## Furin as a novel proatherogenic gene

Chutima Rattanasopa] Gopala Yakala Roshni Singaraja Sujoy Ghosh

January 30, 2023

### **CAD: #1Cause of DeathsWorldwide**

**17.5 million** people die each year from CVDs, an

estimated 31% of all deaths worldwide

**80%** of all CVD deaths are due to heart attacks and strokes

Figure 27 World map showing ischemic heart disease mortality rates (age standardized, per 100 000) (1).





# CAD is a heritable disease : Genome-wide significant loci associated with CAD (p<5X10<sup>-8</sup>) to date



(Lieb and Vasan, 2013)

### **Published Results**

- Ghosh et al., Arterioscler Thromb Vasc Biol. 2015
  Jul;35(7):1712-22. doi: 10.1161/ATVBAHA.115.305513. Epub 2015 May 14. PMID: 25977570; PMCID: PMC4841833.
- Yakala et al., Arterioscler Thromb Vasc Biol. 2019 Mar;39(3):387-401. doi: 10.1161/ATVBAHA.118.311903. PMID: 30651003; PMCID: PMC6393193

Pathway Analysis of a large genotyped CAD case:control cohort (CardioGram consortium)



Pathway Database: **REACTOME** 

(Ghosh et al., 2015)

| EXTRACELLULAR MATRIX INTERACTIONS<br>15 IN SEMA3A SIGNALING | A GAMMA SIGNALLING THROUGH PI3KGAMMA | L TRIGGERING OF COMPLEMENT<br>BOLISM OF POLYAMINES | EAR RECEPTOR TRANSCRIPTION PATHWAY | NIC CATION ANION ZWITTERION TRANSPORT | AKT ACTIVATION | JR AMINO ACID METABOLISM | H HLH TRANSCRIPTION PATHWAY | RECEPTOR CASCADES | ADATION OF THE EXTRACELLULAR MATRIX | 3AMMA CARBOXYLATION HYPUSINE FORMATION AND ARYLSULFATASE ACTIVA | OMICRON MEDIATED LIPID TRANSPORT | RAN SULFATE HEPARIN HS GAG METABOLISM | AG BIOSYNTHESIS | AEDIATED LIPID TRANSPORT | DIGESTION MOBILIZATION AND TRANSPORT | PROTEIN METABOLISM | H1 INTRACELLULAR DOMAIN REGULATES TRANSCRIPTION | ALING BY NOTCH1 | ALING BY NOTCH | ALING BY TGF BETA RECEPTOR COMPLEX | SCRIPTIONAL ACTIVITY OF SMAD2 SMAD3 SMAD4 HETEROTRIMER | 2 SMAD3 SMAD4 HETEROTRIMER REGULATES TRANSCRIPTION | A ACTIVATES GENE EXPRESSION | SCRIPTIONAL REGULATION OF WHITE ADIPOCYTE DIFFERENTIATION | AGEN FORMATION | ACELLULAR MATRIX ORGANIZATION | I SIGNALING FOR NEURITE OUT GROWTH | 11 INTERACTIONS | ALING BY PDGF |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        | SI<br>as<br>as                                                                                                                                              | h<br>5:<br>5: | ar<br>so<br>so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in<br>ci<br>ci                                                                                                                                                | ia<br>ia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------|---------------------------------------|----------------|--------------------------|-----------------------------|-------------------|-------------------------------------|-----------------------------------------------------------------|----------------------------------|---------------------------------------|-----------------|--------------------------|--------------------------------------|--------------------|-------------------------------------------------|-----------------|----------------|------------------------------------|--------------------------------------------------------|----------------------------------------------------|-----------------------------|-----------------------------------------------------------|----------------|-------------------------------|------------------------------------|-----------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CELL                                                        | G BET                                | META                                               | NUCLI                              | ORGA                                  | PI3K #         | SULFL                    | NOTC                        | TOLL              | DEGR                                | PTM G                                                           | СНУГ                             | HEPAI                                 | HS GA           | HDLN                     | LIPID                                | LIPOP              | NOTC                                            | SIGN            | SIGN           | SIGN                               | TRAN                                                   | SMAD                                               | PPAR                        | TRAN                                                      | COLL           | EXTR                          | NCAM                               | NCAM            | SIGN          |                                                                                                                                                                                                           | Inde                                                                                                                                                                                                                                                                                                               | ex \$                                                                                                                                                  | SNP                                                                                                                                                         | G'<br>va      | WAS<br>alue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                               | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |                                      |                                                    |                                    |                                       |                |                          |                             |                   |                                     |                                                                 |                                  |                                       |                 |                          |                                      |                    |                                                 |                 |                |                                    |                                                        |                                                    |                             |                                                           |                |                               |                                    |                 |               | COL4A2<br>COL4A1<br>COL3A1<br>COL9A1<br>COL5A2<br>COL1A2<br>COL6A2<br>COL6A2<br>COL6A3<br>COL4A3<br>FURIN<br>BMP1<br>APOA1<br>SDC1<br>CCNC<br>CDK8<br>NCOR2<br>MYC<br>HDAC1<br>RPS27A<br>TBL1XR<br>CREBBF | rs47        rs12        rs12        rs12        rs12        rs17        rs26        rs17        rs18        rs40        rs17        rs18        rs17        rs17        rs17        rs17        rs20        rs17        rs37        rs79        rs40        rs77        rs40        rs75        rs665        rs667 | 773<br>287<br>214<br>364<br>716<br>339<br>110<br>382<br>563<br>722<br>751<br>319<br>075<br>168<br>736<br>987<br>708<br>733<br>533<br>554<br>303<br>107 | 144<br>3154<br>033<br>078<br>6196<br>112<br>3531<br>436<br>723<br>825<br><b>4846</b><br>541<br>292<br>9467<br>868<br>737<br>44<br>560<br>676<br>575<br>6787 |               | 5.7302<br>0.0001<br>0.0008<br>0.0013<br>0.0052<br>0.0108<br>0.0110<br>0.0250<br>0.0253<br>0.0010<br>0.00172<br>0.0015<br>0.0015<br>0.0212<br>0.0255<br>0.0212<br>0.0255<br>0.0212<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.0255<br>0.025 | 23E-<br>678<br>9183<br>9032<br>8864<br>5516<br>9189<br>786<br>9226<br>6698<br>786<br>933<br>8877<br>9851<br>9198<br>913<br>349<br>2593<br>951<br>5118<br>2281 | 07<br>4<br>5<br>9<br>8<br>4<br>3<br>8<br>6<br>0<br>5<br>5<br>7<br>3<br>5<br>8<br>8<br>8<br>5<br>7<br>5<br>8<br>8<br>8<br>7<br>5<br>9<br>8<br>7<br>5<br>8<br>9<br>8<br>7<br>5<br>9<br>8<br>7<br>5<br>9<br>8<br>4<br>1<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>9<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>9<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>9<br>8<br>4<br>1<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8 |

