves. The 'outset time' (τ_{outset}) is reported as the time corresponding to the first
- 637 major positive deviation of the local slope above a threshold, estimated from slope
- 638 fluctuations of pixel intensities without microcluster fluorescence. The 'accumulation
- 639 time' (τ_{Accum}) was calculated as $\tau_{Accum} = \tau_{Max} \tau_{Outset}$, where τ_{Max} is the time of
- 640 maximum microcluster intensity.

641 Stimulation of CAR expressing Jurkat cell lines

642 Cultures of CAR expressing Jurkat cell lines were spun down, resuspended in cold

643 RPMI media at 10×10^6 cells per 100µl, aliquoted into separate Eppendorf tubes for each

- 644 condition, and put on ice. 5×10^6 or 10×10^6 (50 or $100 \mu l$ of) Jurkat cells were used per
- 645 condition. Cultures of CD19 negative or positive K562 cell lines were also spun down
- 646 and resuspended in cold RPMI media at 10×10^6 cells per 100µl. Equal volumes of
- 647 K562s were added to each appropriate Jurkat Eppendorf on ice, creating a 1:1 Jurkat-to-
- 648 K562 ratio. Each sample was then spun down at 300g for 1 minute at 4°C and
- 649 immediately returned to ice. Each sample was incubated in a 37°C hot water bath for a
- 650 given amount of time and then immediately lysed on ice.

651	For the kinetics experiments, two negative control samples were used to control for the
652	effects of incubation: one with Jurkat + K562 CD19 ⁻ cells lysed immediately post-
653	centrifugation and one with Jurkat + K562 CD19 ⁻ cells lysed after 10 minutes
654	incubation. For all other stimulation experiments, the negative control samples had
655	Jurkat + K562 CD19 ⁻ cells lysed after the same incubation time as the experimental
656	samples.
657	For PP1 inhibition experiments, Jurkats and K562s were pre-treated with $20\mu M$ of either
658	DMSO or PP1 for 30 minutes at 37°C and 10 ⁶ cells per 1ml and returned to ice before
659	stimulating. The media used during stimulations also had either $20\mu M$ DMSO or PP1.
660	For lysis, a 4:1 volume ratio of lysis buffer to media+cells was used, creating whole cell
661	lysate concentrations of 20,000 cell/µl (10,000Jurkat/µl + 10,000K562/µl). Samples were
662	then spun down at 4°C at 14,000rpm for 10 minutes, and the supernatants were collected
663	for use as WCLs. Lysis buffer recipe: 25mM TRIS pH 8.0, 150mM NaCl, 1% NP-40,
664	5mM EDTA, 1mM Na ₃ VO ₄ , 1X cOmplete [™] (Roche Cat no.: 11836153001).
665	Immunoblotting under Reducing and Non-Reducing conditions
666	For regular blots, a 4:1 ratio of WCL to 5x sample buffer was used to prepare samples
667	for blotting. 5x reducing sample buffer recipe: 50mM TRIS pH 8.0, 5mM EDTA, 5%
668	SDS, 50% glycerol, 5mM Na ₃ VO ₄ , 0.05% bromophenol blue, 50mM DTT, 850mM

- 669 β ME. For non-reducing blots, the same protocol and reagents were used except the
- 670 sample buffer did not contain DTT or β ME.
- 671 After mixing with sample buffer, samples were heated at 95° C for 5 min. 2.6×10^{5} cell
- 672 equivalents were separated by SDS/PAGE using 10% Criterion Precast polyacrylamide
- 673 gels. The separated proteins were then transferred to nitrocellulose membrane and the

674	membrane was blocked for 1 hour at room temperature using TBST [10 mM Tris (pH
675	8.0), 150 mM NaCl, and 0.05% Tween 20] with 5% milk and 1% BSA. The membranes
676	were incubated overnight at 4 °C with primary Abs diluted in TBST with 5% milk, 1%
677	BSA, followed by a 60-min incubation at room temperature with the appropriate
678	secondary Ab diluted in TBST with 5% milk, 1% BSA. The blots were then visualized
679	by chemiluminescence and quantified using Bio-Rad's Image Lab software.
680	Antibodies used for immunoblotting: pCAR (28ζ): BD Biosciences 558402; pCAP
681	(CAP4.6 + CAP4.7): Cell Signaling 2701; Total CAR (28ζ): Santa Cruz Biotechnology
682	sc-1239; Total CAR (CAP4.6 + CAP4.7): Abcam ab32429; pLck: Cell Signaling 2101;
683	pZeta: BD Biosciences 558402; pZAP: Cell Signaling 2701; pLAT: BD Biosciences
684	558363; pSLP76: BD Biosciences 558367; pPLCγ1: Cell Signaling 2821; pERK: Cell
685	Signaling 4370; pAKT: Cell Signaling 4060; GAPDH: Cell Signaling 2118
686	Quantification of western blots and calculation of protein phosphorylation and
687	dephosphorylation rates
688	The background corrected and normalized Intensity vs Time data from individual
689	Western blot gel runs were fitted to an expression modeling exponential rise and decay,

- 690 given by,
- 691 $I = a. (1 e^{-k_{Phosph}t}) + b \cdot e^{-k_{Dephosph}t}$

692 where k_{Phosph} and $k_{Dephosph}$ are the respective phosphorylation and dephosphorylation 693 rates, *t* is the time and *a*,*b* are amplitude coefficients. The fittings were done using a non-694 linear regression routine implemented in MATLAB. Mean values of the phosphorylation 695 and dephosphorylation rates for each protein were calculated from repeat experiments 696 and plotted as bar graphs, along with their corresponding standard deviation.

REFERENCES

698 600	1.	C. H. June, M. Sadelain, Chimeric Antigen Receptor Therapy. <i>N Engl J Med</i>
700	C	J N Keshenderfor et al. D coll depletion and remissions of moligner graders
700	Ζ.	J. N. Kochenderfer <i>et al.</i> , D-cell depletion and remissions of manginality along
701		with cytokine-associated toxicity in a clinical that of anti-UD19 chimeric-
702	0	antigen-receptor-transduced I cells. <i>Blood</i> 119 , 2709-2720 (2012).
703	3.	J. N. Kochenderfer <i>et al.</i> , Eradication of B-lineage cells and regression of
704		lymphoma in a patient treated with autologous T cells genetically
705		engineered to recognize CD19. <i>Blood</i> 116 , 4099-4102 (2010).
706	4.	D. L. Porter, B. L. Levine, M. Kalos, A. Bagg, C. H. June, Chimeric antigen
707		receptor-modified T cells in chronic lymphoid leukemia. <i>N Engl J Med</i> 365 ,
708		725-733 (2011).
709	5.	R. G. Majzner, C. L. Mackall, Clinical lessons learned from the first leg of the
710		CAR T cell journey. <i>Nat Med</i> 25 , 1341-1355 (2019).
711	6.	V. Gudipati et al., Inefficient CAR-proximal signaling blunts antigen
712		sensitivity. <i>Nat Immunol</i> 21 , 848-856 (2020).
713	7.	J. Huang <i>et al.</i> , A single peptide-major histocompatibility complex ligand
714		triggers digital cytokine secretion in CD4(+) T cells. <i>Immunity</i> 39 , 846-857
715		(2013).
716	8.	D. J. Irvine, M. A. Purbhoo, M. Krogsgaard, M. M. Davis, Direct observation of
717		ligand recognition by T cells. <i>Nature</i> 419 , 845-849 (2002).
718	9.	M. A. Purbhoo, D. J. Irvine, J. B. Huppa, M. M. Davis, T cell killing does not
719		require the formation of a stable mature immunological synapse. <i>Nat</i>
720		<i>Immunol</i> 5 , 524-530 (2004).
721	10.	R. Dong <i>et al.</i> , Rewired signaling network in T cells expressing the chimeric
722		antigen receptor (CAR). <i>EMBO J</i> 39 . e104730 (2020).
723	11.	A. I. Salter <i>et al.</i> , Comparative analysis of TCR and CAR signaling informs
724		CAR designs with superior antigen sensitivity and in vivo function <i>Sci Signal</i>
725		14 (2021)
726	12	L Yi L Balagonalan T Nguyen K M McIntire L E Samelson TCR
727	10.	microclusters form spatially segregated domains and sequentially assemble
728		in calcium-dependent kinetic steps. Nat Commun 10 , 277 (2019)
720	13	T W McKeithan Kinetic proofreading in T-cell recentor signal transduction
720	15.	Proc Natl Acad Sci II S A 02 5042-5046 (1005)
730	11	I Balagonalan V A Barr D I Kortum A K Dark I E Samolson Cutting
731	14.	L. Dalagopalali, V. A. Dall, K. L. Koltuili, A. K. Palk, L. E. Sailleisoli, Cutting
/32 722		euge: cell sufface linker for activation of 1 cells is recruited to inicroclusters
/33	1 5	and is active in signaling. <i>J immunol</i> 190 , 3849-3853 (2013).
/34	15.	L. E. Samelson, Signal transduction mediated by the 1 cell antigen receptor:
735	1.6	the role of adapter proteins. Annu Rev Immunol 20 , 371-394 (2002).
/36	16.	M. V. Maus, CD19 CAR T cells for adults with relapsed or refractory acute
/37		lymphoblastic leukaemia. Lancet 398 , 466-467 (2021).
738	17.	D. R. Myers, J. Zikherman, J. P. Roose, Tonic Signals: Why Do Lymphocytes
739		Bother? <i>Trends Immunol</i> 38 , 844-857 (2017).