### ring of genes among CADociated pathways – FURIN ociated with 6 pathways

### 6 CAD-associated pathways containing Furin



#### **FURIN : a proprotein convertase of the PCSK family**

Proprotein convertase subtilisin/kexin (PCSK) enzymes are a family of <u>nine</u> <u>proteases</u> that cleave and convert their immature target proteins into biologically active forms.



#### FURIN is highly expressed in Human atherosclerotic plaques



Furin is the major plaque-expressed proprotein convertase (RT-PCR)

Turpeinen et al., Atherosclerosis 2011

### Furin: Target Validation in Cell Culture and Animal Models



Furin inhibitor dec-RVKR-CMK

## Animal model studies

### Atherosclerosis model

- Ldlr-/- mouse on atherogenic (HF/HC) diet
- ApoE-/- mice on atherogenic (HF/HC) diet

### Treatment

• PDX-1a (furin inhibitor) or PBS

### Endpoints

- Atherosclerotic plaque related measures
- Plasma lipids

### **Experimental set-up**





# Plasma Furin levels are significantly reduced in Furin inhibitor treated mice



# Plasma inflammatory markers IL1- $\beta$ and TNF- $\alpha$ are significantly decreased in Furin inhibitor treated mice



N=16

# Furin inhibition reduces total atherosclerotic lesion area (NS)



p= 0.23 60000**-**Area (um²) 40000-20000-WID\*POT NID

**Total lesion area** 

Haematoxylin Phloxine Saffron staining (HPS)

(Muscle cells- Pink stain; Collagen- light Yellow)

### Furin inhibition significantly reduces severe lesion area N=15 each

Severe lesion Mild lesion Lesion size/severity WTD+PDX WTD P = 0.04p = 0.760000-40000-Area (um<sup>2</sup> 20000-WID NTOPPOT wip WID POT Type I-III lesions **Type IV-V lesions** 

# Aortic lesions of Furin inhibitor treated mice have significant reductions in macrophage infiltration

N=15 each



Macrophages- green stain

Aortic sinus of Furin inhibitor treated mice show significantly reduced stenosis/collagen area