740 741	18.	A. H. Long <i>et al.</i> , 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. <i>Nat Med</i> 21 , 581-590
742		(2015).
743	19.	Q. Zhao, B. L. Williams, R. T. Abraham, A. Weiss, Interdomain B in ZAP-70
744		regulates but is not required for ZAP-70 signaling function in lymphocytes.
745		Mol Cell Biol 19 , 948-956 (1999).
746	20.	N. J. Boerth <i>et al.</i> , Recruitment of SLP-76 to the membrane and glycolipid-
747		enriched membrane microdomains replaces the requirement for linker for
748		activation of T cells in T cell receptor signaling. <i>J Exp Med</i> 192 , 1047-1058.
749		(2000).
750	21.	S. Deindl, T. A. Kadlecek, X. Cao, I. Kuriyan, A. Weiss, Stability of an
751		autoinhibitory interface in the structure of the tyrosine kinase ZAP-70
752		impacts T cell recentor response <i>Proc Natl Acad Sci II S A</i> 106 20699-20704
753		(2009)
754	22	N Sakaguchi <i>et al</i> Altered thymic T-cell selection due to a mutation of the
755	<i>LL</i> .	7AP-70 gene causes autoimmune arthritis in mice <i>Nature</i> 476 454-460
756		(2003)
757	23	(2000). O Van <i>et al.</i> Structural basis for activation of 7AP-70 by phosphorylation of
758	25.	the SH2-kinese linker. Mol Call Riel 32 , 2188-2201 (2013)
750	24	M Moeller et al. A functional role for CD29 costimulation in tumor
759	24.	M. Moener <i>et al.</i> , A functional fole for GD26 costinuiation in tunior
700		
/01	25	3/1-3/9 (2004).
/62	25.	J. Feucht <i>et al.</i> , Calibration of CAR activation potential directs alternative 1
/63	26	cell fates and therapeutic potency. <i>Nat Mea</i> 25 , 82-88 (2019).
/64	26.	R. G. Majzner <i>et al.</i> , Tuning the Antigen Density Requirement for CAR T-cell
765	~-	Activity. <i>Lancer Discov</i> 10 , 702-723 (2020).
766	27.	A. J. Walker <i>et al.</i> , Tumor Antigen and Receptor Densities Regulate Efficacy
767		of a Chimeric Antigen Receptor Targeting Anaplastic Lymphoma Kinase. <i>Mol</i>
768		Ther 25 , 2189-2201 (2017).
769	28.	J. A. Fraietta <i>et al.</i> , Determinants of response and resistance to CD19
770		chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic
771		leukemia. <i>Nat Med</i> 24 , 563-571 (2018).
772	29.	L. Gattinoni <i>et al.</i> , A human memory T cell subset with stem cell-like
773		properties. <i>Nat Med</i> 17 , 1290-1297 (2011).
774	30.	J. N. Brudno <i>et al.</i> , Safety and feasibility of anti-CD19 CAR T cells with fully
775		human binding domains in patients with B-cell lymphoma. <i>Nat Med</i> 26, 270-
776		280 (2020).
777	31.	E. H. Palacios, A. Weiss, Function of the Src-family kinases, Lck and Fyn, in T-
778		cell development and activation. <i>Oncogene</i> 23 , 7990-8000 (2004).
779	32.	W. Li et al., Chimeric Antigen Receptor Designed to Prevent Ubiquitination
780		and Downregulation Showed Durable Antitumor Efficacy. <i>Immunity</i> 53 , 456-
781		470 e456 (2020).
782	33.	F. Marofi et al., Hurdles to breakthrough in CAR T cell therapy of solid
783		tumors. <i>Stem Cell Res Ther</i> 13 , 140 (2022).
784	34.	P. A. Baeuerle <i>et al.</i> , Synthetic TRuC receptors engaging the complete T cell
785		receptor for potent anti-tumor response. Nat Commun 10, 2087 (2019).

786	35.	C. W. Helsen <i>et al.</i> , The chimeric TAC receptor co-opts the T cell receptor
787		yielding robust anti-tumor activity without toxicity. <i>Nat Commun</i> 9 , 3049
788		(2018).
789	36.	Y. Liu <i>et al.</i> , Chimeric STAR receptors using TCR machinery mediate robust
790		responses against solid tumors. <i>Sci Transl Med</i> 13 , (2021).
791	37.	Y. Xu et al., A novel antibody-TCR (AbTCR) platform combines Fab-based
792		antigen recognition with gamma/delta-TCR signaling to facilitate T-cell
793		cytotoxicity with low cytokine release. <i>Cell Discov</i> 4 , 62 (2018).
794	38.	E. Hui <i>et al.</i> , T cell costimulatory receptor CD28 is a primary target for PD-1-
795		mediated inhibition. <i>Science</i> 355 , 1428-1433 (2017).
796	39.	A. Tousley <i>et al.</i> , Coopting T cell proximal signaling molecules enables
797		Boolean logic-gated CAR T cell control. <i>bioRxiv</i> , (2022).
798	40.	L. Balagopalan, K. Raychaudhuri, L. E. Samelson, Microclusters as T Cell
799		Signaling Hubs: Structure, Kinetics, and Regulation. <i>Front Cell Dev Biol</i> 8 ,
800		608530 (2020).
801	41.	A. H. Courtney, W. L. Lo, A. Weiss, TCR Signaling: Mechanisms of Initiation
802		and Propagation. Trends Biochem Sci 43, 108-123 (2018).
803	42.	S. J. van der Stegen, M. Hamieh, M. Sadelain, The pharmacology of second-
804		generation chimeric antigen receptors. <i>Nat Rev Drug Discov</i> 14 , 499-509
805		(2015).
806	43.	E. W. Weber <i>et al.</i> , Transient rest restores functionality in exhausted CAR-T
807		cells through epigenetic remodeling. Science 372 , (2021).
808	44.	A. J. Davenport <i>et al.</i> , Chimeric antigen receptor T cells form nonclassical and
809		potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci USA
810		115 , E2068-E2076 (2018).
811	45.	H. Karlsson <i>et al.</i> , Evaluation of Intracellular Signaling Downstream Chimeric
812		Antigen Receptors. <i>PLoS One</i> 10 , e0144787 (2015).
813	46.	M. C. Ramello <i>et al.</i> , An immunoproteomic approach to characterize the CAR
814		interactome and signalosome. <i>Sci Signal</i> 12 , (2019).
815	47.	A. I. Salter <i>et al.</i> , Phosphoproteomic analysis of chimeric antigen receptor
816		signaling reveals kinetic and quantitative differences that affect cell
817		function. <i>Sci Signal</i> 11 , (2018).
818	48.	D. Stenger <i>et al.</i> , Endogenous TCR promotes in vivo persistence of CD19-
819		CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. <i>Blood</i>
820		136 , 1407-1418 (2020).
821	49.	K. Mestermann <i>et al.,</i> The tyrosine kinase inhibitor dasatinib acts as a
822		pharmacologic on/off switch for CAR T cells. <i>Sci Transl Med</i> 11 , (2019).
823	50.	C. Sun et al., THEMIS-SHP1 Recruitment by 4-1BB Tunes LCK-Mediated
824		Priming of Chimeric Antigen Receptor-Redirected T Cells. Cancer Cell 37,
825		216-225 e216 (2020).
826	51.	N. Sofroniew <i>et al.</i> , napari: a multi-dimensional image viewer for Python.
827		Zenodo, (2022).
828	52.	S. van der Walt <i>et al.</i> , scikit-image: image processing in Python. <i>PeerJ</i> 2 , e453
829		(2014).
830		