#### Red stain- collagen

#### Lower lesion complexity and severe atherosclerotic lesion size in FURIN inhibitor treated mice



Figure 2: Lower lesion complexity and severe atherosclerotic lesion size in FURIN inhibitor treated mice. (a) Representative photomicrographs of aortic sinus after histological staining with hematoxylin-phloxine-saffron (200x). (b) A trend toward lower aortic sinus lesion area in FURIN inhibitor treated mice. (c) Representative photomicrographs of lesion severity in aortic sinus after histological staining with hematoxylin-phloxine-saffron (100x). (d) Significantly lower severe lesion area (type IV and V) in FURIN inhibitor treated mice. (e) Representative photomicrographs of macrophages (green) in aortic sinus (100x). (f) Significantly lower lesional macrophage area in FURIN inhibitor treated mice. (g) Representative photomicrographs of aortic root after histological staining with picrosirius red for collagen (100x). (h) Significantly lower collagen area in lesions of FURIN inhibitor treated mice. Groups are abbreviated as: Ldlr/- mice fed Western type diet injected with PBS (WTD); *Ldlr<sup>/-</sup>* mice fed Western type diet injected with the  $\alpha$ -1-PDX FURIN inhibitor (WTD+PDX). Values represent mean ± SEM.

# Furin inhibition also reduces atherosclerosis in a second model: ApoE-/- mice (α1-PDX treatments)



Mice were pretreated with Furin inhibitor for 1 week before induction of atherosclerosis, and treated for a further 2 weeks before sacrifice.





### FURIN inhibition reduces plaque complexity in a wire injury model of atherosclerosis

Figure 5: FURIN inhibition reduces plaque complexity in a wire injury model of atherosclerosis. Apoe<sup>-/-</sup>mice were fed a high-fat diet, treated with vehicle (control) or FURIN Inhibitor  $\alpha$ -1-PDX and subjected to wire-induced injury of the common carotid artery. (a) The total number of cells, (b) the number of smooth muscle cells, and (c) the number of MAC2 positive macrophages per plaque were all significantly lower in FURIN inhibitor treated mice. (d) No changes in CD31<sup>+</sup> endothelial cell numbers were observed. (e) Endothelial adhesion molecule ICAM1 levels were not changed in FURIN inhibitor treated mice. However, (f) vascular inflammatory cytokine TNF- $\alpha$  levels were significantly lower in plaques from FURIN inhibitor treated mice.



FURIN

control

FURIN

control

### FURIN over-expression increases neointimal plaque formation in a wire injury model of atherosclerosis

Figure 6: FURIN over-expression increases neointimal plaque formation in a wire injury model of atherosclerosis. Apoe<sup>-/-</sup> mice were fed a western-type diet, subjected to wire-induced injury of the common carotid artery, and treated with vehicle (n=5) or purified FURIN protein (n=6). (a) Representative photomicrographs of pentachrome-stained sections at 2 weeks after injury, and (b) significantly higher neointima and (c) plaque area in FURIN protein injected  $Apoe^{-/-}$  mice. (d) Significantly increased smooth muscle cell area, and (e) no change in macrophage area in the lesions of FURIN over-expressing mice. Groups are abbreviated as:  $Apoe^{-/-}$  mice (Control);  $Apoe^{-/-}$ mice administered the purified FURIN protein (FURIN). Values represent mean ± SEM.



Lower plasma inflammatory markers, elevated plasma HDL cholesterol and lower MMP2 expression in aorta of FURIN inhibitor treated mice

Figure 3: Lower plasma inflammatory markers, elevated plasma HDL cholesterol and lower MMP2 expression in aorta of FURIN inhibitor treated mice. Lower plasma levels of (a) TNF- $\alpha$ , (b) IL1- $\beta$ , (c) TGF- $\beta$ 1, and (d) elevated plasma HDL cholesterol levels in FURIN inhibitor treated mice. (e) Gelatin zymography in the aortic arch showing both the pro and active forms of MMP2. (f) Total MMP2 expression levels are significantly lower in the aortic arch of FURIN inhibitor treated mice (g) Significantly lower active MMP2/proMMP2 expression in the aortic arch of FURIN inhibitor treated mice. Groups are abbreviated as: *Ldlr*<sup>-/-</sup> mice fed Western type diet injected with PBS (WTD); *Ldlr*<sup>-/-</sup> mice fed Western type diet injected with the  $\alpha$ -1-PDX FURIN inhibitor (WTD+PDX). A.U.= Arbitrary Units. Values represent mean ± SEM.