831 ACKNOWLEDGEMENTS

- 832 This research was supported by the Intramural Research Program of the NIH, NCI,
- 833 CCR. We thank the CCR/LGI Flow Cytometry Core for flow analyzers. We thank Dr.
- 334 Jiyao Wang from NCBI for his help in providing iCn3D links improvements.
- 835

836 AUTHOR CONTRIBUTIONS

- 837 L.B., T.M., H.Q., N.A., J.Y. and K.M. performed the experiments; L.B., J.Y., N.T. and
- 838 L.E.S. designed the study; L.B., N.A., S.P. and A.T. performed image analysis; L.B.,
- 839 H.Q., M.L. and H.Y. performed flow analyses; P.Y. and R.C. performed structural
- 840 studies; L.B., T.M. and R.C. prepared figures, L.B. wrote the manuscript with comments
- from J.Y., H.Y., N.T. and L.E.S.
- 842

843

845

846 Figure 1. Chimeric Adapter Proteins (CAPs) can bypass upstream proteins and signal

to downstream proteins. A. Schematic of TCR signaling, CAR signaling, and CAP

848 signaling. While TCR and CAR must cross the signaling threshold (indicated as yellow bightighted her) for an dusting T call activation. CAR hypersequence unstroom store.

highlighted bar) for productive T cell activation, CAP bypasses upstream steps. **B.**

850 Schematics of CD4-LAT and CD4-CAP constructs. C. TIRF images of microclusters

- 851 formed in Jurkat T cells expressing CD4-LAT-GFP or CD4-CAP-GFP activated on
- 852 coverslips coated with anti-CD4 antibody. **D.** TIRF images of microclusters formed in
- **853** Jurkat T cells expressing CD4-CAP-GFP (top row) and indicated fluorescent proteins
- 854 (bottom row) activated on coverslips coated with anti-CD4 antibody. Scale bars in images,
- 855 2 μm.
- 856

857

Figure 2. Screening of CD19-CAP constructs containing LAT, SLP-76 and ZAP-70

859 domains. A. Schematic of CD19-CAP constructs. B. Image of a Jurkat T cell expressing 860 indicated fluorescent proteins forming an immune synapse with a Raji B cell. Scale bar in image, 2 µm. C. % lysis of target cells by control and CD19-CAP- expressing T cells 861 862 incubated with indicated target cells at a 5:1 ratio. **D.** IFNy production evaluated by ELISA 863 from supernatants of control and CD19-CAP- expressing T cells incubated with the 864 indicated target cells at a 1:1 ratio for 16 hrs. E. Proliferation of control and CD19-CAP 865 expressing T cells. Two-way Anova analysis was performed in D and E comparing CAPs 866 with 4-1BB ζ control. Bars denote ±SEM. ns: P > 0.05. **: P ≤ 0.01; ****: P ≤ 0.0001. Data 867 are representative of 3 independent experiments.

870 Figure 3. Screening of CD19-CAP4 constructs that contain ZAP-70 domains. A.

Schematic of CD19-CAP4 constructs. **B and C.** IL2 and IFNγ production by control and
CD19-CAP4 expressing T cells incubated with indicated target cells at a 1:1 ratio for 16 hrs. **D.** % lysis of target cells by control and CD19-CAP4 expressing T cells incubated with
indicated target cells at a 5:1 ratio. **E.** Proliferation of control and CD19-CAP4-expressing T
cells *in vitro* as a function of time. Two-way Anova analysis was performed comparing
CAPs with 41BBz control. Bars denote ±SEM. *: P ≤ 0.05. Data are representative of
independent experiments from 3 different donors.

883 884

Figure 4. CD19-CAP4 constructs show robust efficacy in an *in vivo* NSG leukemia
 model. A. Schematic of NSG mouse model of leukemia. Luciferase-transduced NALM6
 cells (1×10⁶) were injected intravenously via tail vein into NSG mice on day 0. Engraftment

888 was documented by bioluminescent imaging (BLI) on day 3 and cohorts of five mice were

- randomized to intravenous treatment with mock transduced T cells, 28- ζ CAR-Ts or one of
- 890 the CD19-CAPs as designated $(3 \times 10^6 \text{ CAR}^+ \text{ or CAP}^+ \text{ cells/mouse})$. Mice were followed by
- 891 weekly BLI. B. Leukemia growth was evaluated at the indicated timepoints by
- bioluminescent imaging (BLI) and IVIS images images are shown. C. Quantification of the
- BLI radiance data for each individual mouse is presented. Bars denote ±SEM. Statistical
- differences were assessed using a Mann Whitney t-test comparing CAP4.6 or CAP4.7 with
- 895 28 ζ -CAR. *: P \leq 0.05; **: P \leq 0.01. **D-F.** Flow cytometric analysis of peripheral blood on
- B96 Day 30 showing the percentages of human CD3⁺ T cells (**D**), CAR⁺ T cells (**E**), and T cell
- subsets (F). G-I. Flow cytometric analysis of splenocytes on Day 44 assessing CD3⁺ T cells
- 898 (G), CAR+ T cells (H), and T cell subsets as follows: T_n (CD62L⁺CD45RA⁺), T_{cm} (CD62L⁺,
- 899 CD45RA⁻), T_{em} (CD62L⁻CD45RA⁻) and T_{emra} (CD62L⁻CD45RA⁻) (I). D-I. Statistical
- 900 differences were assessed using a two way Anova. Bars denote \pm SEM. ns: P > 0.05; *: P \leq
- 901 0.05; **: $P \le 0.01$

904 Figure 5. CAP-T cells display lower recruitment of activated proteins and delayed and 905 prolonged kinetics of protein recruitment than CAR-T cells. A. Fixed cell images of a 906 28ζ-CAR-GFP cell (above; GFP is pseudo colored in yellow) or CAP-GFP expressing cells 907 (below) interacting with a Raji B-cell (blue). CAR and CAP expressing cells were also 908 transfected with ZAP70-Apple (magenta) and immunostained for pSLP76 (turquoise). B. 909 Volume of the IS formed by 28ζ-CAR or CAP4.7 expressing cells. C. A comparison of 910 fluorescence intensity at the immune synapse for the indicated proteins. **D** and **E**. TIRF 911 images of 28²-CAR-GFP (vellow) and Zap70-Apple (magenta; D) or Grb2-Apple (magenta; 912 E). Below is a time-lapse montage showing a single microcluster at 15 s/frame over the 913 course of 6 minutes. F and G. TIRF images of CAP4.7-GFP (yellow) and Zap70-Apple 914 (magenta; F) or Grb2-Apple (magenta; G), below is a time-lapse montage showing a single 915 microcluster at 15 s/frame over the course of 6 minutes. H. The kinetic lag times that are 916 calculated from the half-max intensity of the best fit sigmoidal curve of the fluorescence 917 intensity of each microcluster. I and J. Accumulation time, which is how long it takes for 918 the CAR or CAP (I) or Grb2 (J) to accumulate until maximum fluorescence intensity is 919 reached. Welch's t-test was performed. Dot plots show mean \pm SEM. ns: P > 0.05; **: P \leq

920 0.01; ****: $P \le 0.0001$. Data are representative of 3 independent experiments.

Figure 6. Phosphorylation Kinetics of CAR and CAPs. Jurkat-E6.1 cells stably
 expressing 28ζ-CAR or indicated CAP constructs were mixed with antigen presenting cells

924 (APCs). APCs were either antigen negative (K562s) or antigen positive (K562s stably

- transduced with CD19). Cell mixtures were incubated at 37°C for given amounts of time
- and then lysed and immunoblotted for phosphorylated forms of immune signaling markers.
- 927 Blot volumes were quantified using Bio-Rad Laboratories' Image Lab software and
- 928 normalized to total protein. $V = Volume_{pProtein}/Volume_{GAPDH}$. $AU = (V-V_{minimum})/(V_{maximum})$
- 929 V_{minimum}). A. Representative blots of 28 ζ , CAP4.6, and CAP4.7 signaling kinetics. B.
- 930 Averaged graphs of phosphorylation curves for different markers of CAR/CAP
- 931 activation/signaling. The lower value of the two negative controls (K562 0min or 10min)
- 932 was used for the Omin timepoint for each marker. **C and D.** Phosphorylation and
- 933 dephosphorylation rates for signaling markers in each construct. Rates were determined by 934 fitting an expression modeling exponential rise and decay. Data are representative of three
- 934 fitting an expression modeling exponential rise and decay. Data are representative of three 935 independent experiments.

936

937 938

Figure 7. CAR and CAP Dependency on Proximal Immune Proteins. CAR or CAP
constructs were stably transduced into Jurkat-E6.1 cells that either had Wild Type, CRISPR
Lck KO, P116 ZAP KO, or CRSIPR TCRβ KO genetic background. Those cells were mixed

942 with either antigen positive or antigen negative APCs, incubated at 37°C for 8 minutes, and

943 then lysed and immunoblotted for phosphorylated forms of immune signaling markers. Blot

944 volumes were quantified using Bio-Rad Laboratories' Image Lab software and normalized

- 945 to total protein. $V = Volume_{pProtein}/Volume_{GAPDH}$. $AU = (V-V_{minimum})/(V_{maximum}-V_{minimum})$. A.
- 946 Representative blots of 28ζ, CAP4.6, and CAP4.7 signaling in the absence of either nothing, 947
- Lck, ZAP, or TCR. B. Averaged graphs of phosphorylation intensity for different markers of
- 948 CAR/CAP activation/signaling. Paired Student's T Tests were performed comparing the
- 949 phosphorylation levels of activation/signaling markers in stimulated WT vs Lck KO or ZAP 950
- KO cells. Data are representative of three independent experiments. Bars denote \pm SEM. ns: 951
- P > 0.05; *: $P \le 0.05$; **: $P \le 0.01$; ***: $P \le 0.001$. ****: $P \le 0.0001$. C. One blot of 28 ζ and 952 a representative blot of CAP4.7 signaling in the absence of either nothing or Lck and
- 953 preincubation with either DMSO or PP1 (a Src family kinase inhibitor).
- 954 955

957 958

Figure 8. Exploring Drivers of CAR/CAP Degradation. Jurkat-E6.1 cells stably
expressing CAR or CAP constructs were mixed with either antigen negative or antigen
positive cells. Antigen negative cell mixtures were incubated at 37°C for 10minutes to
control for the effect of heating and used as the 0min timepoint. Antigen positive cell
mixtures were incubated at 37°C for given amounts of time. Whole cell lysates were then
immunoblotted for total CAR. Blot volumes were quantified using Bio-Rad Laboratories'

 $\begin{array}{ll} \mbox{964} & \mbox{immunoblotted for total CAR. Blot volumes were quantified using Bio-Rad Laboratories'} \\ \mbox{965} & \mbox{Image Lab software and normalized to total protein. V = Volume_{CAR}/Volume_{GAPDH}. Percent \end{array}$

966 CAR Remaining = $V/V_{maximum}$. Data are representative of three independent experiments. A.

967 Representative blots of total 28ζ and CAP4.7 levels in WT and Lck KO cells over the

968 signaling time course. **B.** Averaged graphs of phosphorylation curves for different markers

969 of CAR/CAP activation/signaling. Paired Student's T Tests were performed comparing the

970total CAR or CAP levels in WT vs Lck KO cells at each timepoint. Bars denote \pm SEM. ns:971P > 0.05. *: $P \le 0.05$.