# Unpublished Results (cell-based assays)

### Chemical inhibition of FURIN inhibits MMP activity in Human Coronary Artery Endothelial Cells



#### **Furin inhibitor : dec-RVKR-CMK**



Generation of heterozygous and homozygous deletions of FURIN in U937 monocytes via CRISPR

Legend: Lane 1: U937 control Lane 2: Furin Crispr 63 (Heterozygous) Lane 3: Furin Crispr 180 (Homozygous)

Furin molecular weight: 86kDa B-actin Molecular weight: 42kDa

### **Effects of FURIN deletion on phagocytosis in U937 cells**



■ WT ■ Heterozygous ■ Homozygous

| T-test      |           |  |  |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|--|--|
| WT / Hetero | WT / Homo |  |  |  |  |  |  |  |  |  |
| 0.59429569  | 0.528096  |  |  |  |  |  |  |  |  |  |

### Effect of FURIN deletin on oxidized lipid uptake in U937 cells



■WT ■Heterozygous ■Homozygous



### **Effect of FURIN deletion on transmigration of U937 cells**



| T-test |          |          |  |  |  |  |  |  |  |  |  |
|--------|----------|----------|--|--|--|--|--|--|--|--|--|
|        | WT/      | WT/      |  |  |  |  |  |  |  |  |  |
|        | Hetero   | Homo     |  |  |  |  |  |  |  |  |  |
| 0hr    | 0.182929 | 0.114937 |  |  |  |  |  |  |  |  |  |
| 2hr    | 0.248341 | 0.103412 |  |  |  |  |  |  |  |  |  |
| 4hr    | 0.263912 | 0.06935  |  |  |  |  |  |  |  |  |  |
| 8hr    | 0.610122 | 0.017041 |  |  |  |  |  |  |  |  |  |

### Effect of FURIN deletion on inflammatory gene expression in U937 cells



### Effect of FURIN deletion on gene and pathway expression in U937 cells







| NAME                                                              | SIZE | NES        | NOM p-val  | FDR q-val  | Comparison | Direction |
|-------------------------------------------------------------------|------|------------|------------|------------|------------|-----------|
| KEGG_CARDIAC_MUSCLE_CONTRACTION                                   | 41   | -1.8148402 | 0.00512821 | 0.07270604 | HZ vs WT   | dn_HZ     |
| KEGG_COMPLEMENT_AND_COAGULATION_CASCADES                          | 27   | -1.9659134 | 0.00165837 | 0.02767488 | HZ vs WT   | dn_HZ     |
| KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM                      | 19   | -1.776342  | 0.00654665 | 0.09013652 | HZ vs WT   | dn_HZ     |
| KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY                          | 50   | -1.7752033 | 0.00326264 | 0.07335213 | HZ vs WT   | dn_HZ     |
| KEGG_RETINOL_METABOLISM                                           | 13   | -1.9057918 | 0.00168067 | 0.03158124 | HZ vs WT   | dn_HZ     |
| GO_REGULATION_OF_MESENCHYMAL_CELL_PROLIFERATION                   | 21   | 2.1335328  | 0          | 0.05423588 | HZ vs WT   | up_HZ     |
| KEGG_COMPLEMENT_AND_COAGULATION_CASCADES                          | 27   | -1.8786367 | 0          | 0.00877457 | NZ vs WT   | dn_NZ     |
| KEGG_HISTIDINE_METABOLISM                                         | 18   | -1.8481181 | 0.00136426 | 0.01082356 | NZ vs WT   | dn_NZ     |
| KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS                                 | 25   | -1.8060137 | 0          | 0.01712945 | NZ vs WT   | dn_NZ     |
| KEGG_TRYPTOPHAN_METABOLISM                                        | 21   | -1.7206078 | 0.01179554 | 0.06933154 | NZ vs WT   | dn_NZ     |
| GO_HUMORAL_IMMUNE_RESPONSE_MEDIATED_BY_CIRCULATING_IMMUNOGLOBULIN | 24   | -1.909731  | 0          | 0.12325557 | NZ vs WT   | dn_NZ     |
| GO_MODIFICATION_OF_POSTSYNAPTIC_STRUCTURE                         | 13   | -1.8803527 | 0          | 0.14710467 | NZ vs WT   | dn_NZ     |



#### HomovsU937





Complement coarde

CLOP Clurkske

+ Oillis

Departati de missie

5 to I wanter against pallers

Departie
 Departie