972

974

975 Figure S1. Chimeric Adapter Proteins (CAPs) cluster specifically upon antibody

976 binding of extracellular domain

- 977 A and B. TIRF images of microclusters formed in Jurkat T cells expressing CD4-CAP-GFP
- 978 and activated on coverslips coated with indicated antibodies. In A, cells were fixed and
- 979 immunostained with phosphotyrosine antibody to detect activated microclusters. Scale bars
- 980 in images, $2 \,\mu m$.
- 981

982

983 Figure S2. Surface expression of molecules in T cells expressing CAPs

A. Basal CD69 expression in mock transduced Jurkat cells and Jurkat cells transduced with

985 CD19-CAP1. B. Representative histograms of CD19 scFv surface expression in PBMCs

transduced with the indicated CD19-41BBζ CAR or CAP constructs. **C.** T cells were

987 transduced with the different CAP constructs and the surface expression of each CAP

988 relative to 4-1BBζ CAR in 3 different donors are presented as means±SD.

990 991

Figure S3. Surface expression of CAP4s and western blots to detect CARs and CAPsunder reducing and non-reducing conditions.

994 A. Representative histograms of cell surface CD19 scFv expression in T cells transduced 995 with the indicated CD19-CAR and CAP4 constructs. B. T cells were transduced with the 996 different CAP constructs and the surface expression of each CAP relative to 4-1BB ζ CAR in 997 3 different donors are presented as means±SD. C-E. Western blots to detect CARs and 998 CAPs. Jurkat E6.1 cells that were either untranduced or stably expressing CAR or CAP 999 constructs were lysed and then immunoblotted under reducing or non-reducing conditions. 1000 CARs were detectable with anti-Zeta antibody and CAPs were detectable with anti-ZAP 1001 antibody. C. Total ζ blot of CAR and control cells. Endogenous TCR ζ detectable at ~15kDa 1002 under reducing conditions and ~29kDa under non-reducing conditions. 28ζ CAR detectable 1003 at ~52kDa under reducing conditions and ~92kDa and ~170kDa under non-reducing 1004 conditions. 41BBζ CAR detectable at ~51kDa under reducing conditions and ~164kDa 1005 under non-reducing conditions. D. Total ZAP blot of CAP and control cells. Endogenous 1006 ZAP detectable at ~68kDa under reducing conditions and ~62kDa under non-reducing 1007 conditions. CAP4.7 detectable at ~117kDa under reducing conditions and above 300kDa 1008 marker under non-reducing conditions. E. Total ZAP blot of CAP cells. Endogenous ZAP 1009 detectable at ~68kDa under reducing conditions and ~66kDa under non-reducing conditions. 1010 CAP4.6 detectable at ~90kDa under reducing conditions and ~292kDa under non-reducing 1011 conditions. CAP4.8 detectable at ~91kDa under reducing conditions and ~292kDa under 1012 non-reducing conditions. 1013

B. Day 8 input: T cell subsets

A. Day 8 input: CAR/CAP expression

28č

CAP4.2

CAP4.6

CAP4.7

CAP4.8

1014

1015 Figure S4. Analysis of transduced PBMCs on Day8 used in *in vivo* experiment in

- 1016 Figure 4
- 1017 A. Table showing the percentages of CAR⁺ or CAP⁺ T cells within the CD4 and CD8
- 1018 subsets. **B.** Flow cytometric evaluation of CD25 surface levels in CAR⁺ or CAP⁺ T cells. **C.**
- 1019 The percentages of naïve (T_n) , central memory (T_{CM}) , and effector T cells (T_{eff}) within the
- 1020 CAR⁺ or CAP⁺ T cell subset was evaluated by flow cytometry as follows: T_n
- $1021 \qquad (CD62L^+CD45RA^+), \ T_{cm} \ (CD62L^+, \ CD45RA^-), \ T_{eff} \ (CD62L^-).$

A. Day 8 input: CAR/CAP expression

	CD4	CD8	Total
	CAR+	CAR+	CAR+
41ΒΒ ζ	53.2	16.6	69.8
CAP4.2	57.9	6.7	64.6
CAP4.6	60.1	6.9	67
CAP4.7	20.5	2.13	22.63
CAP4.8	53.9	6.35	60.25

1023

F.

1024 Figure S5. Comparison of CD19-CAP4 constructs with 41BBζ-CAR in an in vivo NSG 1025 leukemia model.

- 1026 A. Table showing the percentages of CAR⁺ or CAP⁺ populations in CD4 and CD8 subsets.
- 1027 **B.** Flow cytometric evaluation of CD25 surface levels in in CAR⁺ or CAP⁺ T cells. **C.** The

- 1028 percentages of naïve (T_n) , central memory (T_{CM}) , and effector T cells (Teff) within the 1029 CAR^+ or CAP^+ T cell subset was evaluated by flow cytometry as follows: T_n 1030 (CD62L⁺CD45RA⁺), T_{cm} (CD62L⁺, CD45RA⁻), T_{eff} (CD62L⁻). **D.** NSG mice were engrafted 1031 with NALM6 leukemia cells as in Figure 4A/4B, and at day 3, mice were adoptively 1032 transferred with T cells transduced with the control CD19-41BB vector or CAP4.2, 4.6, 4.7, 1033 or 4.8 constructs (3E6). Leukemia growth was evaluated at the indicated timepoints by 1034 bioluminescent imaging (BLI) and IVIS images images are shown. E. Quantification of the 1035 BLI radiance data for each individual mouse is presented. Bars denote ±SEM. Statistical 1036 differences were assessed using a Mann Whitney t-test comparing 4-1BB ζ -CAR, CAP4.6 or 1037 CAP4.7 with CAP4.2. *: P < 0.05; **: P < 0.01. F and G. Flow cytometric analysis of 1038 peripheral blood on Day 34. H-J. Flow cytometric analysis of Spleen on Day 44. T cell 1039 subsets were evaluated as follows: Tn (CD62L+CD45RA+), Tcm (CD62L+, CD45RA-), Tem 1040 (CD62L⁻CD45RA⁻) and T_{emra} (CD62L⁻CD45RA⁻) Two way Anova analysis was performed. Bars denote \pm SEM. ns: P > 0.05; *: P \leq 0.05; **: P \leq 0.01; ***: P \leq 0.001. ****: P \leq 1041 1042 0.0001.
- 1043

1045

1046 Figure S6. Structural Models of CAP4 constructs.

1047 A. Full length model of CAP4.7 in the plasma membrane (brown). scFv in pink; hinge in

- dark blue; transmembrane domain (TM) in yellow; CD28 intracellular domain in red;
- 1049 ZAP70 SH2 domains in green; ZAP70 IB+KD domain in pale blue. B-D. Intracellular
- 1050 regions of CAP4.2 (B), CAP4.6 (C), CAP4.7 rotated 90° clockwise along the vertical axis
- 1051 compared to A (**D**), and CAP4.8 (**E**) are shown. **F.** Table of Average Buried Solvent
- 1052 Accessible Surface numbers and ratios (BSAS) for CAP4 series constructs.
- 1053 1054

Figure S7. A. Averaged maximum phosphorylation intensities of each marker for each construct. B. Representative blots of 28ζ, CAP4.6, and CAP4.7 signaling kinetics and total CAR levels. C. Averaged graphs of phosphorylation curves for different markers of CAR/CAP signaling. For Total CAR graph, arbitrary units show percent CAR remaining: AU = V/V_{maximum}.

1063

1064

1065 Figure S8. A. Averaged graphs of phosphorylation intensity for different markers of CAP4.7 activation/signaling in the presence or absence of Lck and incubation with either 1066 1067 DMSO or PP1. Homoscedastic Student's T Tests were performed comparing the 1068 phosphorylation levels of activation/signaling markers in stimulated WT vs Lck KO and 1069 DMSO-treated vs PP1-treated samples. Data are representative of two independent experiments (N=2). Bars denote \pm SEM. ns: P > 0.05; *: P \leq 0.05; **: P \leq 0.01; ***: P \leq 1070 1071 0.001. ****: $P \le 0.0001$. **B.** Blot of total 28 ζ , CAP4.6, and CAP4.7 levels in WT, Lck KO, 1072 ZAP KO, and TCR KO cell lines. Blot is representative of three independent experiments. 1073

1075 Supplemental Methods

1076 **Molecular Modeling:** CAR models were generated following a prescription we previously 1077 used to simulate CARs [1]. The procedure relies on the combination of multiple modeling 1078 methods, including I-TASSER [2], Rosetta [3], Phyre2 [4], Swiss-Model [5], YASARA [6], 1079 and AlphaFold2 [7]. Finally, the structures of all segments (i.e., intracellular, trans-membrane 1080 -TM-, extracellular) obtained from all modeling engines were combined using YASARA 1081 v20.4.24 HM build macro to obtain models with better statistics. The hybrid section models 1082 were further refined against all templates using FRMD (Feedback Restrain Molecular 1083 Dynamics) [8,9] to improve Z-scores and then manually combined and inserted in a model 1084 membrane. The final models were tested using MD trajectories. These calculations were 1085 performed using YASARA with the Amber14 force field, including the Lipid14 set and 1086 standard parameters used in the md membrane macro. Simulations were performed by 1087 inserting the models in membranes made of 20% cholesterol and 80% phospholipids (33% 1088 phosphatidylethanolamine, 33% phosphatidylcholine, and 14% phosphatidylserine) following 1089 the suggested values [6], representing the behavior of cytoplasmatic membranes. This work 1090 was developed concurrently with the advent of AlphaFold2[7], which was the only modeling 1091 tool tested for producing stable dimers for the intracellular domains.

1092 Some significant differences were observed in the behavior of the models when comparing 1093 the CAP4 group, showing a stable behavior ($C\alpha < RMSF > < 3Å$ for for trajectories over 50 1094 ns), while 28^{\zet} and 4-1BB^{\zet} models were not stable. Attempts at manually stabilizing 28^{\zet} and 1095 4-1BB ζ models proved unfruitful. Further analysis of the unfolding of the frustrated models 1096 led to the observation of a rapid deterioration of the TM motif during the unwinding of the 1097 models' intracellular domains. This behavior was further explored by performing equilibrium 1098 molecular dynamics calculations of the TM itself and then challenging the model using steered 1099 dynamics (Yasara md runsteered) [6]. The stabilization trajectory of the TM domain was 1100 conducted for 50 ns, followed by a 1000 ns run using the YASARA MD run macro in the 1101 NPT ensemble. Model stability was assessed using the YASARA MD analyze macro. The 1102 equations of motion for all steered dynamics simulations were integrated with multiple 1103 timesteps of 1.25 fs for bonded interactions and 2.5 fs for non-bonded interactions at a 1104 temperature of 298K and a pressure of 1 atm (NPT ensemble) using algorithms described in 1105 detail previously [10]: after an equilibration time of 3 ps, a minimum acceleration of 2000 1106 pm/ps2 was applied to all steered atoms together with the non-bonded forces (every 2.5 fs).

1107 Considering the steered mass (M) in Dalton, this results in a pulling force of 1108 [2000*M*0.00166] picoNewton. The pulling direction was defined by a vector manually 1109 provided to point in a previously defined direction. The standard procedure call for a 1110 maximum distance (displacement) to be continuously updated. If it did not increase for 400 1111 simulation steps (i.e., the pulling got stuck), the acceleration was increased by 500 pm/ps2. 1112 As soon as the maximum distance grew faster than MaxDisSpeed =4000 m/s (i.e., a barrier 1113 was overcome), the acceleration is scaled down by a factor of 1-(1-4000/MaxDisSpeed)², but 1114 not below the initial minimum. This check is done every 20 simulation steps. Barriers can be 1115 qualitatively estimated during this process. To our surprise, the TM model rapidly unwinds 1116 when challenged from the intracellular side using the standard steering protocol and pulling 1117 K316 towards the inside in a perpendicular direction to the membrane surface. We modified 1118 the default protocol to limit the pulling acceleration to 1000 pm/ps2, yet the TM model still 1119 losses 25% of its helical content in 6.5 ns. Conversely, if the same protocol is applied to the 1120 extracellular side of the TM domain (pulling F287 away from the membrane pointing toward 1121 the outside), the TM domain remains more stable, retaining >90% of its helical content (>15ns 1122 trajectory). These results can be compared to the TM equilibrium trajectory, which is stable 1123 over a 1-microsecond trajectory (average helical content > 95%). A more systematic modeling 1124 analysis of different TM domain properties is outside this presentation's scope and will be 1125 presented elsewhere.

1126 However, modeling results should be considered cautiously, especially when experimental

1127 structural verification is unavailable. Nevertheless, when taken together, these early

1128 observations suggest a larger possible impact of the intracellular domain stability on the

stability of the CAR overall. A more detailed exploration of the MD stable CAP4 series

1130 AlphaFold2 models further supports this observation. The expected stability of the CAP4

1131 intracellular dimer models can be estimated from the AlphaFold2 dimer averaged buried

solvent accessible surface (BSAS), which quantifies the surface area that is accessible by

solvent in a monomer and becomes buried with the formation of the dimer. It can be used as

a rough estimation of the complex formation stability. [BSAS values were estimated using

1135 Chimera 1.16 [11] using default parameters. CAP4.2 shows the smallest BSAS (549.8 Å²),

1136 followed by CAP4.8 (930.3 $Å^2$), CAP4.6 (1038.5 $Å^2$) and CAP4.7 (1372.3 $Å^2$)]. CAP4.7

1137 AlphaFold2 intracellular dimer arrangement reveals a significant domain rearrangement

through the interdomain linker between the C-SH2 domain and the kinase domain.

1140 References

- 1141 [1] Brudno, J.N., Lam, N., Vanasse, D. et al. Safety and feasibility of anti-CD19 CAR T cells
- 1142 with fully human binding domains in patients with B-cell lymphoma. (2020) Nat Med 26, 270–
- 1143 280. https://doi.org/10.1038/s41591-019-0737-3
- 1144 [2] Yang J, Zhang Y. I-TASSER server: new development for protein structure and function
- 1145 predictions. Nucleic Acids Res. Jul 1 2015;43(W1):W174-81. doi:10.1093/nar/gkv342
- 1146 [3] Das R, Baker D. Macromolecular modeling with rosetta. Annu Rev Biochem. 2008;77:363-
- 1147 82. doi:10.1146/annurev.biochem.77.062906.171838
- 1148 [4] Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for
- 1149 protein modeling, prediction and analysis. Nat Protoc. Jun 2015;10(6):845-58.
- 1150 doi:10.1038/nprot.2015.053
- 1151 [5] Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of
- protein structures and complexes. Nucleic Acids Res. Jul 2 2018;46(W1):W296-W303.
- 1153 doi:10.1093/nar/gky427
- 1154 [6] Krieger E, Vriend G. YASARA View molecular graphics for all devices from
- smartphones to workstations. Bioinformatics. Oct 15 2014;30(20):2981-2.
- doi:10.1093/bioinformatics/btu426
- 1157 [7] Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with
- 1158 AlphaFold. (2021) Nature 596, 583–589. <u>https://doi.org/10.1038/s41586-021-03819-2</u>
- 1159 [8] Cachau RE, Gussio R, Beutler JA, et al. Solution Structure of Taxol Determined Using a
- 1160 Novel Feedback-Scaling Procedure for Noe-Restrained Molecular-Dynamics. International
- Journal of Supercomputer Applications and High Performance Computing. Spr 1994;8(1):24-34.
- 1162 doi:Doi 10.1177/109434209400800104
- [9] Yokoyama S, Cai Y, Murata M, et al. A novel pathway of LPS uptake through syndecan-1
- leading to pyroptotic cell death. Elife. Dec 7 2018;7e37854. doi:10.7554/eLife.37854
- 1165 [10] Krieger E, Vriend G New ways to boost molecular dynamics simulations. (2015)
- 1166 J.Comput.Chem. 36, 996-1007 PMID25824339
- 1167 [11] Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visualization system for
- exploratory research and analysis. Journal of Computational Chemistry. 2004 Oct;25(13):1605-
- 1169 1612. DOI: 10.1002/jcc.20084. PMID: 15264254.
- 1170 [12] Wang, Jiyao, Philippe Youkharibache, Dachuan Zhang, Christopher J. Lanczycki, Renata
- 1171 C. Geer, Thomas Madej, Lon Phan, et al. 2020. "iCn3D, a Web-Based 3D Viewer for Sharing
- 1172 1D/2D/3D Representations of Biomolecular Structures." Bioinformatics 36 (1): 131–
- 1173 35. <u>https://doi.org/10.1093/bioinformatics/btz502</u>.